complex varible

51
directio the on depend not does value Its exists ] ) ( ) ( [ lim ) ( for ) , ( ) , ( ) ( 0 ' z z f z z f z f iy x z y x iv y x u z f z y i x z f y x y i x z f x y y i x y x i y x y i x y i x ixy y x y y x x i y y x x z z f z z f z f y i x z z xy i y x z f z 2 2 ) ( 0 , 0 choose (2) 2 2 ) ( 0 , 0 choose (1) 2 ) ( ) ( 2 2 2 ) )( ( 2 ) ( ) ( ) ( ) ( lim ) ( for . of values all for able differenti is 2 ) ( function the that Show : Ex ' ' 2 2 2 2 2 2 0 ' 2 2

Upload: naveen-sihag

Post on 03-Dec-2014

390 views

Category:

Education


1 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Complex varible

direction. the on dependnot does value Its

exists ])()(

[lim)(

for ),(),()(

0

'

z

zfzzfzf

iyxzyxivyxuzf

z

yixzfyx

yixzfxy

yix

yxiyxyix

yix

ixyyxyyxxiyyxx

z

zfzzfzf

yixz

z

xyiyxzf

z

22)( 0 ,0 choose (2)

22)( 0 ,0 choose (1)

2)()(22

2))((2)()(

)()(lim)(

for

. of values allfor abledifferenti

is 2)( function thethat Show :Ex

'

'

22

2222

0

'

22

Page 2: Complex varible

zzzz

zzz

z

zzzzf

ziyxzf

z

zz

22lim

]2)(

[lim])(

[lim)(

)()(

:method Another **

0

2

0

22

0

'

22

able.differenti nowhere is

)( so ,direction) (the on dependslimit The

1

2]

2[lim

)()(lim)(

slope of thriugh line a along 0 if

2222)()(

plane.complex the in anywhere abledifferenti

not is 2)( function thethat Show :Ex

0,0

'

zfm

im

im

yix

xiy

z

zfzzfzf

xmymzz

yix

xiy

yix

ixyxiixyy

z

zfzzf

ixyzf

yxz

Page 3: Complex varible

direction. the oft independen is )(

that such everywhere analytic is )( ,1 Provided

)1(

1]

)1)(1(

1[lim

)]1

1

1

1(

1[lim]

)()([lim)(

.1at except

everywhere analytic is )1/(1)( function thethat Show :Ex

'

20

00

'

zf

zfz

zzzz

zzzzz

zfzzfzf

z

zzf

z

zz

Page 4: Complex varible

20.2 Cauchy-Riemann relation

A function f(z)=u(x,y)+iv(x,y) is differentiable and analytic, there must be particular connection between u(x,y) and v(x,y)

relations Riemann-Cauchy - and

]),(),(),(),(

[lim

0 imaginary is suppose if (2)

]),(),(),(),(

[lim

0 real is suppose if (1)

]),(),(),(),(

[lim

),(),()(

),(),()(

])()(

[lim

0

0

0,

0

y

u

x

v

y

v

x

u

y

v

y

ui

yi

yxvyyxvi

yi

yxuyyxuL

xzx

vi

x

u

x

yxvyxxvi

x

yxuyxxuL

yz

yix

yxivyxuyyxxivyyxxuL

yyxxivyyxxuzzf

yixzyxivyxuzfz

zfzzfL

y

x

yx

z

Page 5: Complex varible

function? analytic an ||||)(

is planecomplex the of domain which In :Ex

yixzf

|||]|[ (2)

quatrant second the 0y ,0 (b)

quatrant fouth the 0 ,0 (a) |]|[|| (1)

||),( |,|),(

xy

yxy

u

x

v

x

yxyy

xxy

v

x

u

yyxvxyxu

iy xiyx

zzf

zf

y

u

x

vi

y

v

x

u

z

y

y

f

z

x

x

f

z

f

izzyzzx

iyxzziyxz

not , of ncombinatio the

contains of fonction analytic an implies 0/satisfied. are

relations Riemann-Cauchy the then , analytic is )( If

)(2

)(2

1

2/)( and 2/)(

is of conjugatecomplex and

*

***

**

*

Page 6: Complex varible

dimension. two in equation

sLaplace' of solutions are ),( and ),(

0 ),( functionfor result same the (2)

0 )()()()( (1)

satisfied are relations Riemann-Cauchy If

22

2

2

2

22

2

2

2

yxvyxu

y

v

x

vyxv

y

u

x

u

y

u

yx

v

yy

v

xx

u

x

orthogonal 0

ˆˆ),( and ˆˆ),(

are ly,respective curves, two the ingcorrespond vectors normal the

constant,),( andconctant ),( curves of families twoFor

x

u

y

u

y

u

x

u

y

v

y

u

x

v

x

uvu

jy

vi

x

vyxvj

y

ui

x

uyxu

yxvyxu

Page 7: Complex varible

20.3 Power series in a complex variable

0at only converges 0 )!(lim ! (2)

allfor converges 0)!

1(lim

! (1)

edundetermin || (3)

divergent || (2)

convergent absolutely || (1) ||lim1

econvergenc of radius The

test".root Cauchy by" justisfied be can not,or convergent || Is

convergent absolutely is )( convergent is || if

)exp()(

/1

0

/1

0

/1

0

0

00

zRnzn

zRnn

z

Rz

Rz

RzaR

R

ra

zfra

inrazazf

n

nn

n

n

nn

n

nn

n

n

nn

n

nn

n

nn

n

nn

Page 8: Complex varible

20.4 Some elementary functions

0 !exp Define

n

n

n

zz

terms. two above thefor of coeff. same the are There

!!

1

!!expexp

!!

1

!)!(

!

!

1

! is of coeff. the set

)...(!

1

!

)()exp(

)exp(expexpthat Show :Ex

21

210 000

21

21

22122

2122

11110

0

0

2121

2121

rs

rs

s rr

r

s

s

nrrs

nnn

rrnnr

nnnnnn

n

n

n

zz

zzrsr

z

s

zzz

rsrrn

n

nn

Czzsrn

zCzzCzzCzzCzCn

n

zzzz

zzzz

Page 9: Complex varible

)sin)(cosexp( , if (3)

sincos...)!3

(.....!4!2

1

...!3!2

1)exp( if (2)

number real as same the exp)lnexp( if (1)

!

)(ln)lnexp(

0number real a ofcomonent complex the Define

342

32

0

yiyxeeeiyxzea

yiyy

yiyy

iyyiyeiyze,a

zezeea

n

azaza

a

iyxiyx

iy

z

n

nnz

Page 10: Complex varible

)exp(

define we numbers,complex both are and 0 If

lnln

0 choosing by value principal its Take

. of function dmultivalue a is

)2(ln )]2(exp[

and real is for exp Write

expSet

zLntt

zt

-irz

n

zLnz

nirLnzwnirz

rirz

zw

z

])2(

exp[])2(

ln1

exp[

)]2(exp[ and )1

exp(

. of roots nthdistinct n exactly are therethat Show :Ex

11

1

n

kir

n

kir

nt

kirtLntn

t

t

nn

n

Page 11: Complex varible

20.5 Multivalued functions and branch cuts

A logarithmic function, a complex power and a complex root are all multivalued. Is the properties of analytic function still applied?

)exp( and )( :Ex 2/1 irzzzf y

x

C

r

(A)

y

x

'C

r

(B)

(A)

circuit.

complete oneafter value original its to

return origin, the enclosenot dose

that Ccontour closed any traverse

z

(B)

2/1

2/1

2/12/1

)( function the ofpoint branch a is 0

)()(

)2/exp(

]2/)2(exp[)2/exp(

origin the enclose 2

zzfz

zfzf

ir

irir

Page 12: Complex varible

Branch point: z remains unchanged while z traverse a closed contour C about some point. But a function f(z) changes after one complete circuit.

Branch cut: It is a line (or curve) in the complex plane that we must cross , so the function remains single-valued.

valued-single is )(

20restrict

)( :Ex 2/1

zf

zzf

y

x0

Page 13: Complex varible

)()(2,2 then points, branch both (4)

)()(2, then ,not but (3)

)()(,2 then ,not but (2)

)()( , then point, branchneither (1)

encloses Ccontour If

)](exp[

)2/exp()2/exp()(

)exp( and )exp(set

:points branch expected ))((1)(

cuts. branch of tsarrangemen suitable

sketch hence and ,1)( of points branch the Find :Ex

2211

2211

2211

2211

2121

2121

2211

2

2

zfzf

zfzfiziz

zfzfiziz

zfzf

irr

iirrzf

iriziriz

izizizzzf

zzf

Page 14: Complex varible

:follows ascut branch choose We.or either

containing loops around value changes )(

iziz

zf

y

i

i

x

(A) y

x

i

i

(B)

Page 15: Complex varible

20.6 Singularities and zeros of complex function

.at order of pole a has )( the

,0)( and containing odneighborho some

in points allat analytic is )( integer, positive a is

)(

)()( :(pole) ysingularit Isolated

0

00

0

zznzf

zgzz

zgn

zz

zgzf

n

ysingularit essentiallimit the satisfies finite no if direction, any from (4)

as |)(|)( of pole a is if (3)

. thangreater order of pole a is then infinite, is if (2)

. than lessorder of pole a is then ,0 if (1)

number complex zero-non finite, a is and analytic is )(

)]()[(lim

is at order

of pole a has )(that for definition alternate An**

00

0

0

0

0

0

n

zzzfzfzz

nzza

nzza

azf

azfzz

zz n

zf

n

zz

Page 16: Complex varible

1)(n pole simple a is ysingularit each

1}sinh

sinhcosh])2/1([{lim}

cosh

sinh])2/1([{lim

rule sHospital'l' Using

)2

1( )12(2

integer any is n )exp(])12(exp[exp

)exp(exp when ysingularit a has )(

)exp(exp

)exp(exp

cosh

sinh

tanh)( (2)

1 and 1at 1order of poles )1)(1(

2)(

1

1

1

1)( (1)

function the of iessingularit the Find :Ex

)2/1()2/1(

z

zzinz

z

zinz

inzniz

zniz

zzzf

zz

zz

z

z

zzf

zzzz

zzf

zzzf

inzinz

Page 17: Complex varible

.approached is which from direction the oft independen and exists

)(limbut ed,undetermin )( of value the makes ySingularit

:essingularti Remove

0

0

z

zfzfzz

.0at ysingularit removable a has )(

so ,0 way the oft independen is 1)(lim

....!5!3

1........)!5!3

(1

)(

edundetermin 0/0)(lim :

0at ysingularit removable a is /sin)(that Show :Ex

0

5353

0

zzf

zzf

zzzzz

zzf

zfSol

zzzzf

z

z

Page 18: Complex varible

zf

zf

/1 where ,0at )/1(

ofthat by given is infinityat )( ofbehavior The

zzf

nfzzf

z

fzzzf

zzf

bafzbzazf

zzfzzzf

bzazf

n

n

at ysingularit essential an has )(

)!()/1( exp)( (iii)

at 3order

of pole a has /1/1)/1( )1()( (ii)

at analytic is )( 0at analytic is

)/1( /1set )( (i)

exp)( (iii) and )1()( (ii)

)( (i) of infinityat behavior the Find :Ex

0

1

32

22

2

2

Page 19: Complex varible

)(/1 of norder of pole a also is (iii)

zero. simple a called is 1,n if (ii)

n.order of zero a called is (i)

0)( and integer, positive a

is n if ,)()()( and 0)( If

0

0

0

0

00

zfzz

zz

zz

zg

zgzzzfzf n

Page 20: Complex varible

20.10 Complex integral

dtdt

dxvidt

dt

dyuidt

dt

dyvdt

dt

dxu

vdxiudyivdyudx

idydxivudzzf

t

ttyytxx

tt

CCC C

C C

))(()(

is Bpoint

, is point A and )( ,)(

for ,parameter continuous real A2C

A 3C

y

x

1C

B

Page 21: Complex varible

.at finishing and starting ,circle the

along ,/1)( of integralcomplex the Evaluate :Ex

RzR |z|

zzf

y

R

1C

x

t

. oft independen isresult calculated The

2sincos

cossin

by calculated also is integral The **

200

)sin)(sin

(coscos

cos)sin

()sin(cos1

sin ,

cos

,1

)( ,cos ,sin

20 ,sincos)(

2

0

2

0

2

0

2

0

2

0

2

0

2222

22

1

1

R

iidtdttiRtR

tiRtR

z

dz

iii

dttRR

titdtR

R

ti

tdtRR

tdttR

R

tdz

z

R

t

yx

yv

R

t

yx

xu

ivuyx

iyx

iyxzftR

dt

dytR

dt

dx

ttiRtRtz

C

C

Page 22: Complex varible

3b3a3

2

C and C linesstraight two of up made Ccontour the (ii)

0 plane-half the

in || semicircle the of consisting Ccontour the (i)

along /1)( of integralcomplex the Evaluate :Ex

y

Rz

zzf

ca

xdx

xa

aii

titt

dttt

idttt

tdt

itt

i

dtiRRsiR

iRRdt

iRRtR

iRR

z

dz

sRsisRC

titRRtzC

izdzt

C

b

a

C

)(tan 2

)]2

(2

[2

0

|)]2/1

2/1(tan2[

2|)]221[ln(

2

1

221

1

221

12

1

1 term1st

)()(

10for )1( :

10for )1( : (ii)

/ 0

for but example, previous the in asjust is This (i)

122

10

110

2

1

0 2

1

0 2

1

0

1

0

1

0

3

3

3

2

y

R

bC3

1s

iR

aC3

R x

0t

Page 23: Complex varible

path.different the oft independen is integral The

2)]

4(

4[0

|)2/1

2/1(tan|)]122[ln(

2

1

122

1

122

12

)1(

)]1()[1(

)1(

1 term 2nd

3

10

110

2

1

0 2

1

0 2

1

0 22

1

0

iz

dz

ii

siss

dsss

idsss

s

dsss

sisids

sis

i

C

Page 24: Complex varible

examples. previous the in shown as C and C ,C path the

along )Re()( of integralcomplex the Evaluate :Ex

321

zzf

path.different the on depends integral The

)1(2

1)1(

2

1

)1()1)(1(

))(()()1(

:CCC (iii)2

)cossin(cos :C (ii)

)cossin(cos :C (i)

222

1

0

1

022

1

0

1

0

3b3a3

202

2

02

1

iRiRiR

dsisRdtitR

dsiRRsRdtiRRRt

Ri

dttiRtRtR

RidttiRtRtR

Page 25: Complex varible

20.11 Cauchy theorem

C

dzzf

zfzf

0)(

Ccontour closed a on and withinpoint eachat

continuous is )( and function, analytic an is )( If '

apply. relations Riemann-Cauchy the and analytic is )(

0])(

[])()(

[

)()()(

and )(

)()(theorem divergence

ldemensiona-two by then C,contour closed a on

and within continuous are ),(

and ),(

If

zf

dxdyx

u

y

vidxdy

x

v

y

u

udyvdxivdyudxdzzfI

idydxdzivuzf

qdxpdydxdyy

q

x

p

y

yxq

x

yxp

RR

C C C

CR

Page 26: Complex varible

.C and C along same the is )( of integral the then paths two

the by enclosed region the in and path each on function analytic

an is )( ifthat Show .C and C pathsdifferent two by

joined are planecomplex the in B and Apoints twos Suppose :Ex

21

21

zf

zf

A

1C

y

x

B

1 2

1 2 21

)()(

enclosingcontour closed a forms path

0)()()(

21

C C

C C CC

dzzfdzzf

RCC

dzzfdzzfdzzf

R

Page 27: Complex varible

C

dzzfdzzfzf

C

C

)()( then contours two the between region the in analytic is )(

function the ifthat Show . with completely liesit that small lysufficient

being diagram, Argandthe in and contour closed twoConsider :Ex

y C

1C

2C

x

dzzfdzzfC

dzzfdzzfdzzfdzzf

dzzf

zf

C

CCC

)()( contour

ofthat as contour of direction the take If

)()()()(

0)(

analytic is )(

and , by bounded is area the

21

C

z fdzzfC

Rzzf

analytic. is )(0)(for , curve a by bounded

domain closed a in of function continuous a is )( if

:theorem sMorera'

Page 28: Complex varible

20.12 Cauchy’s integral formula

Cdz

zz

zf

izfCz

Czf

000

)(

2

1)( then withinpoint a is and

contour closed a on and within analytic is )( If

C

)(2)(

)(

)exp( ),exp(for

)()(

0

02

0 0

2

00

0

00

zifdezfi

deie

ezfI

diidzizz

dzzz

zfdz

zz

zfI

i

ii

i

C

0z

Page 29: Complex varible

)(

)(

2

1)(

:functioncomplex a of derivative the of form integral The

20

0' dz

zz

zf

izf

C

dzzz

zf

i

nzf

dzzz

zf

i

dzzzhzz

zf

i

dzzzhzzh

zf

i

h

zfhzfzf

C nn

C

Ch

Ch

h

10

0)(

20

000

000

00

00

'

)(

)(

2

!)( derivative nthFor

)(

)(

2

1

]))((

)(

2

1[lim

])11

()(

2

1[lim

)()(lim)(

Page 30: Complex varible

.!

|)(|that show constant, some is

where circle, the on |)(| If .point the on centered

radius of circle a on and inside analytic is )(that Suppose :Ex

0)(

0

nn

R

MnzfM

MzfzzR

Czf

nnC nn

R

MnR

R

Mn

zz

dzzfnzf

!2

2

!|

)(

)(|

2

!|)(|

110

0)(

constant. a is )( then

allfor bounded and analytic is )( If :theorem sLiouville'

zfz

zf

zfzzfz

zzzf

zfzfRn

R

Mn!zf

nn

constant )( allfor 0)( plane.- the inpoint

any as take may we , allfor analytic is )( Since

0)(0|)(| let and 1set

|)(| :inequality sCauchy' Using

'

0

0'

0'

0)(

Page 31: Complex varible

20.13 Taylor and Laurent series

n

n

nn

nn zz

n

zfzzazf

zzz

zf

)(!

)()()(

then C, insidepoint a is and ,point the on

centeredR radius of C circle a on and inside analytic is )( If

00

0)(

00

0

Taylor’s theorem:

!

)()(

!

)(2)(

2

1

)(

)()(

2

1)(

)(

2

1)(

)(11

in series geometric a as 1

expand

C on lies where )(

2

1)( so C, on and inside analytic is )(

0)(

00

0)(

00

100

00 0

0

0

0 0

0

00

0

n

zfzz

n

zifzz

i

dz

fzz

id

z

zz

z

f

izf

z

zz

zzz

zz

z

dz

f

izfzf

nn

n

nn

n

C nn

n

n

nC

n

n

C

Page 32: Complex varible

202010

0

11

0

1

0

00

00

0

)()(.......)()(

)(

exp )( ,

.)()( series

Taylor a as expanded and at analytic is )()()( Then . on and

insidepoint other everyat analytic isbut at order of pole a has )( If

zzazzaazz

a

zz

a

zz

azf

eries Laurent sanded as a can bezfCinsidezallforThus

zzbzg

zzzfzzzgC

zzpzf

pp

pp

n

nn

p

021

0

10

10

10

0)(

on centered and circles two

between region a in analytic is )()(

)(

)(

2

1

)(

)(

2

1

)(

)(

2

1

!

)( and

zzCC

Rzzazf

dzzz

zf

idz

zz

zg

ia

dzzz

zg

in

zgbba

n

nn

npnn

n

n

npnn

0z

2C

1C

R

Page 33: Complex varible

p

zfazzpzf

kaa

zzzf

zzm

zfmz-za

na

nazzzf

kpp

mm

n

n

ysingularit essential of valuelowest a find to impossible (ii)

)( of residue the called is ,at order of pole a has )(

0 allfor 0but 0 find to possible (i)

at analyticnot is )( If (2)

.at order of

zero a have to said is )( ,0 with )( is term

vanishing-nonfirst the ,0for 0 happen mayIt

.0for 0 all then ,at analytic is )( If )1(

10

0

0

0

0

n

nn zzazf )()( 0

Page 34: Complex varible

pole. eachat )( of residue the find and 3,order of pole

a is 2 and 1order of pole a is 0that verify Hence .2 and 0

iessingularit theabout )2(

1)( of seriesLaurent the Find :Ex

3

zf

zzzz

zzzf

.8/1 is 2at )( of residue the 3,order of pole a is 2

32

2

16

1

)2(8

1

)2(4

1

)2(2

1..

3216

1

8

1

4

1

2

1

...])2

()2

()2

()2

(1[2

1

)2/1(2

1)(

)2/1(2)2()2( 2set 2point (2)

1order of pole a is 0 ...32

5

16

3

16

3

8

1

...])2

(!3

)5)(4)(3()

2(

!2

)4)(3()

2)(3(1[

8

1

)2/1(8

1)(

0point (1)

2323

43233

333

2

323

zzfz

z

zzz

zf

zzzz

zz

zz

zzz

zzzzf

z

Page 35: Complex varible

001

1

10

0

01

101

1

101010

202010

0

1

0

at residue )]}()[()!1(

1{lim)(

limit the Take

)()!1()]()[(

...)(.......)()()(

...)()()(

......)(

)(

0

zzzfzzdz

d

mazR

zz

zzbamzfzzdz

d

zzazzaazfzz

zzazzaazz

a

zz

azf

mm

m

zz

n

nn

mm

m

mmm

m

mm

How to obtain the residue ?

)(

)(

)(

1lim)(

)(

)(lim)(

)(

)()(lim)(

0)( and at zero-non

and analytic is )( ,)(

)()( and at simple a has )( If (2)

)]()[(lim)(1 pole simple aFor (1)

0'

0'0

00

00

00

0

00

000

0

zh

zg

zhzg

zh

zzzg

zh

zgzzzR

zhz

zgzh

zgzfzzzf

zfzzzRm

zzzzzz

zz

Page 36: Complex varible

.point theat )1(

exp)( function the of residue the

evaluate Hence .at )( of )( residue thefor expression

general a deriving ,about )( of seriesLaurent the gconsiderin

By .point theat order of pole a has )(that Suppose :Ex

22

00

0

0

izz

izzf

zzzfzR

zzf

zzmzf

e

ie

ie

i

iiR

iziz

iziz

i

iz

iz

dz

dzfiz

dz

d

iz

iziziziz

iz

z

izzf

2]

)2(

2

)2([

!1

1)(

exp)(

2exp

)(]

)(

exp[)]()[(

:at polefor

and at 2order of poles )()(

exp

)1(

exp)(

13

12

3222

2222

Page 37: Complex varible

20.14 Residue theorem

0z

C

C

ninnin

nin

mnn

nC

mnn

ii

C

n

mnn

iadzzfI

iidn

ni

eidein

deiadzzzaI

deidzezz

dzzfdzzfI

zzazf

zzmzf

1

2

0

20

)1(1)1(2

01

)1(2

01

0

0

0

0

2)(

2 1for

0|)1(

1for

)(

set

)()(

)()(

at order of pole a has )(

Page 38: Complex varible

Residue theorem:

C within poles itsat )( of residues the of sum the is

2)(

C within poles ofnumber finite afor except analytic, and

Ccontour closed a on and within continuous is )(

zfR

Ridzzf

zf

jj

jjC

C 'C

Page 39: Complex varible

Ccontour open an along )( of integral The zfIC

0z

112

121100

0

101

0

2010

0

101

0

2 2contour closed afor

)()1

(lim)(lim

0)(lim

)()()(

except )( of ysingularit nothat enough small chosen is

)arg( and ||

gsurroundinneighbour some within analytic is )(

)()()(

at pole simple a has )( if

2

1

iaI

iadeie

adzzfI

dzz

dzzzadzzdzzfI

zzzf

zzzz

zz

zzazzf

zzzf

iiC

C

CC C

Page 40: Complex varible

20.16 Integrals of sinusoidal functions

dzizdz

ziz

z

izdF

1

2

0

),1

(2

1sin ,)

1(

2

1cos

circleunit in expset )sin,(cos

0for cos2

2cos Evaluate :Ex

2

0 22

abd

abbaI

dz

ab

zba

zz

z

ab

i

ab

ba

zzz

dzz

ab

i

ababzzbzaz

idzz

zzabba

dzizzzd

abba

zzzzn nn

))((

)1(

2)1)((

)1(

2

)(

)1(21

)(21

2

))((21

cos2

2cos

)(2

12cos )(

2

1cos

2

4

22

4

2222

4

122

122

22

22

Page 41: Complex varible

)(

2]

)([

22

)(

)(

)//()/(

1)/(]

)/)(/(

1)/[(lim)/(

1 ,/at pole (2)

//})/()/(

)]//(2)[1)(1(

)/)(/(

4{lim

]})/)(/(

1[

!1

1{lim)0(

2 ,0at pole (1)

)]()[()!1(

1{lim)( : Residue

circleunit the within / and 0at poles double ))((

1

2

222

2

22

4422

22

44

2

4

2

4

/

22

43

0

2

42

0

01

1

0

2

4

0

abb

a

abab

ba

ab

ba

ab

iiI

abab

ba

abbaba

ba

abzbazz

zbazbaR

mbaz

abbaabzbaz

abbazz

abzbaz

z

abzbazz

zz

dz

dR

mz

zfzzdz

d

mzR

bazzdz

ab

zba

zz

z

ab

iI

baz

z

z

mm

m

zz

C

Page 42: Complex varible

20.17 Some infinite integrals

dxxf )(

. as zero to tends

along integral the ,) on || of maximum(2|)(|for

2)(

exist both )( and )( (3)

).|| as 0)(that is

condition sufficient (a as zero to tends on ||

of maximum the times , radius of semicircle a on (2)

axis. real the on is which of none poles, ofnumber finite a

forexcept ,0Im plane,-halfupper the in analytic is )( (1)

:properties following the has )(

0

0

R

ΓfRdzzf

Ridxxf

dxxfdxxf

zzzf

RΓf

RRΓ

zzf

zf

jj

y

R 0 R x

Page 43: Complex varible

real is )(

Evaluate :Ex0 422

aax

dxI

77770 422

73

41

4442422

422

422422422

422422422

32

5

32

10

2

1

32

10)

32

5(2

)(

32

5)

2(

!3

)6)(5)(4(

)2(

1 is oft coefficien the

)2

1()2(

1

)2(

1

)(

1 0 ,set

plane-halfupper theat only

,at 4order of poles 0)(

)()(0

)(

as )()()(

aaI

aa

ii

ax

dx

a

i

a

i

a

a

i

aiaiazaiz

aiz

aizaz

ax

dx

az

dz

az

dz

Raz

dz

ax

dx

az

dz

Γ

R

RC

R 0 R

ai

Page 44: Complex varible

R 0 R - 0z

y

x

For poles on the real axis:

zero is integral the , as /1 thanfaster vanishes )( If

Re)(Re)(

Re Reset )(for (2)

)( at pole a has )(for (1)

)()()(

)()()()()(

contour closed afor

)()()(

0 as defined integral, the of value Principal

2

10

0

0

0

0

RRzf

difdzzf

didzzdzzf

aidzzfzzdzzf

dzzfdzzfdxxfP

dzzfdxxfdzzfdxxfdzzf

C

dxxfdxxfdxxfP

ii

iiθ

Γ

R

R

R

z

z

RC

R

z

z

R

R

R

Page 45: Complex varible

Jordan’s lemma

contourar semicircul the is , as 0)(

then ,0 (3)

plane-halfupper the in || as 0|)(| of maximum the )2(

0Im in poles ofnumber

finite afor except plane-halfupper the in analytic is )( )1(

RdzzfeI

m

zzf

z

zf

imz

0 0 as

)1(2

0 ,on )(of maximum e

2

)(

)sinexp()exp(

2//sin1 ,2/0for

2/

0)/2(

2

0sin

0sin

IMRm

Me

m

MdeMRI

MRR |z||z |fM is th

dθeMR

deMR||dz|zf|eI

|θmR||imz|

mRmR

π/ θmR

Γ

π θmRimz

2/

)(f /2f

sinf

Page 46: Complex varible

a R 0 R -

0 real, cos

of value principal the Find :Ex

madx

ax

mx

madxax

mxPmadx

ax

mxP

eaaidxax

eP

dzaz

eR

dzaz

edx

ax

edz

az

edx

ax

e

dzaz

eI

|z||az|

dzaz

eI

imaimx

imz

imzR

a

imximza

R

imx

C

imz

C

imz

cossin

and sincos

and 0

0 0 and As

0

as 0)( and plane,-halfupper

the in pole no 0 integral theConsider

11

1

Page 47: Complex varible

20.18 Integral of multivalued functions

y

x

R

B A

D Copposite. and equalnot are

to joining CD and ABlines two along

values its d,multivalue is integrand The .0 and

let Weotigin. theat ispoint branch Single

, as such functions dMultivalue 2/1

Rzz

R

Lnzz

0for )(

:Ex0 2/13

axax

dxI

2/52/1

2

2

2/133

13

13

2/12/2/12/1

2/13

8

3

!2

1lim

])(

1)[(

)!13(

1lim)(

)( and ,at pole (2)

integralcontour the to oncontributi no make circles two the

and 0 as 0)( ,)()( integrand the (1)

a

iz

dz

d

zazaz

dz

daR

iaeaaaz

R|z|zfzazzf

az

az

i

Page 48: Complex varible

2/50 2/13

2/50 2/13

2/5

0

, )22/1(2/132,0 2/13

20

2/5

8

3

)(

4

3

)()

11(

4

3

)()(

CD line along , ABline along

0 and 0 and

)8

3(2

axax

dx

axax

dx

e

aexaxe

dx

xax

dx

xezxez

dzdz

a

iidzdzdzdz

i

DC iiBA

ii

DCAB

Page 49: Complex varible

dx sin

)( Evaluate :Ex22

x

xxI

2122222221 2

1

2

1sinIIdz

z

ze

idz

z

ze

idz

z

zzC

iz

C

iz

C

ii

iziziz

ixix

R

ix

C

iz

iz

ee

zii

dzz

ze

idz

z

ze

idz

z

ze

i

dxx

xe

idx

x

xe

i

dxx

xe

idz

z

ze

iI

ze

I

22)Res(2

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

.at pole one only and , term the to due

plane-halfupper the on choosed iscontour the ,for (1)

222222

2222

22221

1

21

1

1C

R -R -

1

2

Page 50: Complex varible

iiiziz

izixix

R

ix

C

iz

iz

iiiix

iiz

iiz

ee

ii

dzz

ze

idz

z

ze

i

dzz

ze

idx

x

xe

idx

x

xe

i

dxx

xe

idz

z

ze

iI

ze

I

eeedxx

xe

iI

ezii

dzzz

ze

i

ezii

dzzz

ze

i

dzR

22

)()2()

2

1(

2

1

2

1

2

1

2

1

2

1

2

1

2

1

at pole one only , term

the by plane-halflower the choose we ,for (2)

2)(

42

1

4)Res(

2

1

))((2

1

4)Res()(

2

1

))((2

1

0 and 0 As

2222

222222

22222

2

221

2

1

2

2

1

1

2

2C

Page 51: Complex varible

cos)(222

)(42

)(42

2

1

2

1sin)(

)(4

1

22

1

2)(

42

1

42))(

2

1(

))((2

1

42

)())(

2

1(

))((2

1

0 ,0 As

222222

22

222

2

1

iiiii

iiiiii

ixix

iiiix

iiiix

iiiz

iiiz

eeeee

eeeeee

dxx

xe

idx

x

xe

idx

x

xxI

eeedxx

xe

i

eeedxx

xe

iI

ee

ii

dzzz

ze

i

ee

ii

dzzz

ze

i

dzR