compressed sensing in mimo radar chun-yang chen and p. p. vaidyanathan california institute of...

66
Compressed Sensing in MIMO Radar Chun-Yang Chen and P. P. Vaidyanathan California Institute of Technology Electrical Engineering/DSP Lab Asilomar 2008

Upload: mary-lynette-sparks

Post on 18-Dec-2015

243 views

Category:

Documents


4 download

TRANSCRIPT

Compressed Sensing in MIMO Radar

Chun-Yang Chen and P. P. Vaidyanathan

California Institute of Technology

Electrical Engineering/DSP Lab

Asilomar 2008

Outline

Review of the background– Compressed sensing [Donoho 06, Candes&Tao 06…]

• Compressed sensing in radar [Herman & Strohmer 08]– MIMO radar [Bliss & Forsythe 03, Robey et al. 04, Fishler et al. 04….]

Compressed sensing in MIMO radar– Compressed sensing receiver– Waveform optimization– Examples

Conclusion

2Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

1Review of the keywords: Compressed sensing, MIMO Radar

3

Brief Review of Compressed Sensing

4Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

)dim()dim( sy

y Φ s Goal: Reconstruct s from y.

Brief Review of Compressed Sensing

5Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

)dim()dim( sy

y Φ s Goal: Reconstruct s from y.

jiji

φφ ,max

Incoherence:

is small.

Brief Review of Compressed Sensing

6Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

)dim()dim( sy

y Φ s Goal: Reconstruct s from y.

jiji

φφ ,max

Incoherence:

is small. 0| isiSparsity:

is small.

0| isiSparsity:

is small.

Brief Review of Compressed Sensing

7Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

)dim()dim( sy

y Φ s Goal: Reconstruct s from y.

jiji

φφ ,max

Incoherence:

is small.

Given y and F, s can be perfectly recovered by sparse approximation methods even when dim(y)<dim(s).

Given y and F, s can be perfectly recovered by sparse approximation methods even when dim(y)<dim(s).

0| isiSparsity:

is small.

Brief Review of Compressed Sensing

8Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

)dim()dim( sy

y Φ s Goal: Reconstruct s from y.

jiji

φφ ,max

Incoherence:

is small.

This concept can be applied to sampling and compression.This concept can be applied to sampling and compression.

Given y and F, s can be perfectly recovered by sparse approximation methods even when dim(y)<dim(s).

Given y and F, s can be perfectly recovered by sparse approximation methods even when dim(y)<dim(s).

Review: Compressed Sensing in Radar

9Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

[Herman & Strohmer08]

u

ytargets

Range

Doppler

Review: Compressed Sensing in Radar

10Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

[Herman & Strohmer08]

u

ytargets

Range

Doppler

si: target RCS in the i-th Range-Doppler cell.

*

sy Φ

**

*

Review: Compressed Sensing in Radar

11Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

[Herman & Strohmer08]

u

ytargets

Range

Doppler

si: target RCS in the i-th Range-Doppler cell.

F is a function of the transmitted waveform u.

*

sy Φ

**

*

*

sy Φ

**

*

Review: Compressed Sensing in Radar

12Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

[Herman & Strohmer08]

u

ytargets

Range

Doppler

si: target RCS in the i-th Range-Doppler cell.

Assumption: s is sparse.

Transmitted waveform u can be chosen such that F is incoherent.

F is a function of the transmitted waveform u.

Review: Compressed Sensing in Radar

13Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

si: target RCS in the i-th Range-Doppler cell.

Assumption: s is sparse.

Transmitted waveform u can be chosen such that F is incoherent.

Target scene s can be reconstructed by compressed sensing method. High resolution can be achieved. [Herman & Strohmer08]

Target scene s can be reconstructed by compressed sensing method. High resolution can be achieved. [Herman & Strohmer08]

F is a function of the transmitted waveform u.

*

sy Φ

**

*

Brief Review of MIMO Radar

u2( )tu1( )t

u0( )t

w2u( )tw1u( )t

w0u( )t

Advantages– Better spatial resolution [Bliss & Forsythe 03]– Flexible transmit beampattern design [Fuhrmann & San Antonio 04]– Improved parameter identifiability [Li et al. 07]

Phased array radar (Traditional)Each element transmits a scaled version of a single waveform.

MIMO RadarEach element can transmit an arbitrary waveform.

Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

2Compressed Sensing in MIMO Radar

15

MIMO Radar Signal Model

16Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

u0(t) u1(t) uM-1(t)

(p,t, fD)t:delayfD :Dopplerp: direction

MIMO Radar Signal Model

17Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

u0(t) u1(t) uM-1(t)

(p,t, fD)

y0(t) y1(t) yN-1(t)

(p,t, fD)t:delayfD :Dopplerp: direction

1

0

2)(2

)()(M

m

tfjj

mnD

nmT

eetuty

yxp

MIMO Radar Signal Model

18Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

u0(t) u1(t) uM-1(t)

(p,t, fD)

y0(t) y1(t) yN-1(t)

(p,t, fD)t:delayfD :Dopplerp: direction

Received signals

MIMO Radar Signal Model

19Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

u0(t) u1(t) uM-1(t)

(p,t, fD)

y0(t) y1(t) yN-1(t)

(p,t, fD)t:delayfD :Dopplerp: direction

1

0

2)(2

)()(M

m

tfjj

mnD

nmT

eetuty

yxp

Range

1

0

2)(2

)()(M

m

tfjj

mnD

nmT

eetuty

yxp

MIMO Radar Signal Model

20Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

u0(t) u1(t) uM-1(t)

(p,t, fD)

y0(t) y1(t) yN-1(t)

(p,t, fD)t:delayfD :Dopplerp: direction

xm: location of the m-th transmitteryn: location of the n-th transmitter

Cross range

1

0

2)(2

)()(M

m

tfjj

mnD

nmT

eetuty

yxp

MIMO Radar Signal Model

21Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

u0(t) u1(t) uM-1(t)

(p,t, fD)

y0(t) y1(t) yN-1(t)

(p,t, fD)t:delayfD :Dopplerp: direction

xm: location of the m-th transmitteryn: location of the n-th transmitter

)(sin2

nm yxje

for linear array

1

0

2)(2

)()(M

m

tfjj

mnD

nmT

eetuty

yxp

MIMO Radar Signal Model

22Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

u0(t) u1(t) uM-1(t)

(p,t, fD)

y0(t) y1(t) yN-1(t)

(p,t, fD)t:delayfD :Dopplerp: direction

xm: location of the m-th transmitteryn: location of the n-th transmitter

Doppler

1

0

)(2

)1(2

2

)'(

1

M

m

yxNM

j

m

LL

j

Lj

LLL

L

L

n

nm

D

D

e

e

e

u

0

I

0

y

1

0

2)(sin2

)()(M

m

tfjyxj

mnD

nm

eetuty

MIMO Radar Signal Model

23Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Discrete Model:

MIMO Radar Signal Model

24Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

1

0

2)(sin2

)()(M

m

tfjyxj

mnD

nm

eetuty

1

0

)(2

)1(2

2

)'(

1

M

m

yxNM

j

m

LL

j

Lj

LLL

L

L

n

nm

D

D

e

e

e

u

0

I

0

y

Discrete Model:Range

12,1,0 LRange Cell: L: Length of um

MIMO Radar Signal Model

25Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

1

0

)(2

)1(2

2

)'(

1

M

m

yxNM

j

m

LL

j

Lj

LLL

L

L

n

nm

D

D

e

e

e

u

0

I

0

y

1

0

2)(sin2

)()(M

m

tfjyxj

mnD

nm

eetuty

Discrete Model:

Doppler

12,1,0 LRange Cell: L: Length of um

12,1,0 LD Doppler Cell:

MIMO Radar Signal Model

26Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

1

0

)(2

)1(2

2

)'(

1

M

m

yxNM

j

m

LL

j

Lj

LLL

L

L

n

nm

D

D

e

e

e

u

0

I

0

y

12,1,0 LRange Cell: L: Length of um

M: # of transmitting antennasN: # of receiving antennas

12,1,0 LD 12,1,0 NM

Doppler Cell:

Angle Cell:

1

0

2)(sin2

)()(M

m

tfjyxj

mnD

nm

eetuty

Discrete Model:

Angle

MIMO Radar Signal Model

27Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

1

0

)(2

)1(2

2

)'(

1

M

m

yxNM

j

m

LL

j

Lj

LLL

L

L

n

nm

D

D

e

e

e

u

0

I

0

y

H

DH

nm

H

MIMO Radar Signal Model

28Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

1

0

)(2

)1(2

2

)'(

1

M

m

yxNM

j

m

LL

j

Lj

LLL

L

L

n

nm

D

D

e

e

e

u

0

I

0

y

H

DH

nm

H

uHHH

y

y

y

y

D

N

1

1

0

1

1

0

Nu

u

u

u

OverallInput-outputrelation:

uHHH

y

y

y

y

D

N

1

1

0

MIMO Radar Signal Model

29Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

1

1

0

Nu

u

u

u

OverallInput-outputrelation:

αH),,( D

α

uHHH

y

y

y

y

D

N

1

1

0

MIMO Radar Signal Model

30Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

1

1

0

Nu

u

u

u

OverallInput-outputrelation:

αH),,( D

α

D

12,1,0 LRange Cell:12,1,0 LD

12,1,0 NMDoppler Cell:

Angle Cell:

α

ααuHy s

Compressed Sensing MIMO Radar Receiver

31Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

),,( Dα

D

α

ααuHy s

Compressed Sensing MIMO Radar Receiver

32Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

),,( Dα

y Received waveforms

D

α

ααuHy s

Compressed Sensing MIMO Radar Receiver

33Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

),,( Dα

y Received waveforms

u Transmitted waveforms

D

α

ααuHy s

Compressed Sensing MIMO Radar Receiver

34Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

),,( Dα

y Received waveforms

αHu Transmitted waveforms

Transfer function for the target in the a cell D

α

ααuHy s

Compressed Sensing MIMO Radar Receiver

35Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

),,( Dα

D

y Received waveforms

αHu

αs

Transmitted waveforms

Transfer function for the target in the a cell

RCS of the target in a cell

α

ααuHy s

Compressed Sensing MIMO Radar Receiver

36Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

),,( Dα

D

y Received waveforms

αHu

αs

Transmitted waveforms

RCS of the target in a cell

sΦφα

αα s

αφ

Transfer function for the target in the a cell

α

ααuHy s

Compressed Sensing MIMO Radar Receiver

37Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

),,( Dα

D

sΦφα

αα s

s is sparse if the target scene is sparse.

αφ

α

ααuHy s

Compressed Sensing MIMO Radar Receiver

38Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

),,( Dα

D

sΦφα

αα s

s is sparse if the target scene is sparse.

Compressed sensing algorithm can effectively recover s if F is incoherent.

αφ

sΦφα

αα s α

ααuHy s

Waveform Optimization

39Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

D

Goal: Design u such that

is small.

uHuH αααα

''

,max

αφ

Waveform Optimization

40Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Goal: Design u such that

is small.

uHuH αααα

''

,max

α'α

u

α'α

uHuH αααα ''ss

TX RX

Waveform Optimization

41Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Goal: Design u such that

is small.

uHuH αααα

''

,max

α'α

u

α'α

uHuH αααα ''ss

Small Correlation

TX RX

Waveform Optimization: Dimension Reduction

42Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

uHuH αα ',

uHHHHHHu )()( ''' DD αααH

αααH

Waveform Optimization: Dimension Reduction

43Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

uHuH αα ',uHHHHHHu )()( ''' DD ααα

Hααα

H

uHHHHHHu )( ''' DD ααH

αH

ααH

αH

Waveform Optimization: Dimension Reduction

44Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

uHuH αα ',uHHHHHHu )()( ''' DD ααα

Hααα

H

uHHHHHHu )( ''' DD ααH

αH

ααH

αH

uHCHHu )( ''' DD αααααH

αH

1

1

1

KC

k

Waveform Optimization: Dimension Reduction

45Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

uHuH αα ',uHHHHHHu )()( ''' DD ααα

Hααα

H

uHHHHHHu )( ''' DD ααH

αH

ααH

αH

uHCHHu )( ''' DD αααααH

αH

),,',( Dαααα

1

1

1

KC

k

Goal: Design u such that

is small.

),,',(max)0,0,'(

),,(D

αααα

ααααD

Waveform Optimization: Dimension Reduction

46Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

uHuH αα ',uHHHHHHu )()( ''' DD ααα

Hααα

H

uHHHHHHu )( ''' DD ααH

αH

ααH

αH

uHCHHu )( ''' DD αααααH

αH

),,',( Dαααα

1

1

1

KC

k

Waveform Optimization: Beamforming

47Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

αα

)0,0,,( B: the set consisting of angles of interest.

To concentrate the transmit energy on the angles of interest, we want the following term to be small

Waveform Optimization: Beamforming

48Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

αα

)0,0,,(

Bα Bα

ααB

αα

2

)0,0,,(1

)0,0,,(

To uniformly illuminate the angles of interest, we want the following term to be small

To concentrate the transmit energy on the angles of interest, we want the following term to be small

B: the set consisting of angles of interest.

Waveform Optimization: Cost function

49Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

),,',(max)0,0,'(

),,(D

αααα

ααααD

αα

)0,0,,(

Incoherent

Stopband

Passband

Bα Bα

ααB

αα

2

)0,0,,(1

)0,0,,(

Waveform Optimization: Cost function

50Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

),,',(max)0,0,'(

),,(D

αααα

ααααD

)1(

+

+

Bα Bα

ααB

αα

2

)0,0,,(1

)0,0,,(

αα

)0,0,,(

Waveform Optimization: Cost function

51Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Bα Bα

BαD

αααα

ααB

αα

ααααααD

2

)0,0,'(),,(

)0,0,,(1

)0,0,,()1(

)0,0,,(),,',(max

minu

Incoherent Stopband

Passband

Phase Hopping Waveform

52Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Consider constant-modulus signal:

mljm el 2)( u

Phase Hopping Waveform

53Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Consider constant-modulus signal:

mljm el 2)( u

Consider phase on a lattice:

1,2,1,0 , KCK

Cml

mlml

Phase Hopping Waveform

54Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Consider constant-modulus signal:

mljm el 2)( u

Consider phase on a lattice:

1,2,1,0 , KCK

Cml

mlml

Bα Bα

BαD

αααα

ααB

αα

ααααααD

2

22

2

)0,0,'(),,(

)0,0,,(1

)0,0,,()1(

)0,0,,(),,',(max

mlCmin

Simulated Annealing Algorithm

Simulated annealing– Create a Markov chain on the set A with the equilibrium distribution

– Run the Markov chain Monte Carlo (MCMC)– Decrease the temperature T from time to time

55

Csubject to

CC’

Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

)(min CCf

C

C

CC

T

fZ

T

f

Z

T

TT

)(exp

)(exp

1)(

Example: Histogram of correlations

56Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Parameters:Uniform linear array# of RX elements N=10# of TX elements M =4Signal length L=31# of phase K=15Angle of interest ALL

0 2 4 6 8 10 12 14 16 18 200

100

200

300

0 2 4 6 8 10 12 14 16 18 200

100

200

300

# of

(a,a

’) pa

irs

Alltop Sequence

Proposed Method',, ' uHuH αα

Example: Histogram of correlations

57Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

',, ' uHuH αα

0 2 4 6 8 10 12 14 16 18 200

100

200

300

0 2 4 6 8 10 12 14 16 18 200

100

200

300

# of

(a,a

’) pa

irs

Alltop Sequence

Proposed Method

Parameters:Uniform linear array# of RX elements N=10# of TX elements M =4Signal length L=31# of phase K=15Angle of interest ALL

Example: Histogram of correlations

58Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

',, ' uHuH αα

0 2 4 6 8 10 12 14 16 18 200

100

200

300

0 2 4 6 8 10 12 14 16 18 200

100

200

300

# of

(a,a

’) pa

irs

Alltop Sequence

Proposed Method

Parameters:Uniform linear array# of RX elements N=10# of TX elements M =4Signal length L=31# of phase K=15Angle of interest ALL

200 400 600 800 1000 12000

1

2

3

200 400 600 800 1000 12000

20

40

60

200 400 600 800 1000 12000

10

20

30

Cross Range

Ran

ge

10 20 30 40

10

20

30

10 20 30 40

10

20

30

Ran

ge

Cross Range10 20 30 40

10

20

30

Example: Recovering Target Scene

59Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Target Scene

CompressedSensing

Matched Filter

SNR=10dB

200 400 600 800 1000 12000

1

2

3

200 400 600 800 1000 12000

20

40

60

200 400 600 800 1000 12000

10

20

30

Cross Range

Ran

ge

10 20 30 40

10

20

30

10 20 30 40

10

20

30

Ran

ge

Cross Range10 20 30 40

10

20

30

Example: Recovering Target Scene

60Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Target Scene

CompressedSensing

Matched Filter

SNR=10dB

200 400 600 800 1000 12000

1

2

3

200 400 600 800 1000 12000

20

40

60

200 400 600 800 1000 12000

10

20

30

Cross Range

Ran

ge

10 20 30 40

10

20

30

10 20 30 40

10

20

30

Ran

ge

Cross Range10 20 30 40

10

20

30

Example: Recovering Target Scene

61Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Target Scene

CompressedSensing

Matched Filter

SNR=10dB

200 400 600 800 1000 12000

1

2

3

200 400 600 800 1000 12000

20

40

60

200 400 600 800 1000 12000

10

20

30

Cross Range

Ran

ge

10 20 30 40

10

20

30

10 20 30 40

10

20

30

Ran

ge

Cross Range10 20 30 40

10

20

30

Example: Recovering Target Scene

62Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Target Scene

CompressedSensing

Matched Filter

SNR=10dB

Conclusion

Compressed sensing based receiver– Applicable when the target scene is sparse– Better resolution than the matched filter receiver

Waveform design– Incoherent– Beamforming– Simulated annealing

63Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Q&AThank You!

Any questions?

64Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Simulated Annealing Algorithm

Simulated annealing– Create a Markov chain on the set A with the equilibrium distribution

65

)(min CCf Csubject to

C

C

CC

T

fZ

T

f

Z

T

TT

)(exp

)(exp

1)(

CC’

Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

Simulated Annealing Algorithm

Simulated annealing– Create a Markov chain on the set A with the equilibrium distribution

– Run the Markov chain Monte Carlo (MCMC)

66

Csubject to

CC’

Chun-Yang Chen, Caltech DSP Lab | Asilomar 2008

)(min CCf

C

C

CC

T

fZ

T

f

Z

T

TT

)(exp

)(exp

1)(