complex stresses (2nd year)

32
Complex Stresses Dr Alessandro Palmeri <[email protected]>

Upload: alessandro-palmeri

Post on 13-Jul-2015

3.477 views

Category:

Education


6 download

TRANSCRIPT

Page 1: Complex stresses (2nd year)

Complex  Stresses  

Dr  Alessandro  Palmeri  <[email protected]>  

Page 2: Complex stresses (2nd year)

Teaching  schedule  Week Lecture 1 Staff Lecture 2 Staff Tutorial Staff 1 Beam Shear Stresses 1 A P Beam Shear Stresses 2 A P --- --- 2 Shear centres A P Basic Concepts J E-R Shear Centre A P 3 Principle of Virtual

forces J E-R Indeterminate Structures J E-R Virtual Forces J E-R

4 The Compatibility Method

J E-R Examples J E-R Virtual Forces J E-R

5 Examples J E-R Moment Distribution -Basics

J E-R Comp. Method J E-R

6 The Hardy Cross Method

J E-R Fixed End Moments J E-R Comp. Method J E-R

7 Examples J E-R Non Sway Frames J E-R Mom. Dist J E-R 8 Column Stability 1 A P Sway Frames J E-R Mom. Dist J E-R 9 Column Stability 2 A P Unsymmetric Bending 1 A P Colum Stability A P 10 Unsymmetric Bending 2 A P Complex Stress/Strain A P Unsymmetric

Bending A P

11 Complex Stress/Strain A P Complex Stress/Strain A P Complex Stress/Strain

A P

Christmas Holiday

12 Revision 13 14 Exams 15 2  

Page 3: Complex stresses (2nd year)

MoAvaAons  (1/5)  •  Failure  of  structures  is  oJen  the  result  of  different  

stresses  acAng  together  at  the  same  locaAon  

•  This  is  the  case,  for  instance,  of:  –  Welded  connec)ons,  in  which  there  are  in  general  two  direct  

stresses  to  consider  (σ  normal  and  σ  parallel  to  the  weld  axis)  and  two  shear  stresses  (τ  along  and  τ  normal  to  the  weld  axis)      

3  Weld cross section. International Journal of Fatigue, Volume 68, 2014, 178 - 185

Page 4: Complex stresses (2nd year)

MoAvaAons  (2/5)  –  Reinforced  concrete  

beams,  in  which  different  inclinaAons  of  the  cracks  appear,  depending  on  the  prevalent  shear  or  bending  acAon,  as  well  as  on  the  amount  and  distribuAon  of  reinforcement      

4  

RA=qL/2   RB=RA  

B  

q  

A  

L  

V  

M

prevalent  shear  force  V  

prevalent  bending  moment  M  

Page 5: Complex stresses (2nd year)

MoAvaAons  (3/5)  –  Cracking  of  concrete  is  

always  due  to  the  tensile  stress  σ  exceeding  the  tensile  strength  (fct)  of  the  material,  which  produces  a  rupture  (ideally  controlled  by  the  steel  reinforcement)  

–  However  this  means  that  the  orientaAon  of  the  tensile  stress  is  different  for  flexural  cracks  and  shear  cracks  

5  

–  Also,  how  do  we  get  tensile  stresses  close  to  the  beam  supports,  where  the  prevalent  acAon  is  the  shear  force  V?  

•  And  we  know  (Zhuravskii’s  formula)  that  V  induces  τ,  not  σ  in  the  cross  secAon!  

σ  >  fct  

Page 6: Complex stresses (2nd year)

MoAvaAons  (4/5)  

–  Another  example:  While  tesAng  a  concrete  specimen  in  compression,  fricAon  sets  up  shear  stresses  at  the  base,  whose  effect  is  to  change  the  cracking  pa\ern,  i.e.  the  direcAon  of  tensile  stresses  

6  

Damage  modes  observed  in  cylinder  compression  tests  as  a  funcAon  of  the  boundary  condiAons  

Typical  hourglass  failure  mode  of  a  concrete  cylinder    

Page 7: Complex stresses (2nd year)

MoAvaAons  (5/5)  

–  Cylinder  spli;ng  test  (also  known  as  ‘Brazilian  test’)  is  used  to  determine  the  tensile  strength  of  concrete  

–  We  use  a  compression  force  (in  the  verAcal  direcAon)  to  set  up  tensile  stresses  in  the  horizontal  direcAon  (verAcal  fracture)…  How?  

7  

Page 8: Complex stresses (2nd year)

Learning  Outcomes  When  we  have  completed  this  unit  (2  lectures  +  1  tutorial),  you  should  be  able  to:  

•  Use  the  Mohr’s  circle  to  determine:  –  principal  stresses,  and  their  direcAons;  – maximum  shear  stress,  and  the  inclinaAon  of  the  planes  where  it  occurs;  

–  normal  stress  and  shear  stress  in  any  inclined  plane  

•  Only  the  case  of  plane  stress  will  be  considered,  i.e.  no  out-­‐of-­‐plane  stresses  

8  

Page 9: Complex stresses (2nd year)

Further  reading  

•  R  C  Hibbeler,  “Mechanics  of  Materials”,  8th  Ed,  PrenAce  Hall  –  Chapter  9  on  “Stress  TransformaAon”  

•  T  H  G  Megson,  “Structural  and  Stress  Analysis”,  2nd  Ed,  Elsevier  –  Chapter  14  on  “Complex  Stress  and  Strain”  (eBook)  

9  

Page 10: Complex stresses (2nd year)

Stresses  in  Beams  and  Columns  (1/3)    

Within  the  limits  of  the  Saint-­‐Venant’s  principle,  stresses  in  beams  and  columns  can  be  considered  to  be  in  plane  state:  

 

10  

The  difference  between  the  effects  of  two  

different  but  sta6cally  equivalent  loads  becomes  very  small  at  sufficiently  large  distances  from  load  

Adhémar  Jean  Claude  Barré  de  Saint-­‐Venant  (1797-­‐1886)  was  a  French  mechanician  and  mathemaAcian  

•  i.e.  normal  stresses  σ  (sigma)  and  shear  stresses  τ  (tau),  all  lie  in  the  same  plane  

Page 11: Complex stresses (2nd year)

Stresses  in  Beams  and  Columns  (2/3)    

11  

Axial  (Normal)  Force,  N   Shear  Force,  V  

Bending  Moment,  M   Twis)ng  Moment,  T  

σ = NA

N N x

yz

τ = V ′QI b

V

y

z

σ = M dI

Mx

yz

M

τ = T rJ

T

y

z

Page 12: Complex stresses (2nd year)

Stresses  in  Beams  and  Columns  (3/3)    

12  

•  There  oJen  situaAons  where  two  or  more  internal  forces  act  simultaneously  

•  In  a  curved  composite  bridge,  for  instance,  N,  V,  M  and  T  induce  complex  stresses  in  the  deck  secAon  

•  How  the  stresses  combine?  

Page 13: Complex stresses (2nd year)

Plane  Stresses  (1/2)  

13  

•  Let’s  consider  a  material  element  subjected  to  plane  stresses,  such  as…  

–  In  a  reinforced  concrete  shear  wall,  with  combined  compressive  and  lateral  forces  (e.g.  due  to  a  seismic  event)  

V

P

xyz

σ z

τ xz

Page 14: Complex stresses (2nd year)

Plane  Stresses  (2/2)  

14  

–  In  the  the  web  and  in  the  flanges  of  a  thin-­‐walled  steel  cross  secAon  

•  Without  loss  of  generality,  the  plane  {x,z}  will  be  considered  in  our  analyses    

x

y

z

τ xz σ x

Page 15: Complex stresses (2nd year)

ConstrucAon  of  the  Mohr’s  Circle  (1/7)  

1.  The  values  of  the  three  stresses  σx,  σz  and  τxz  for  a  given  material  element  are  known  

15  

x

z

σ xσ x

σ z

σ z

τ xz

τ xz In  this  example:  •  σx=  14  MPa  (tension)  •  σz=  -­‐6  MPa  (compression)  •  τxz=  8  MPa  

Page 16: Complex stresses (2nd year)

ConstrucAon  of  the  Mohr’s  Circle  (2/7)  2.  Draw  the  references  axes  in  the  Mohr’s  plane  

–  Normal  stresses  σ  in  the  horizontal  axis  •  Posi2ve  if  in  tension  

–  Shear  stresses  τ  in  the  verAcal  axis  •  Posi2ve  if  inducing  a  clockwise  rota2on  of  the  material  element  

16  

x

z

σ xσ x

σ z

σ z

τ xz

τ xz

σ

τ

tension  compression  

clockwise  

an2clockwise  

Page 17: Complex stresses (2nd year)

σ

τ

tension'compression'

clockwise'

an0clockwise'

ConstrucAon  of  the  Mohr’s  Circle  (3/7)  

3.  Locate  point  X≡{σx,τxz},  representaAve  of  the  face  of  the  material  element  orthogonal  to  the  x  axis  

17  

x

z

σ xσ x

σ z

σ z

τ xz

τ xz

X ≡ {14,8}

σ x

τ xz

Page 18: Complex stresses (2nd year)

σ

τ

tension'compression'

clockwise'

an0clockwise'

ConstrucAon  of  the  Mohr’s  Circle  (4/7)  

4.  Locate  point  Z≡{σz,-­‐τxz},  representaAve  of  the  face  of  the  material  element  orthogonal  to  the  z  axis  

18  

x

z

σ xσ x

σ z

σ z

τ xz

τ xz

X

Z ≡ {-6,-8}

σ z

−τ xz

Page 19: Complex stresses (2nd year)

ConstrucAon  of  the  Mohr’s  Circle  (5/7)  

5.  Locate  the  centre  of  the  circle,  Cσ≡{σave,0},  as  the  centre  of  the  diameter  XZ,  at  the  average  stress  between  σx  and  σz  

σ

τ

tension'compression'

clockwise'

an0clockwise'

Z

19  

x

z

σ xσ x

σ z

σ z

τ xz

τ xz

X

σ ave

σ ave =σ x +σ z

2= 4MPa

Page 20: Complex stresses (2nd year)

ConstrucAon  of  the  Mohr’s  Circle  (6/7)  

6.  Use  the  Pythagoras’  Theorem  to  calculate  the  radius  Rσ  of  the  circle  

σ

τ

tension'compression'

clockwise'

an0clockwise'

Z

20  

x

z

σ xσ x

σ z

σ z

τ xz

τ xz

X

σ ave

Rσ = 12

σ x −σ z( )2 + 2τ xz( )2

= 12.81MPa

`  

Page 21: Complex stresses (2nd year)

ConstrucAon  of  the  Mohr’s  Circle  (7/7)  

7.  Draw  the  Mohr’s  circle,  with  centre  ,  Cσ≡{σave,0}  and  radius  Rσ  

σ

τ

tension'compression'

clockwise'

an0clockwise'

Z

21  

x

z

σ xσ x

σ z

σ z

τ xz

τ xz

X

σ ave

Page 22: Complex stresses (2nd year)

ProperAes  of  the  Mohr’s  Circle  (1/4)  •  Each  point  of  the  Mohr’s  circle  is  representaAve  of  a  the  stresses  (σ  and  τ)  experienced  by  a  face  in  the  material  element  of  a  given  inclinaAon    

σ

τ

tension'compression'

clockwise'

an0clockwise'

Z

X

σ ave

22  

compression*

Page 23: Complex stresses (2nd year)

ProperAes  of  the  Mohr’s  Circle  (2/4)  •  RotaAng  the  faces  of  the  material  element,  different  stresses  will  be  seen,  and  the  representaAve  points  will  move  along  the  Mohr’s  circle  

σ

τ

tension'compression'

clockwise'

an0clockwise'

Z

X

σ ave

23  

compression*Rσ

Page 24: Complex stresses (2nd year)

ProperAes  of  the  Mohr’s  Circle  (3/4)  •  Extremes  points  of  each  diameter  are  associated  with  stress  condiAons  on  orthogonal  faces,  such  as  points  X  and  point  Z  

σ

τ

tension'compression'

clockwise'

an0clockwise'

σ ave

Z

X

24  

compression*

Page 25: Complex stresses (2nd year)

ProperAes  of  the  Mohr’s  Circle  (4/4)  •  A  rotaAon  α  of  the  faces  in  the  material  element  corresponds  to  an  angle  2α  in  the  Mohr’s  circle  (in  the  same  direcAon,  e.g.  both  counterclockwise)  

σ

τ

tension'compression'

clockwise'

an0clockwise'

σ ave

Z

X

25  

compression*

α=0°  

α=22.5°  

α=45°  2α

=90°  

α=67.5°  

Page 26: Complex stresses (2nd year)

Principal  Stresses  (1/4)  •  It  is  always  possible  to  find  two  orthogonal  faces  of  the  

material  element  in  which  there  are  no  shear  stresses,  but  normal  stresses  only  

σ

τ

tension'compression'

clockwise'

an0clockwise'

σ ave

Z

X

26  

compression*

•  These  are  the  “principal  stresses”,  i.e.  maximum  and  minimum  values  of  the  normal  stress  for  the  varying  inclinaAon  of  the  element’s  face  

Page 27: Complex stresses (2nd year)

Principal  Stresses  (2/4)  •  The  principal  stresses  σp  and  σq  are  represented  in  the  Mohr’s  

circle  by  the  extreme  points  P  and  Q  of  the  diameter  on  the  horizontal  axis  (where  τ=0)  

σ

τ

tension'compression'

clockwise'

an0clockwise'

σ ave

Z

X

27  

P Qσ p =σ ave − Rσ = −8.81MPaσ q =σ ave + Rσ = 16.81MPaτ pq = 0

⎨⎪

⎩⎪

x

z

σ xσ x

σ z

σ z

τ xz

τ xz

x

zσ q

σ q

σ p

σ p

Reference  element  

Rotated  element  

Principal  stresses  

Page 28: Complex stresses (2nd year)

Principal  Stresses  (3/4)  •  The  principal  stresses  occur  along  the  

principal  direcAons  of  the  stress,  p  and  q;  •  They  are  orthogonal  each  other,  and  can  

be  determined  considering  the  corresponding  angles  in  the  Mohr’s  circle  

σ

τ

tension'compression'

clockwise'

an0clockwise'

σ ave

Z

X

28  

P Q

x

zσ q

σ q

σ p

σ pRotated  element  

Principal  stresses  

α xq =α zp = − 12sin−1 τ xz

⎛⎝⎜

⎞⎠⎟

= − 38.62

= −19.3

α xq

2α xqτ xz

•  Important:  It  is  assumed  here  that  angles  α  are  posi2ve  if  an2clockwise  

Page 29: Complex stresses (2nd year)

Principal  Stresses  (4/4)  •  In  case  of  bri\le  material,  such  as  concrete,  

cracks  may  appear  orthogonally  to  the  direcAon  of  the  maximum  tensile  stresses  

σ

τ

tension'compression'

clockwise'

an0clockwise'

σ ave

Z

X

29  

P Q

x

zσ q

σ q

σ p

σ pCracked  element  

α xq

2α xqτ xz

Page 30: Complex stresses (2nd year)

Maximum  Shear  Stress  •  The  maximum  value  of  the  shear  stress  is  τmax=Rσ  and  

happens  in  two  mutually  orthogonally  faces,  which  are  inclined  by  45°  with  respect  to  the  principal  direcAons  of  the  stress  (represented  by  points  R  and  S  in  the  Mohr’s  circle)  

σ

τ

tension'compression'

clockwise'

an0clockwise'

Z

X

30  

P Q

τmax = RσCσ

σ ave

R

S

x

z

σ ave

σ ave

σ ave

σ ave

τmax

τmax

Page 31: Complex stresses (2nd year)

Stresses  on  an  Arbitrary  Inclined  Face  •  Having  drawn  the  

Mohr’s  circle,  it  is  possible  to  evaluate  the  normal  stress  σm    and  the  shear  stress  τmn  in  any  generic  face,  inclined  by  αxm  with  respect  to  the  horizontal  axis  

σ

τ

tension'compression'

clockwise'

an0clockwise'

Z

X

31  

P Q

2α xq

τ mnCσ

σ ave

M

N

σm

2α xm

σm =σ ave + Rσ cos 2α xm − 2α xq( )τmn = Rσ sin 2α xm − 2α xq( )⎧⎨⎪

⎩⎪

•  Important:  It  is  assumed  here  that  angles  α  are  posi2ve  if  an2clockwise  

Page 32: Complex stresses (2nd year)

Key  Learning  Points  1.  Normal  stresses  and  shear  stresses  acAng  on  a  given  

material  element  change  their  values  depending  on  the  inclinaAon  of  the  elementary  area  being  considered  

2.  The  Mohr’s  circle  allows  evaluaAng  –  The  extreme  values  of  the  normal  stress  σp  and  σq  –  The  extreme  value  of  the  shear  stress  τmax  

–  The  inclinaAon  of  the  faces  where  such  values  are  seen  –  The  stresses  σm  and  τmn  for  an  arbitrary  inclinaAon  

 

32