compressed sensing for chemical shift-based water-fat separation doneva m., bornert p., eggers h.,...

28
Compressed Sensing for Chemical Shift-Based Water- Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance in Medicine (64) 1749-1759 (2010)

Upload: wendy-washington

Post on 22-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Compressed Sensing for Chemical Shift-Based Water-Fat

Separation

Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance in Medicine (64) 1749-1759 (2010)

Page 2: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Background

• Fat often appears bright in MR images: may obscure pathology;

• Reliable fat suppression methods is needed.• Common fat suppresion techniques:

• Spectral-spatial water excitation• Spectral selective fat saturation• Short TI inversion recovery• Water-fat separation

• Based on chemical shift induced phase difference between fat/water

Page 3: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Water-Fat Signal Model

• Single peak fat model

• Multi peak fat model

ll tiftifwl eey 22 F

llm tiM

m

tfimfwl eey 2

1

2F

Page 4: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Two-Point Dixon

RF

GPartition

GPhase

GReadout

In-phaseRead out Op-phase

water

fat

water

fat

Page 5: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Multi-Point Acquisition

RF

GPartition

GPhase

GReadout

In-phaseRead out Op-phase 1

water

fatwater

fat

Op-phase 2

water

fat

Page 6: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Water-Fat Separation Methods

ll ys -1F

2

)(

2

2

2

)(

)(2

)(2

)(2

)()(

)(

1

1

1

00

00

00

)(3

2

1

3

2

1

rsr

r

e

e

e

e

e

e

rxJ

r

f

w

A

fti

fti

fti

rD

tri

tri

tri

• Image at echo time tl

• Multi peak fat model

Page 7: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Water Fat Separation

• Require the acquisition of two or more images at different TE

• Long scan time needed• Compressed sensing can be combined with

water-fat separation to improve sampling efficiency

Page 8: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Compressed Sensing• Key elements of a successful compressed

sensing reconstruction:• Signal sparsity• Incoherent sampling• Nonlinear, sparsity promoting

reconstruction

Page 9: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Signal Sparsity

Page 10: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Incoherent Sampling

Page 11: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Nonlinear Reconstruction• Iterative reconstruction needed• Optimization based on minimizing l1 norm

works well: 2

21minarg llul

l

ysFthatsuchs

Page 12: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Image Acquisition

Page 13: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Imaging Parameters• 1.5 T scanner (Phillips Healthcare)• Retrospective under-sampling (Poisson-disk)• Knee images

• Turbo spin echo, TR=500 ms, TE = 21 ms• FOV 160 mm x 160 mm• Matrix size 256 x 256, slice thickness 3mm,

voxel size 0.6 mmx0.6 mmx3 mm• Echo time -0.4, 1.1, 2.6 ms (relative to spin

echo)

Page 14: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Imaging Parameters• 1.5 T scanner (Phillips Healthcare)• Abdominal images

• 3D gradient echo, TR=6.9 ms, TE1 = 1.66 ms, TE = 1.66 ms, =15

• FOV 400 mm x 320 mm x 216 mm• Matrix size 240 x 192 x 54, bandwidth 833

Hz/pix

Page 15: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Fat Signal Model• Single Peak Fat Model

• Chemical shift of fat: -220 Hz

• Multi Peak Fat Model• Three peak fat model: -30 Hz, -165 Hz,

-210 Hz• Relative amplitude (0.15, 0.1, 0.75)

Page 16: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

CS-WF Reconstruction• Initial field map estimation

• Initialization:• Low-resolution: center k-space• High-resolution: perform CS

reconstruction for each echo • Compute possible field map values for

each pixel and estimate initial field map using region growing, and

• Estimate initial water and fat images

Page 17: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

CS-WF Reconstruction• Similar to Gauss-Newton algorithm• Iteratively and simultaneously update the

water and fat images and the field map, using the update as:

4

2

2

1

2

2],,[

10,02.0

)(

)(

)()(minarg

d

d

ydxxdgxg

n

n

nndfdwddx

Page 18: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

CS-WF Reconstruction• Given the final estimate xn, compute a

projection on k-space yn=g(xn), set the measured data at the sampling location yn=y|acq and perform one last iteration.

Page 19: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

2D Knee Images

Single peak fat model

Page 20: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

2D Knee Images

Error seems to have some texture

Page 21: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

2D Knee Images

Multi peak fat model (three peaks, three echoes)

Page 22: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

3D Abdominal Images

Page 23: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

3D Abdominal Images

Page 24: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

CS-WF Reconstruction

• Low-resolution initialization: 50 Gauss-Newton iterations

• High-resolution initialization: 5 iteration• One Gauss-Newton step for 3D data: 9

min (This is slow!)

Page 25: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Discussion• Nice and uniform water fat separation

• Good field map estimation• Clean image without noticable

artifact• Slow reconstruction• Moderate reduction factor• High reduction factor results in loss of

contrast

Page 26: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Study Based on This Paper• Silver HJ, et al. Comparison of gross body fat-water

magnetic resonance imaging at 3 Tesla to dual-energy X-ray absorptiometry in obese women. Obesity (Silver Spring). 2013 Apr;21(4):765-74

• Pang Y, Zhang X. Interpolated compressed sensing for 2D multiple slice fast MR imaging. PLoS One. 2013; 8(2)

• Pang Y, et al. Hepatic fat assessment using advanced Magnetic Resonance Imaging.Quant Imaging Med Surg. 2012 Sep;2(3):213-8

• Sharma SD, et al. Chemical shift encoded water-fat separation using parallel imaging and compressed sensing. Magn Reson Med. 2013 Feb;69(2):456-66.

Page 27: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Study Based on This Paper• Li W, et al. Fast cardiac T1 mapping in mice using a

model-based compressed sensing method. Magn Reson Med. 2012 Oct;68(4):1127-34.

• Sharma SD,et al. Accelerated water-fat imaging using restricted subspace field map estimation and compressed sensing. Magn Reson Med. 2012 Mar;67(3):650-9

Page 28: Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance

Thank you!