computational discovery of number theory identities for … · 2013-01-11 · 3 the pslq integer...

22
1 Computational Discovery of Number Theory Identities for Mathematical Physics Integrals David H Bailey, Lawrence Berkeley National Lab, USA This talk is available at: http://www.davidhbailey.com/dhbtalks/dhb-ams-siam.pdf

Upload: others

Post on 16-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

1

Computational Discovery of Number Theory Identities for Mathematical Physics Integrals

David H Bailey, Lawrence Berkeley National Lab, USA This talk is available at:

http://www.davidhbailey.com/dhbtalks/dhb-ams-siam.pdf

Page 2: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

2

Experimental math: Discovering new mathematical results by computer

·  Compute various mathematical entities (limits, infinite series sums, definite integrals) to high precision, typically 100-1000 or more digits.

·  Use algorithms such as PSLQ to recognize these entities in terms of well-known mathematical constants.

·  When results are found experimentally, seek formal mathematical proofs of the discovered relations.

“If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics.” – Kurt Godel

Mathematics Computer science

Scientific computing Mathematics

Page 3: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

3

The PSLQ integer relation algorithm

Let (xn) be a given vector of real numbers. An integer relation algorithm finds integers (an) such that

1. H. R. P. Ferguson, DHB and S. Arno, “Analysis of PSLQ, An Integer Relation Finding Algorithm,” Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369. 2. DHB and D. J. Broadhurst, “Parallel Integer Relation Detection: Techniques and Applications,” Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736.

(or within “epsilon” of zero, where epsilon = 10-p and p is the precision). At the present time the “PSLQ” algorithm of mathematician-sculptor Helaman Ferguson is the most widely used integer relation algorithm. It was named one of ten “algorithms of the century” by Computing in Science and Engineering. Integer relation detection requires very high precision (at least n*d digits, where d is the size in digits of the largest ak), both in the input data and in the operation of the algorithm.

a1x1 + a2x2 + · · · + anxn = 0

Page 4: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

4

PSLQ, continued

·  PSLQ constructs a sequence of integer-valued matrices Bn that reduces the vector y = x * Bn, until either the relation is found (as one of the columns of Bn), or else precision is exhausted.

·  At the same time, PSLQ generates a steadily growing bound on the size of any possible relation.

·  When a relation is found, the size of smallest entry of the y vector suddenly drops to roughly “epsilon” (i.e. 10-p, where p is the number of digits of precision).

·  The size of this drop can be viewed as a “confidence level” that the relation is real and not merely a numerical artifact -- a drop of 20+ orders of magnitude almost always indicates a real relation.

Several efficient variants of PSLQ are available: ·  2-level and 3-level PSLQ: performs almost all PSLQ iterations with only

double precision, updating full-precision arrays as needed. Hundreds of times faster than the original full-precision PSLQ algorithm.

·  Multi-pair PSLQ: dramatically reduces the number of iterations required. Designed for parallel system, but runs faster even on 1 CPU.

Page 5: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

5

Decrease of log10(min |yi|) in multipair PSLQ run

Page 6: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

6

PSLQ discovery: The BBP formula for Pi

In 1996, this new formula for π was found using a PSLQ program:

This formula permits one to compute binary (or hexadecimal) digits of π beginning at an arbitrary starting position, using a very simple scheme that can run on any system, using only standard 64-bit or 128-bit arithmetic. Recently it was proven that no base-n formulas of this type exist for π, except n = 2m. 1. DHB, P. B. Borwein and S. Plouffe, “On the rapid computation of various polylogarithmic constants,” Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913. 2. J. M. Borwein, W. F. Galway and D. Borwein, “Finding and excluding b-ary Machin-type BBP formulae,” Canadian Journal of Mathematics, vol. 56 (2004), pg 1339-1342.

� =�⇤

k=0

116k

�4

8k + 1� 2

8k + 4� 1

8k + 5� 1

8k + 6

Page 7: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

7

High-precision tanh-sinh quadrature

Given f(x) defined on (-1,1), define g(t) = tanh (π/2 sinh t). Then setting x = g(t) yields

where xj = g(hj) and wj = g’(hj). Since g’(t) goes to zero very rapidly for large t, the product f(g(t)) g’(t) typically is a nice bell-shaped function for which the Euler-Maclaurin formula implies that the simple summation above is remarkably accurate. Reducing h by half typically doubles the number of correct digits. For our applications, we have found that tanh-sinh is the best general-purpose integration scheme for functions with vertical derivatives or singularities at endpoints, or for any function at very high precision (> 1000 digits). Otherwise we use Gaussian quadrature. 1. DHB, X. S. Li and K. Jeyabalan, “A Comparison of Three High-Precision Quadrature Schemes,” Experimental Mathematics, vol. 14 (2005), no. 3, pg. 317-329. 2. H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical Integration,” Publications of RIMS, Kyoto University, vol. 9 (1974), pg. 721–741.

⇥ 1

�1f(x) dx =

⇥ ⇤

�⇤f(g(t))g⇥(t) dt � h

N�

j=�N

wjf(xj),

Page 8: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

8

Ising integrals from mathematical physics

We recently applied our methods to study three classes of integrals that arise in the Ising theory of mathematical physics – Dn and two others:

where in the last line uk = t1 t2 … tk.

DHB, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” Journal of Physics A: Mathematical and General, vol. 39 (2006), pg. 12271-12302.

Cn :=4n!

⌦ ⇤

0· · ·⌦ ⇤

0

1�⌥n

j=1(uj + 1/uj)⇥2

du1

u1· · · dun

un

Dn :=4n!

⌦ ⇤

0· · ·⌦ ⇤

0

�i<j

�ui�uj

ui+uj

⇥2

�⌥nj=1(uj + 1/uj)

⇥2du1

u1· · · dun

un

En = 2⌦ 1

0· · ·⌦ 1

0

1⇥j<k⇥n

uk � uj

uk + uj

⌃2

dt2 dt3 · · · dtn

Page 9: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

9

Limiting value of Cn: What is this number?

1000-digit numerical values, computed using this formula, approach a limit:

What is this limit? We copied the first 50 digits of this numerical value into the online Inverse Symbolic Calculator (ISC): http://ddrive.cs.dal.ca/~isc or http://carma-lx1.newcastle.edu.au:8087/

The result was:

where γ denotes Euler’s constant.

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . .

limn⇥⇤

Cn = 2e�2�

Key observation: The Cn integrals can be converted to one-dimensional integrals involving the modified Bessel function K0(t):

Cn =2n

n!

Z 1

0tKn

0 (t) dt

Page 10: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

10

Other Ising integral evaluations found using high-precision PSLQ

D2 = 1/3D3 = 8 + 4⇥2/3� 27 L�3(2)D4 = 4⇥2/9� 1/6� 7�(3)/2E2 = 6� 8 log 2E3 = 10� 2⇥2 � 8 log 2 + 32 log2 2E4 = 22� 82�(3)� 24 log 2 + 176 log2 2� 256(log3 2)/3

+16⇥2 log 2� 22⇥2/3

E5?= 42� 1984 Li4(1/2) + 189⇥4/10� 74�(3)� 1272�(3) log 2

+40⇥2 log2 2� 62⇥2/3 + 40(⇥2 log 2)/3 + 88 log4 2+464 log2 2� 40 log 2

where ζ is the Riemann zeta function and Lin(x) is the polylog function. D2, D3 and D4 were originally provided to us by mathematical physicist Craig Tracy, who hoped that our tools could help identify D5.

Page 11: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

11

The Ising integral E5

We were able to reduce E5, which is a 5-D integral, to an extremely complicated 3-D integral.

We computed this integral to 250-digit precision, using a highly parallel, high-precision 3-D quadrature program. Then we used a PSLQ program to discover the evaluation given on the previous page.

We also computed D5 to 500 digits, but were unable to identify it. The digits are available if anyone wishes to further explore this question.

E5 =⇧ 1

0

⇧ 1

0

⇧ 1

0

⇤2(1� x)2(1� y)2(1� xy)2(1� z)2(1� yz)2(1� xyz)2

��

⇤4(x + 1)(xy + 1) log(2)

�y5z3x7 � y4z2(4(y + 1)z + 3)x6 � y3z

��y2 + 1

⇥z2 + 4(y+

1)z + 5) x5 + y2�4y(y + 1)z3 + 3

�y2 + 1

⇥z2 + 4(y + 1)z � 1

⇥x4 + y

�z

�z2 + 4z

+5) y2 + 4�z2 + 1

⇥y + 5z + 4

⇥x3 +

���3z2 � 4z + 1

⇥y2 � 4zy + 1

⇥x2 � (y(5z + 4)

+4)x� 1)] /⇤(x� 1)3(xy � 1)3(xyz � 1)3

⌅+

⇤3(y � 1)2y4(z � 1)2z2(yz

�1)2x6 + 2y3z�3(z � 1)2z3y5 + z2

�5z3 + 3z2 + 3z + 5

⇥y4 + (z � 1)2z

�5z2 + 16z + 5

⇥y3 +

�3z5 + 3z4 � 22z3 � 22z2 + 3z + 3

⇥y2 + 3

��2z4 + z3 + 2

z2 + z � 2⇥y + 3z3 + 5z2 + 5z + 3

⇥x5 + y2

�7(z � 1)2z4y6 � 2z3

�z3 + 15z2

+15z + 1) y5 + 2z2��21z4 + 6z3 + 14z2 + 6z � 21

⇥y4 � 2z

�z5 � 6z4 � 27z3

�27z2 � 6z + 1⇥y3 +

�7z6 � 30z5 + 28z4 + 54z3 + 28z2 � 30z + 7

⇥y2 � 2

�7z5

+15z4 � 6z3 � 6z2 + 15z + 7⇥y + 7z4 � 2z3 � 42z2 � 2z + 7

⇥x4 � 2y

�z3

�z3

�9z2 � 9z + 1⇥y6 + z2

�7z4 � 14z3 � 18z2 � 14z + 7

⇥y5 + z

�7z5 + 14z4 + 3

z3 + 3z2 + 14z + 7⇥y4 +

�z6 � 14z5 + 3z4 + 84z3 + 3z2 � 14z + 1

⇥y3 � 3

�3z5

+6z4 � z3 � z2 + 6z + 3⇥y2 �

�9z4 + 14z3 � 14z2 + 14z + 9

⇥y + z3 + 7z2 + 7z

+1)x3 +�z2

�11z4 + 6z3 � 66z2 + 6z + 11

⇥y6 + 2z

�5z5 + 13z4 � 2z3 � 2z2

+13z + 5) y5 +�11z6 + 26z5 + 44z4 � 66z3 + 44z2 + 26z + 11

⇥y4 +

�6z5 � 4

z4 � 66z3 � 66z2 � 4z + 6⇥y3 � 2

�33z4 + 2z3 � 22z2 + 2z + 33

⇥y2 +

�6z3 + 26

z2 + 26z + 6⇥y + 11z2 + 10z + 11

⇥x2 � 2

�z2

�5z3 + 3z2 + 3z + 5

⇥y5 + z

�22z4

+5z3 � 22z2 + 5z + 22⇥y4 +

�5z5 + 5z4 � 26z3 � 26z2 + 5z + 5

⇥y3 +

�3z4�

22z3 � 26z2 � 22z + 3⇥y2 +

�3z3 + 5z2 + 5z + 3

⇥y + 5z2 + 22z + 5

⇥x + 15z2 + 2z

+2y(z � 1)2(z + 1) + 2y3(z � 1)2z(z + 1) + y4z2�15z2 + 2z + 15

⇥+ y2

�15z4

�2z3 � 90z2 � 2z + 15⇥

+ 15⌅/

⇤(x� 1)2(y � 1)2(xy � 1)2(z � 1)2(yz � 1)2

(xyz � 1)2⌅�

⇤4(x + 1)(y + 1)(yz + 1)

��z2y4 + 4z(z + 1)y3 +

�z2 + 1

⇥y2

�4(z + 1)y + 4x�y2 � 1

⇥ �y2z2 � 1

⇥+ x2

�z2y4 � 4z(z + 1)y3 �

�z2 + 1

⇥y2

+4(z + 1)y + 1)� 1) log(x + 1)] /⇤(x� 1)3x(y � 1)3(yz � 1)3

⌅� [4(y + 1)(xy

+1)(z + 1)�x2

�z2 � 4z � 1

⇥y4 + 4x(x + 1)

�z2 � 1

⇥y3 �

�x2 + 1

⇥ �z2 � 4z � 1

y2 � 4(x + 1)�z2 � 1

⇥y + z2 � 4z � 1

⇥log(xy + 1)

⌅/

⇤x(y � 1)3y(xy � 1)3(z�

1)3⌅�

⇤4(z + 1)(yz + 1)

�x3y5z7 + x2y4(4x(y + 1) + 5)z6 � xy3

��y2+

1) x2 � 4(y + 1)x� 3⇥z5 � y2

�4y(y + 1)x3 + 5

�y2 + 1

⇥x2 + 4(y + 1)x + 1

⇥z4+

y�y2x3 � 4y(y + 1)x2 � 3

�y2 + 1

⇥x� 4(y + 1)

⇥z3 +

�5x2y2 + y2 + 4x(y + 1)

y + 1) z2 + ((3x + 4)y + 4)z � 1⇥log(xyz + 1)

⌅/

⇤xy(z � 1)3z(yz � 1)3(xyz � 1)3

⌅⇥⌅

/⇤(x + 1)2(y + 1)2(xy + 1)2(z + 1)2(yz + 1)2(xyz + 1)2

⌅dx dy dz

Page 12: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

12

Recursions in Ising integrals

Consider the 2-parameter class of Ising integrals (which arises in QFT for odd k):

After computing 1000-digit numerical values for all n up to 36 and all k up to 75 (performed on a highly parallel computer system), we discovered (using PSLQ) linear relations in the rows of this array. For example, when n = 3:

General recursions have now been found for all n. 1. DHB, D. Borwein, J. M. Borwein and R. Crandall, “Hypergeometric Forms for Ising-Class Integrals,” Experimental Mathematics, vol. 16 (2007), pg. 257-276.

2. J. M. Borwein and B. Salvy, “A Proof of a Recursion for Bessel Moments,” Experimental Mathematics, vol. 17 (2008), pg. 223-230.

0 = C3,0 � 84C3,2 + 216C3,4

0 = 2C3,1 � 69C3,3 + 135C3,5

0 = C3,2 � 24C3,4 + 40C3,6

0 = 32C3,3 � 630C3,5 + 945C3,7

0 = 125C3,4 � 2172C3,6 + 3024C3,8

Cn,k =4n!

⌅ �

0· · ·

⌅ �

0

1�⇤n

j=1(uj + 1/uj)⇥k+1

du1

u1· · · dun

un

Page 13: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

13

Box integrals

The following integrals appear in numerous arenas of math and physics:

Bn(s) :=⇤ 1

0· · ·

⇤ 1

0

�r21 + · · · + r2

n

⇥s/2dr1 · · · drn

�n(s) :=⇤ 1

0· · ·

⇤ 1

0

�(r1 � q1)2 + · · · + (rn � qn)2

⇥s/2dr1 · · · drn dq1 · · · dqn

•  Bn(1) is the expected distance of a random point from the origin of n-cube. •  Δn(1) is the expected distance between two random points in n-cube. •  Bn(-n+2) is the expected electrostatic potential in an n-cube whose origin has a unit charge. •  Δn(-n+2) is the expected electrostatic energy between two points in a uniform n-cube of charged “jellium.” •  Recently integrals of this type have arisen in neuroscience – e.g., the average distance between synapses in a mouse brain. " DHB, J. M. Borwein and R. E. Crandall, “Box integrals,” Journal of Computational and Applied Mathematics, vol. 206 (2007), pg. 196-208.

Page 14: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

14

Evaluations of box integrals

Here F is hypergeometric function; G is Catalan; Ti is Lewin’s inverse-tan function.

n s Bn(s)any even s ⇥ 0 rational, e.g., : B2(2) = 2/31 s ⇤= �1 1

s+1

2 -4 � 14 �

�8

2 -3 �⌅

22 -1 2 log(1 +

⌅2)

2 1 13

⌅2 + 1

3 log(1 +⌅

2)2 3 7

5

⌅2 + 3

20 log(1 +⌅

2)2 s ⇤= �2 2

2+s 2F1

�12 ,� s

2 ; 32 ;�1

3 -5 � 16

⌅3� 1

12�3 -4 � 3

2

⌅2 arctan 1�

2

3 -2 �3G + 32� log(1 +

⌅2) + 3 Ti2(3� 2

⌅2)

3 -1 � 14� + 3

2 log�2 +

⌅3⇥

3 1 14

⌅3� 1

24� + 12 log

�2 +

⌅3⇥

3 3 25

⌅3� 1

60� � 720 log

�2 +

⌅3⇥

Page 15: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

15

Elliptic function integrals

The research with ramble integrals led us to study integrals of the form:

I(n0, n1, n2, n3, n4) :=Z 1

0x

n0K

n1(x)K 0n2(x)En3(x)E0n4(x)dx,

where K, K’, E, E’ are elliptic integral functions:

K(x) :=Z 1

0

dtp(1� t

2)(1� x

2t

2)

K

0(x) := K(p

1� x

2)

E(x) :=Z 1

0

p1� x

2t

2

p1� t

2dt

E

0(x) := E(p

1� x

2)

J. Wan, “Moments of products of elliptic integrals,” Advances in Applied Mathematics, vol. 48 (2012), available at http://carma.newcastle.edu.au/jamesw/mkint.pdf."DHB and J. M. Borwein, “Hand-to-hand combat with thousand-digit integrals,” Journal of Computational Science, vol. 3 (2012), pg. 77-86, http://www.davidhbailey.com/dhbpapers/combat.pdf.

Page 16: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

16

Relations found among the I integrals

Thousands of relations have been found among the I integrals. For example, among the class with n0 <= D1 = 4 and n1 + n2 + n3 + n4 = D2 = 3 (a set of 100 integrals), we found that all can be expressed in terms of an integer linear combination of 8 simple integrals. For example:

81Z 1

0x

3K

2(x)E(x)dx

?= �6Z 1

0K

3(x)dx� 24Z 1

0x

2K

3(x)dx

+51Z 1

0x

3K

3(x)dx + 32Z 1

0x

4K

3(x)dx

�243Z 1

0x

3K(x)E(x)K 0(x)dx

?= �59Z 1

0K

3(x)dx + 468Z 1

0x

2K

3(x)dx

+156Z 1

0x

3K

3(x)dx� 624Z 1

0x

4K

3(x)dx� 135Z 1

0xK(x)E(x)K 0(x)dx

�20736Z 1

0x

4E

2(x)K 0(x)dx

?= 3901Z 1

0K

3(x)dx� 3852Z 1

0x

2K

3(x)dx

�1284Z 1

0x

3K

3(x)dx + 5136Z

x

4K

3(x)dx� 2592Z 1

0x

2K

2(x)K 0(x)dx

�972Z 1

0K(x)E(x)K 0(x)dx� 8316

Z 1

0xK(x)E(x)K 0(x)dx.

Page 17: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

17

Algebraic numbers in Poisson potential functions associated with lattice sums

Lattice sums arising from the Poisson equation have been studied widely in mathematical physics and also in image processing. In two 2012 papers (below), we numerically discovered, and then proved, that for rational (x, y), the two-dimensional Poisson potential function satisfies

The minimal polynomials for these α were found by PSLQ calculations, with the (n+1)-long vector (1, α, α2, …, αn) as input, where α = exp (π φ2(x,y)). PSLQ returns the vector of integer coefficients (a0, a1, a2, …, an) as output. 1. DHB, J. M. Borwein, R. E. Crandall and J. Zucker, “Lattice sums arising from the Poisson equation,” manuscript, http://www.davidhbailey.com/dhbpapers/PoissonLattice.pdf"2. DHB and J. M. Borwein, “Compressed lattice sums arising from the Poisson equation: Dedicated to Professor Hari Sirvastava,” manuscript, http://www.davidhbailey.com/dhbpapers/Poissond.pdf.

where α is an algebraic number, i.e., the root of an integer polynomial: 0 = a0 + a1↵+ a2↵

2 + · · ·+ an↵n

2

(x, y) =

1

2

X

m,n odd

cos(m⇡x) cos(n⇡y)

m

2

+ n

2

=

1

log↵

Page 18: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

18

Samples of minimal polynomials found by PSLQ

k Minimal polynomial for exp (8 π φ2(1/k,1/k))

The minimal polynomial for exp (8 π φ2(1/32,1/32)) has degree 128, with individual coefficients ranging from 1 to over 1056. This PSLQ computation required 10,000-digit precision. See next slide.

5 1 + 52↵� 26↵2 � 12↵3 + ↵4

6 1� 28↵+ 6↵2 � 28↵3 + ↵4

7 �1� 196↵+ 1302↵2 � 14756↵3 + 15673↵4 + 42168↵5 � 111916↵6 + 82264↵7

�35231↵8 + 19852↵9 � 2954↵10 � 308↵11 + 7↵12

8 1� 88↵+ 92↵2 � 872↵3 + 1990↵4 � 872↵5 + 92↵6 � 88↵7 + ↵8

9 �1� 534↵+ 10923↵2 � 342864↵3 + 2304684↵4 � 7820712↵5 + 13729068↵6

�22321584↵7 + 39775986↵8 � 44431044↵9 + 19899882↵10 + 3546576↵11

�8458020↵12 + 4009176↵13 � 273348↵14 + 121392↵15

�11385↵16 � 342↵17 + 3↵18

10 1� 216↵+ 860↵2 � 744↵3 + 454↵4 � 744↵5 + 860↵6 � 216↵7 + ↵8

Page 19: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

19

Degrees of minimal polynomials found for exp(8 π φ2(1/d,1/d))

Legend: d Argument m(d) Degree of minimal poly z(d) Zero coefficients P Precision in digits T Run time in seconds log10M Log10 of largest coeff. * Done by A. Mattingly Jason Kimberley noted that m(d) empirically satisfies:

m

kY

i=1

peii

!?= 4

k�1kY

i=1

p2(ei�1)i m(pi)

where m(2) = 1/2, and for odd primes,

m(4k + 1) = (2k)2

m(4k + 3) = (2k + 2)(2k + 1)

d m(d) z(d) P T log10 Mlog10 M

m(d)5 4 0 400 0.40 1.4150 0.3537

6 4 0 400 0.39 0.7782 0.1945

7 12 0 400 0.71 5.0489 0.4207

8 8 0 400 0.43 3.2989 0.4124

9 18 0 400 1.81 7.6477 0.4249

10 8 0 400 0.54 2.6571 0.3321

11 30 0 1000 28.50 12.9873 0.4329

12 16 0 400 1.22 6.7880 0.4243

13 36 0 1000 44.04 15.6385 0.4344

14 24 0 1000 12.37 9.7245 0.4052

15 32 0 1000 34.58 12.8370 0.4012

16 32 0 1000 29.62 13.8452 0.4327

17 64 0 4000 3387.71 28.2396 0.4412

18 36 0 2000 274.60 13.8718 0.3853

19 90 0 6000 19559.37 39.8456 0.4427

20 32 0 2000 222.87 13.9705 0.4366

21 96 0 6000 25210.51 42.4696 0.4424

22 60 0 3000 1748.19 25.8002 0.4300

23 132 0 12000 212634.54 58.7280 0.4449

24 64 0 3000 2224.42 28.1624 0.4400

25 100 0 8000 58723.90 44.0690 0.4407

26 72 0 4000 4961.57 30.9611 0.4300

27

⇤162 19500 128074.00 72.1946 0.4456

28 96 0 8000 46795.52 42.5098 0.4428

29

⇤196 19500 145388.00 87.4974 0.4464

30 64 0 3000 2208.95 27.2294 0.4255

31 144 12000 Failed 79.4119 0.551532 128 0 10000 163662.83 56.8932 0.4445

Page 20: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

20

Degree-128 minimal polynomial for exp (8 π φ2(1/32,1/32))

Page 21: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

21

Cautionary Example

These constants agree to 42 decimal digit accuracy, but are NOT equal:

Richard Crandall has now shown that this integral is merely the first term of a very rapidly convergent series that converges to π/8:

1. D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein, “Ten Problems in Experimental Mathematics,” American Mathematical Monthly, vol. 113, no. 6 (Jun 2006), pg. 481-409 .

2. R. E. Crandall, “Theory of ROOF Walks, 2007, available at http://people.reed.edu/~crandall/papers/ROOF.pdf.

⇥ �

0cos(2x)

��

n=1

cos(x/n) dx =

0.392699081698724154807830422909937860524645434187231595926�

8=

0.392699081698724154807830422909937860524646174921888227621

8=

��

m=0

⇤ �

0cos[2(2m + 1)x]

�⇥

n=1

cos(x/n) dx

Page 22: Computational Discovery of Number Theory Identities for … · 2013-01-11 · 3 The PSLQ integer relation algorithm Let (xn) be a given vector of real numbers.An integer relation

22

Summary

·  High-precision numerical computation has emerged as a very powerful tool for discovery in mathematical research.

·  Some research studies, particularly in problems that arise in mathematical physics, require hundreds or even thousands of digits.

·  The key algorithms for this research are: ·  The tanh-sinh quadrature algorithm, which readily handles many

functions with integral singularities, and which scales to thousands of digits.

·  The PSLQ integer relation algorithm, which discovers underlying identifies for the given constant in terms of a linear sum of conjectured terms (or as relations among such computed entities).

·  Even though such computations often provide dramatic and convincing evidence for an assertion, they do not constitute rigorous proof – this must be done the “old-fashioned” way.

This talk is available at: "http://www.davidhbailey.com/dhbtalks/dhb-ams-siam.pdf!