computational modeling of varying nucleophile activity on the rna cleavage transition state jennifer...

23
Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar, Steven Kunis, Joshua Loughran, Elena Malloy, David Mazumder, Dushyant Patel, Jeffrey Wu, Grace Zhang Advisor: Adam Cassano Assistant: Zack Vogel

Upload: kerry-cross

Post on 16-Jan-2016

230 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Computational Modeling of Varying

Nucleophile Activity on the RNA Cleavage Transition State

Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar, Steven Kunis, Joshua Loughran, Elena Malloy, David

Mazumder, Dushyant Patel, Jeffrey Wu, Grace Zhang

Advisor: Adam CassanoAssistant: Zack Vogel

Page 2: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

RNA Cleavage

• Role of RNA

• RNA Cleavageo Importance & Ubiquityo Change or inhibit gene expression

• Understanding the Mechanismo Potential Applications

Artificial Nucleases Target harmful RNA Cure diseases

DNA RNA Protein

Page 3: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Observing the Nucleophile

The strength of a nucleophile depends upon how negative its charge is.

Page 4: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Transition States

Harris and Cassano, Current Opinion in Chemical Biology, 2008, 12, 626-639

Page 5: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Describing the Transition State

Page 6: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Computational Chemistry

• Life Span of Transition State: 10-13 Seconds

• Allows us to visualize structures that cannot be observedo Distanceso Chargeso Angles

Abu-Awwad, Fakhr, Computational & Biophysical Chemistry, 2007

Page 7: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Electronic Structure Methods

Locke, W., Molecular Orbital Theory, 2006

• Levels of Theory: DFT, Hartree-Fock, MP2, MP4,....

• Basis Set: Set of functions to model molecular orbitals

• Larger basis set = better model, but more computing time

Page 8: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Models

• GaussView

• Simplification

• Structureo Variation of the electronegative portiono Effects on nucleophile

Lönnberg, Org. Biomol. Chem., 2011, 9, 1687–1703

Nucleophile

Page 9: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Optimization

• Finding molecular geometries:o bond lengthso bond angleso charges

• Ground state and transition state

• B3LYP/6-31++G(d,p)

Page 10: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Frequency

• Determines if molecule at minimum or transition state

• Calculating atomic motion within moleculeso Vibrations within bondso Thermochemical data

• B3LYP/6-31++G(d,p)

Page 11: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

The Ground State

P-O (Nuc)

P-O (LG)

Charge (ONuc)

Charge (OLG)

-CH3 4.565 1.664 -0.929 -0.72

-CFH2 4.56078 1.66327 -0.9 -0.717

-CF2H 4.53447 1.64745 -0.897 -0.692

-CF3 4.439 1.661 -0.873 -0.71

Page 12: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Transition StatesP-O

(Nuc)P-O(LG)

P-O(Nuc) + P-

O(LG)

-CH3 1.78 2.36 4.14

-CFH2 1.78 2.43 4.21

-CF2H 1.79 2.44 4.23

-CF3 1.78 2.50 4.28

Page 13: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

The Phenol Leaving Group

• Structure:o Methyl group by nucleophileo Phenol leaving group

• Different basis seto B3LYP/6-311++G(d,p)

• Test effect of good leaving group on transition state

o Reactant-likeo P-ONuc Longer (2.31Å vs 1.78Å)

o P-OLg Shorter (1.83Å vs 2.36Å)

Page 14: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Energy Calculations

• Calculating Electronic Energy

• Methodso B3LYPo MPWB1K - more accurate

G = (((Ee +ZPVE) + Evib + Erot + Etrans)+ RT) - TS

• Both the ground state and the transition state

∆G = Gtransition state - Gground state

k = kB T h-1 e -∆G/RT

Ribeiro A, Ramos M, Fernandes P. Benchmarking of DFT functionals for the hydrolysis of phosphodiester bonds. J. Chem. Theory Comput. 2010; 6: 2281-2292.Lopez X, Dejaegere A, Leclerc F, York D, Karplus M. Nucleophilic attack on phosphate diesters: a density functional study of in-line reactivity in dianionic, monoanionic, and neutral systems. J. Phys. Chem. 2006; 110(23): 11525-11539.

Page 15: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Energy Results - B3LYP

Ground State Energy (kJ/mol)

Transition State Energy (kJ/mol)

ΔG‡

(kJ/mol)Rate Constant

-CH3 -2298667.1 -2298564.5 102.6 6.46 X 10-6

-CFH2 -2559250.3 -2559143.3 107.0 1.09 X 10-6

-CF2H -2819863.0 -2819743.1 119.9 6.08 X 10-9

-CF3 -3081577.4 -3081460.8 129.9 1.06 X 10-10

Page 16: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Energy Results - MPWB1K

Ground State Energy (kJ/mol)

Transition State Energy (kJ/mol)

ΔG‡

(kJ/mol)Rate Constant

-CH3 -2298016.3 -2297921.9 94.4 1.76 X 10-4

-CFH2 -2558531.8 -2558431.5 100.2 1.65 X 10-5

-CF2H -2819084.0 -2818969.5 114.5 5.37 X 10-8

-CF3 -3081577.4 -3081460.8 116.7 2.18 X 10-8

Page 17: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Energy Results - GraphBrønsted Plot Comparing Acidity of Nucleophile and

Reaction Rate

Page 18: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Conclusions

As pKa decreases (acidity increases):

• free energy of activation increases.

• leaving group bond length increases.

• nucleophile bond length stays roughly the same.

• TS becomes more dissociative.

• nucleophile charge becomes less negative.

As nucleophile charge becomes less negative, ...

• leaving group bond length increases.

Page 19: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Why are our results important?

Showed that RNA cleavage can be manipulated

• Methyl group

• Distances

• Transition states

Therapies

• Ras

• VEGF - Vascular Endothelial Growth Factor

• EGF - Epidermal Growth Factor

Page 20: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Future Investigations

• Changing leaving group

• Changing nucleophile

• Larger basis set

Page 21: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Thank you!Team 1 Project Advisor: Dr. Adam Cassano

Assistant: Zack Vogel

Program Administrators:

Dr. David Miyamoto,

Dr. Steve Surace,

Janet Quinn,

Anna Mae S. Dinio-Bloch

Sponsors,

Without whom NJGSS'12 would not have been possible.

Page 22: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Questions?

Page 23: Computational Modeling of Varying Nucleophile Activity on the RNA Cleavage Transition State Jennifer Andre, Aastha Chokshi, Daniel Greenberg, Jay Karandikar,

Works Cited

Abu-Awwad, Fakhr, Computational & Biophysical Chemistry, 2007

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Harris and Cassano, Current Opinion in Chemical Biology, 2008, 12, 626-639

Locke, W., Molecular Orbital Theory, 2006

Lönnberg, Org. Biomol. Chem., 2011, 9, 1687–1703

Lopez X, Dejaegere A, Leclerc F, York D, Karplus M. Nucleophilic attack on phosphate diesters: a density functional study of in-line reactivity in dianionic, monoanionic, and neutral systems. J. Phys. Chem. 2006; 110(23): 11525-11539.

Ribeiro A, Ramos M, Fernandes P. Benchmarking of DFT functionals for the hydrolysis of phosphodiester bonds. J. Chem. Theory Comput. 2010; 6: 2281-2292.