computational & multiscale cm3 mechanics of materials · 2018-06-30 · computational &...

49
Computational & Multiscale Mechanics of Materials CM3 www.ltas-cm3.ulg.ac.be CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK A stochastic Mean Field Homogenization model of Unidirectional composite materials The research has been funded by the Walloon Region under the agreement no 1410246-STOMMMAC (CT-INT 2013- 03-28) in the context of the M-ERA.NET Joint Call 2014. SEM images by Major Zoltan, Nghia Chnug Chi, JKU, Austria Wu Ling, Noels Ludovic SVE , SVE ′, SVE ′, ′ t SVE

Upload: others

Post on 19-Mar-2020

30 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

Computational & Multiscale

Mechanics of Materials CM3www.ltas-cm3.ulg.ac.be

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK

A stochastic Mean Field Homogenization model of

Unidirectional composite materials

The research has been funded by the Walloon Region under the agreement no 1410246-STOMMMAC (CT-INT 2013-

03-28) in the context of the M-ERA.NET Joint Call 2014. SEM images by Major Zoltan, Nghia Chnug Chi, JKU, Austria

Wu Ling, Noels Ludovic

𝑥

𝑦

SVE 𝑥, 𝑦

SVE 𝑥′, 𝑦

SVE 𝑥′, 𝑦′

t

𝑙SVE

Page 2: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 2

Multi-scale modelling

• Two-scale modelling

– One method: homogenization

– 2 problems are solved (concurrently)

• The macro-scale problem

• The meso-scale problem (on a meso-scale Volume Element)

BVP

Macro-scale

Material

response

Extraction of a meso-

scale Volume Element

P, σ, q, … F, Ɛ, T, 𝛁T, …

Page 3: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 3

• Material uncertainties affect structural behaviors

Ematrix

Probability

EFibers

Probability

Fiber orientation

(a)

Probability

w0

wI

a

Composite stiffness

Probability

Probabilistic homogenization

Loading

Homogenized

material properties

distribution

Failure load

Probability Stochastic

structural

analysis

UQ

The problem

Page 4: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 4

• Illustration assuming a regular stacking

– 60%-UD fibers

– Damage-enhanced matrix behavior

• Question: what does happen for a realistic fiber stacking?

The problem

0

20

40

60

80

100

120

0 0.01

s[M

pa

]

e

0 degree

15 degree

30 degree

45 degree

60 degree

75 degree

90 degree

Effect of the

loading direction q

for dmin = 0.5 µm

0

20

40

60

80

100

120

0 0.01

s[M

pa

]

e

dmin=0.2

dmin=0.35

dmin=0.5

dmin=0.65

dmin=0.8

ϴ

dmin

Effect of the

distance dmin for q =

30o

Page 5: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 5

• Proposed methodology:

The problem

𝜔 =∪𝑖 𝜔𝑖

wI

w0

Stochastic

Homogenization

SVE size

Average

strength

SVE size

Variance of

strength

Stochastic

reduced

model

Experimental

measurements

SVE

realisations

∆𝑑

Copula (𝑑1st, ∆𝑑)

𝑑1st

Micro-structure

stochastic model

Page 6: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 6

• 2000x and 3000x SEM images

• Fibers detection

Experimental measurements

Page 7: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 7

• Basic geometric information of fibers' cross sections

– Fiber radius distribution 𝑝𝑅 𝑟

• Basic spatial information of fibers

– The distribution of the nearest-neighbor net distance

function 𝑝𝑑1st𝑑

– The distribution of the orientation of the undirected line

connecting the center points of a fiber to its nearest

neighbor 𝑝𝜗1st𝜃

– The distribution of the difference between the net

distance to the second and the first nearest-neighbor

𝑝Δ𝑑 𝑑 with Δ𝑑 = 𝑑2nd − 𝑑1st

– The distribution of the second nearest-neighbor’s

location referring to the first nearest-neighbor 𝑝Δ𝜗 𝜃

with Δ𝜗 = 𝜗2nd − 𝜗1st

Micro-structure stochastic model

𝑅0

𝑅1

𝜗1st

𝑑1st∆𝜗

𝜗2nd𝑑2nd

𝑅2

Page 8: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 8

• Histograms of random micro-structures’ descriptors

Micro-structure stochastic model

𝑅0

𝑅1

𝜗1st

𝑑1st∆𝜗

𝜗2nd𝑑2nd

𝑅2

Page 9: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 9

• Dependency of the four random variables 𝑑1st, ∆𝑑, 𝜗1st, ∆𝜗

• Correlation matrix

• Distances correlation matrix

𝑑1st and ∆𝑑 are dependent

they will have to be generated

from their empirical copula

Micro-structure stochastic model

𝑑1st ∆𝑑 𝜗1st ∆𝜗

𝑑1st 1.0 0.27 0.04 0.08

∆𝑑 1.0 0.05 0.06

𝜗1st 1.0 0.05

∆𝜗 1.0

𝑑1st ∆𝑑 𝜗1st ∆𝜗

𝑑1st 1.0 0.21 0.01 0.02

∆𝑑 1.0 0.002 -0.005

𝜗1st 1.0 0.02

∆𝜗 1.0

𝑅0

𝑅1

𝜗1st

𝑑1st∆𝜗

𝜗2nd𝑑2nd

𝑅2

Page 10: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 10

• 𝑑1st and ∆𝑑 should be generated using their empirical copula

Micro-structure stochastic model

∆𝑑

SEM sample Generated sample

𝑑1st

∆𝑑

∆𝑑

𝑑1st

Directly from

copula generator

Statistic result from

generated SVE

𝑅0

𝑅1

𝜗1st

𝑑1st∆𝜗

𝜗2nd𝑑2nd

𝑅2

Page 11: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 11

• The numerical micro-

structure is generated

by a fiber additive

process

1) Define 𝑁 seeds with

first and second

neighbors distances

Micro-structure stochastic model

𝑅𝑘

𝑑1st𝑘

𝑑2nd𝑘

𝑅𝑘+1

𝑑1st𝑘+1

𝑑2nd𝑘+1

Seed 𝑘

Seed 𝑘 + 1

Page 12: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 12

𝑅1

𝑑1st1

𝑑2nd1

𝑅0

𝑑1st0

𝑑2nd0

𝑅0

𝑑1st0

𝑑2nd0

Seed 𝑘

Seed 𝑘 + 1

𝜗1st

• The numerical micro-

structure is generated

by a fiber additive

process

1) Define 𝑁 seeds with

first and second

neighbors distances

2) Generate first

neighbor with its own

first and second

neighbors distances

Micro-structure stochastic model

Page 13: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 13

𝑅1

𝑑1st1

𝑑2nd1

𝑅0

𝑑1st0

𝑑2nd0

𝑅0

𝑑1st0

𝑑2nd0

Seed 𝑘

Seed 𝑘 + 1

𝜗1st

𝑅2

𝑑1st2

𝑑2nd2

Δ𝜗

• The numerical micro-

structure is generated

by a fiber additive

process

1) Define 𝑁 seeds with

first and second

neighbors distances

2) Generate first

neighbor with its own

first and second

neighbors distances

3) Generate second

neighbor with its own

first and second

neighbors distances

Micro-structure stochastic model

Page 14: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 14

• The numerical micro-

structure is generated

by a fiber additive

process

1) Define 𝑁 seeds with

first and second

neighbors distances

2) Generate first

neighbor with its own

first and second

neighbors distances

3) Generate second

neighbor with its own

first and second

neighbors distances

4) Change seeds & then

change central fiber

of the seeds

Micro-structure stochastic model

𝑑1st0

𝑅0

𝑑2nd0

𝑅0

𝑑1st0

𝑑2nd0

Seed 𝑘

Seed 𝑘 + 1

𝑅𝑖𝑘

𝑑1st𝑖𝑘

𝑑2nd𝑖𝑘

𝑅𝑖𝑘+1

𝑑1st𝑖𝑘+1

𝑑2nd𝑖𝑘+1

𝑅1𝑑1st1

𝑑2nd1

𝜗1st

Page 15: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 15

• The numerical micro-structure is generated by a fiber additive process

– The effect of the initial number of seeds N and

– The effect of the maximum regenerating times nmax after rejecting a fiber due to

overlap

SEM: Average Vf of 103 windows;

Numerical micro-structures: Average Vf of 104 windows.

Micro-structure stochastic model

Page 16: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 16

• Comparisons of fibers spatial information

Micro-structure stochastic model

𝑅0

𝑅1

𝜗1st

𝑑1st∆𝜗

𝜗2nd𝑑2nd

𝑅2

Page 17: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 17

• Numerical micro-structures are generated by a fiber additive process

– Arbitrary size

– Arbitrary number

– Possibility to generate non-homogenous distributions

Micro-structure stochastic model

Page 18: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 18

• Stochastic homogenization

– Extraction of Stochastic Volume Elements

• 2 sizes considered: 𝑙SVE = 10 𝜇𝑚 & 𝑙SVE = 25 𝜇𝑚

• Window technique to capture correlation

– For each SVE

• Extract apparent homogenized material tensor ℂM

• Consistent boundary conditions:

– Periodic (PBC)

– Minimum kinematics (SUBC)

– Kinematic (KUBC)

Stochastic homogenization on the SVEs

𝑥

𝑦

SVE 𝑥, 𝑦

SVE 𝑥′, 𝑦

SVE 𝑥′, 𝑦′

t

𝑙SVE𝜺M =1

𝑉 𝜔

𝜔

𝜺m𝑑𝜔

𝝈M =1

𝑉 𝜔

𝜔

𝝈m𝑑𝜔

ℂM =𝜕𝝈M

𝜕𝒖M ⊗ 𝛁M

𝑅𝐫𝐬 𝝉 =𝔼 𝑟 𝒙 − 𝔼 𝑟 𝑠 𝒙 + 𝝉 − 𝔼 𝑠

𝔼 𝑟 − 𝔼 𝑟2

𝔼 𝑠 − 𝔼 𝑠2

Page 19: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 19

• Apparent properties

Stochastic homogenization on the SVEs

𝑙SVE = 10 𝜇𝑚 𝑙SVE = 25 𝜇𝑚

Increasing 𝑙SVE

When 𝑙SVE increases

• Average values for different BCs get closer (to PBC one)

• Distributions narrow

• Distributions get closer to normal

Page 20: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 20

• When 𝑙SVE increases: marginal distributions of random properties closer to normal

– lSVE = 10 µm

– lSVE = 25 µm

Stochastic homogenization on the SVEs

Page 21: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 21

• Correlation

Stochastic homogenization on the SVEs

𝑙SVE = 10 𝜇𝑚 𝑙SVE = 25 𝜇𝑚

Increasing 𝑙SVE

(1) Auto/cross correlation vanishes at 𝜏 = 𝑙SVE

(2) When 𝑙SVE increases, distributions get closer to normal

(1)+(2) Apparent properties are independent random variables

However the distribution depend on

• 𝑙SVE

• The boundary conditions

Page 22: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 22

• Quid larger SVEs?

– Computational cost affordable in linear elasticity

– Computational cost non affordable in failure analyzes

• How to deduce the stochastic content of larger SVEs?

– Take advantages of the fact that the apparent tensors

can be considered as random variables

Stochastic homogenization on the SVEs

𝑙SSVE

𝐿B

SV

E

Page 23: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 23

• Quid larger SVEs?

– Computational cost affordable in linear elasticity

– Computational cost non affordable in failure analyzes

• How to deduce the stochastic content of larger SVEs?

– Take advantages of the fact that the apparent tensors

can be considered as random variables

Stochastic homogenization on the SVEs

𝑙SSVE

𝐿B

SV

ELevel I Level II

Computational homogenization…

Page 24: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 24

• Quid larger SVEs?

– Computational cost affordable in linear elasticity

– Computational cost non affordable in failure analyzes

• How to deduce the stochastic content of larger SVEs?

– Take advantages of the fact that the apparent tensors

can be considered as random variables

– Accuracy depends on Small/Large SVE sizes

Stochastic homogenization on the SVEs

𝑙SSVE

𝐿B

SV

E

𝑙SSVE = 10 𝜇𝑚 𝑙SSVE = 25 𝜇𝑚

Page 25: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 25

• Numerical verification of 2-step homogenization

– Direct homogenization of larger SVE (BSVE) realizations

– 2-step homogenization using BSVE subdivisions

Stochastic homogenization on the SVEs

Level I Level II

Computational homogenization…

Page 26: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 26

• Stochastic model of the anisotropic elasticity tensor

– Extract (uncorrelated) tensor realizations ℂM𝑖

– Represent each realization ℂM𝑖 by a vector 𝓥 of 9 (dependant) 𝓥(𝒓) variables

– Generate random vectors 𝓥 using the Copula method

Stochastic reduced order model

ℂM1 ℂM

2 ℂM3

Page 27: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 27

• Stochastic model of the anisotropic elasticity tensor

– Extract (uncorrelated) tensor realizations ℂM𝑖

– Represent each realization ℂM𝑖 by a vector 𝓥 of 9 (dependant) 𝓥(𝒓) variables

– Generate random vectors 𝓥 using the Copula method

• Simulations require two discretizations

– Random vector discretization

– Finite element discretization

Stochastic reduced order model

ℂM1 ℂM

2 ℂM3

Page 28: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 28

Stochastic reduced order model

• Ply loading realizations

– Non-uniform homogenized stress

distributions

– Different realizations yield different

solutions

𝜎𝑀𝑥𝑥 [Mpa]

43 53 63

𝜎𝑀𝑥𝑥 [Mpa]

44 55 66

𝜎𝑀𝑥𝑥 [Mpa]

43 55 67

𝜎𝑀𝑥𝑥 [Mpa]

43 55 67

Page 29: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 29

• Mean-Field-homogenization (MFH)

– Linear composites

– We use Mori-Tanaka assumption for 𝐁𝜀 I, ℂ0 , ℂI

• Stochastic MFH

– How to define random vectors 𝓥MT of I, ℂ0 , ℂI , 𝑣I ?

Stochastic Mean-Field Homogenization

𝛆M = 𝛆 = 𝑣0𝛆0 + 𝑣I𝛆I

𝛆I = 𝐁𝜀 I, ℂ0 , ℂI : 𝛆0

𝛔M = 𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I

inclusions

composite

matrix

𝛆I

𝛔

𝛆

ℂ0

𝛆 = 𝛆M𝛆0

ℂI

ℂM = ℂM I, ℂ0 , ℂI , 𝑣I

𝜔 =∪𝑖 𝜔𝑖

wI

w0

Page 30: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 30

• Mean-Field-homogenization (MFH)

– Linear composites

• Consider an equivalent system

– For each SVE realization 𝑖:

ℂM and 𝜈𝐼 known

– Anisotropy from ℂM𝑖

𝜃 is evaluated

– Fiber behavior uniform

ℂI for one SVE

– Remaining optimization problem:

Stochastic Mean-Field Homogenization

𝛆M = 𝛆 = 𝑣0𝛆0 + 𝑣I𝛆I

𝛆I = 𝐁𝜀 I, ℂ0 , ℂI : 𝛆0

𝛔M = 𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I

inclusions

composite

matrix

𝛆I

𝛔

𝛆

ℂ0

𝛆 = 𝛆M𝛆0

ℂI

Defined as

random fields

ℂM ≃ ℂM( I, ℂ0 , ℂI , 𝑣I, 𝜃)

ℂ0ℂI

ℂ0

ℂI

𝜃

𝑎

𝑏

Equivalent

inclusion

ℂM = ℂM I, ℂ0 , ℂI , 𝑣I

𝜔 =∪𝑖 𝜔𝑖

wI

w0

min𝑎

𝑏, 𝐸0 , 𝜈0

ℂM − ℂM(𝑎

𝑏, 𝐸0 , 𝜈0 ; 𝑣I, 𝜃, ℂI )

Page 31: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 31

• Inverse stochastic identification

– Comparison of homogenized

properties from SVE realizations

and stochastic MFH

Stochastic Mean-Field Homogenization

ℂM ≃ ℂM( I, ℂ0 , ℂI , 𝑣I, 𝜃)

ℂ0ℂI

ℂ0

ℂI

𝜃

𝑎

𝑏

Equivalent

inclusion

Page 32: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 32

Stochastic Mean-Field Homogenization

• Comparison Random fields vs. Stochastic elastic MFH

Random anisotropic material tensor Stochastic MFH

𝜎𝑥𝑥 [Mpa]

0 33 66

𝜎𝑥𝑥 [Mpa]

0 33 66

𝜎eq[Mpa]

0 30 60𝜎eq[Mpa]

0 30 60

Page 33: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 33

• Stochastic MFH model:

– Homogenized properties ℂM(𝑎

𝑏, 𝐸0 , 𝜈0 𝑣I, 𝜃; ℂI )

– Random vectors 𝓥MT

• Realizations vMT =𝑎

𝑏, 𝐸0 , 𝜈0 𝑣I, 𝜃

• Characterized by the distance correlation matrix

• Generator using the copula method

Stochastic Mean-Field Homogenization

ℂM(𝑎

𝑏, 𝐸0 , 𝜈0 𝑣I, 𝜃; ℂI )

ℂ0

ℂI

𝜃

𝑎

𝑏

𝒗𝐈 𝜃 𝒂

𝒃

𝑬𝟎 𝝂𝟎

𝒗𝐈 1.0 0.015 0.114 0.523 0.499

𝜃 1.0 0.092 0.016 0.014

𝒂

𝒃1.0 0.080 0.076

𝑬𝟎 1.0 0.661

𝝂𝟎

Distances correlation matrix

Page 34: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 34

Stochastic Mean-Field Homogenization

• Stochastic simulations

– 2 discretization: Random field 𝓥MT & Stochastic finite-elements

– Realizations to reach a given deflection 𝜹

Page 35: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 35

• Non-linear SVE simulations

Non-linearity

Page 36: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 36

• Non-linear Mean-Field-homogenization

– Linear composites

– Non-linear composites

Non-linear stochastic Mean-Field Homogenization

𝛆M = 𝛆 = 𝑣0𝛆0 + 𝑣I𝛆I

𝛆I = 𝐁𝜀 I, ℂ0 , ℂI : 𝛆0

𝛔M = 𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I

inclusions

composite

matrix

𝛆I

𝛔

𝛆

ℂ0

𝛆 = 𝛆M𝛆0

ℂI

inclusions

composite

matrix

𝚫𝛆I

𝛔

𝛆𝚫𝛆M 𝚫𝛆0

𝚫𝛆M = Δ𝛆 = 𝑣0Δ𝛆0 + 𝑣IΔ𝛆I

𝚫𝛆I = 𝐁𝜀 I, ℂ0LCC, ℂ𝐼

LCC : 𝚫𝛆0

𝛔M = 𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I

Define a linear

comparison

composite material

Page 37: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 37

• Incremental-secant Mean-Field-homogenization

– Virtual elastic unloading from previous state

• Composite material unloaded to reach the stress-

free state

• Residual stress in components

Non-linear stochastic Mean-Field Homogenization

inclusions

composite

matrix

𝚫𝛆Iunload

𝛔

𝛆

𝚫𝛆Munload

𝚫𝛆0unload

ℂIel

ℂ0el

Page 38: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 38

• Incremental-secant Mean-Field-homogenization

– Virtual elastic unloading from previous state

• Composite material unloaded to reach the stress-

free state

• Residual stress in components

– Define Linear Comparison Composite

• From unloaded state

• Incremental-secant loading

• Incremental secant operator

Non-linear stochastic Mean-Field Homogenization

𝚫𝛆M𝐫 = Δ𝛆 = 𝑣0Δ𝛆0

𝐫 + 𝑣IΔ𝛆I𝐫

𝚫𝛆I𝐫 = 𝐁𝜀 I, ℂ0

S, ℂIS : 𝚫𝛆0

𝐫

𝛔M = 𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I

inclusions

composite

matrix

𝚫𝛆Iunload

𝛔

𝛆

𝚫𝛆Munload

𝚫𝛆0unload

ℂIel

ℂ0el

𝚫𝛆I/0𝐫 = Δ𝛆I/0 + 𝚫𝛆I/0

unload

𝚫𝛔M = ℂMS I, ℂ0

S, ℂIS, 𝑣I : 𝚫𝛆M

𝐫 ℂ0S

inclusions

composite

matrix

𝚫𝛆I𝐫

𝛔

𝛆𝚫𝛆M

𝐫

𝚫𝛆0𝐫

ℂIS

ℂMS

Page 39: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 39

• Non-linear inverse identification

– First step from elastic response

Non-linear stochastic Mean-Field Homogenization

ℂ0ℂI

ℂ0el

ℂIel

𝜃

𝑎

𝑏

Equivalent

inclusion

ℂMel ≃ ℂM

el( I, ℂ0el, ℂI

el, 𝑣I, 𝜃)

inclusions

composite

matrix

𝚫𝛆Iunload

𝛔

𝛆

𝚫𝛆Munload

𝚫𝛆0unload

ℂIel

ℂ0el

Page 40: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 40

• Non-linear inverse identification

– First step from elastic response

– Second step from the LCC

• New optimization problem

• Extract the equivalent hardening 𝑅 𝑝0 from the

incremental secant tensor

Non-linear stochastic Mean-Field Homogenization

ℂ0S ≃ ℂ0

S( 𝑅 𝑝0 ; ℂ0el)

ℂ0ℂI

ℂ0S

ℂIS

𝜃

𝑎

𝑏

Equivalent

inclusion

ℂMel ≃ ℂM

el( I, ℂ0el, ℂI

el, 𝑣I, 𝜃)

ℂ0S ≃ ℂ0

S( 𝑅 𝑝0 ; ℂ0el)

ℂ0S

inclusions

composite

matrix

𝚫𝛆I𝐫

𝛔

𝛆𝚫𝛆M

𝐫

𝚫𝛆0𝐫

ℂIS

ℂMS

𝚫𝛔M ≃ ℂMS I, ℂ0

S, ℂIS, 𝑣I, 𝜃 : 𝚫𝛆M

𝐫

Page 41: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 41

• Non-linear inverse identification

– Comparison SVE vs. MFH

Non-linear stochastic Mean-Field Homogenization

ℂ0S ≃ ℂ0

S( 𝑅 𝑝0 ; ℂ0el)

ℂ0ℂI

ℂ0S

ℂIS

𝜃

𝑎

𝑏

Equivalent

inclusion

ℂMel ≃ ℂM

el( I, ℂ0el, ℂI

el, 𝑣I, 𝜃)

Page 42: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 42

• Damage-enhanced Mean-Field-homogenization

– Virtual elastic unloading from previous state

• Composite material unloaded to reach the stress-

free state

• Residual stress in components

Non-linear stochastic Mean-Field Homogenization

inclusions

composite

matrix

𝚫𝛆Iunload

𝛔

𝛆𝚫𝛆M

unload𝚫𝛆0

unload

ℂIel

(1 − 𝐷0)ℂ0el

effective

matrix

Page 43: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 43

• Damage-enhanced Mean-Field-homogenization

– Virtual elastic unloading from previous state

• Composite material unloaded to reach the stress-

free state

• Residual stress in components

– Define Linear Comparison Composite

• From elastic state

• Incremental-secant loading

• Incremental secant operator

Non-linear stochastic Mean-Field Homogenization

𝚫𝛆M𝐫 = Δ𝛆 = 𝑣0Δ𝛆0

𝐫 + 𝑣IΔ𝛆I𝐫

𝚫𝛆I𝐫 = 𝐁𝜀 I, 1 − 𝐷0 ℂ0

S, ℂIS : 𝚫𝛆0

𝐫

𝛔M = 𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I

𝚫𝛆I/0𝐫 = Δ𝛆I/0 + 𝚫𝛆I/0

unload

inclusions

composite

matrix

𝚫𝛆Iunload

𝛔

𝛆𝚫𝛆M

unload𝚫𝛆0

unload

ℂIel

(1 − 𝐷0)ℂ0el

effective

matrix

𝚫𝛔M = ℂMS I, 1 − 𝐷0 ℂ0

S, ℂIS, 𝑣I : 𝚫𝛆M

𝐫

inclusions

composite

matrix

𝚫𝛆Ir

𝛔

𝛆𝚫𝛆M

r𝚫𝛆0

r

ℂIS

(1 − 𝐷0)ℂ0S

effective

matrix

ℂMS

Page 44: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 44

• Damage-enhanced inverse identification

– First step from elastic response

• Before damage occurs

Non-linear stochastic Mean-Field Homogenization

inclusions

composite

matrix

𝚫𝛆Iunload

𝛔

𝛆

𝚫𝛆Munload

𝚫𝛆0unload

ℂIel

ℂ0el

ℂ0ℂI

ℂ0el

ℂIel

𝜃

𝑎

𝑏

Equivalent

inclusion

ℂMel ≃ ℂM

el( I, ℂ0el, ℂI

el, 𝑣I, 𝜃)

Page 45: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 45

• Damage-enhanced inverse identification

– Second step: elastic unloading

• Identify damage evolution 𝐷0

Non-linear stochastic Mean-Field Homogenization

1 − 𝐷0 ℂ0el

ℂIel

1 − 𝐷0 ℂ0el

ℂIel

𝜃

𝑎

𝑏

Equivalent

inclusion

ℂMel(𝐷) ≃ ℂM

el( I, 1 − 𝐷0 ℂ0el, ℂI

el, 𝑣I, 𝜃)

inclusions

composite

matrix

𝚫𝛆Iunload

𝛔

𝛆𝚫𝛆M

unload𝚫𝛆0

unload

ℂIel

(1 − 𝐷0)ℂ0el

effective

matrixℂMel(𝐷)

Page 46: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 46

• Damage-enhanced inverse identification

– Second step: elastic unloading

• Identify damage evolution 𝐷0

– Third step from the LCC

• Extract the equivalent hardening 𝑅 𝑝0 & damage

evolution D0 𝑝0 from incremental secant tensor:

Non-linear stochastic Mean-Field Homogenization

1 − 𝐷0 ℂ0el

ℂIel

1 − 𝐷0 ℂ0el

ℂIel

𝜃

𝑎

𝑏

Equivalent

inclusion

1 − D0 ℂ0𝑆 ≃ 1 − D0 𝑝0

ℂ0𝑆( 𝑅 𝑝0 ; ℂ0

el)

inclusions

composite

matrix

𝚫𝛆Ir

𝛔

𝛆𝚫𝛆M

r𝚫𝛆0

r

ℂIS

(1 − 𝐷0)ℂ0S

effective

matrix

ℂMS

𝚫𝛔M = ℂMS I, 1 − 𝐷0 ℂ0

S, ℂIS, 𝑣I : 𝚫𝛆M

𝐫

ℂMel(𝐷) ≃ ℂM

el( I, 1 − 𝐷0 ℂ0el, ℂI

el, 𝑣I, 𝜃)

inclusions

composite

matrix

𝚫𝛆Iunload

𝛔

𝛆𝚫𝛆M

unload𝚫𝛆0

unload

ℂIel

(1 − 𝐷0)ℂ0el

effective

matrixℂMel(𝐷)

Page 47: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 47

• Damage-enhanced inverse identification

– Comparison SVE vs. MFH

Non-linear stochastic Mean-Field Homogenization

1 − 𝐷0 ℂ0ℂIel

1 − 𝐷0 ℂ0S

ℂIel

𝜃

𝑎

𝑏

Equivalent

inclusion

1 − D0 ℂ0𝑆 ≃ 1 − D0 𝑝0

ℂ0𝑆( 𝑅 𝑝0 ; ℂ0

el)

Page 48: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 48

• Stochastic generator based on SEM measurements of unidirectional fibers-

reinforced composites

• Computational homogenization on SVEs

• Two-step computational homogenization for Big SVEs

• Definition of a Stochastic MFH method

• In progress: nonlinear and failure analyzes

Conclusions

Page 49: Computational & Multiscale CM3 Mechanics of Materials · 2018-06-30 · Computational & Multiscale Mechanics of Materials CM3 CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University,

CM3 22 June 2018 - EngSci Solid Mechanics, Oxford University, UK - 49

Thank you for your attention !