complex numbers xii – standard mathematics. if n is a positive integer, prove that

48
Complex Numbers XII – STANDARD MATHEMATICS PREPARED BY: R.RAJENDRAN. M.A., M. Sc., M. Ed., K.C.SANKARALINGA NADAR HR. SEC. SCHOOL, CHENNAI-21

Upload: linette-young

Post on 02-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Complex Numbers

XII – STANDARD

MATHEMATICS

PREPARED BY:R.RAJENDRAN. M.A., M. Sc., M. Ed.,K.C.SANKARALINGA NADAR HR. SEC. SCHOOL,CHENNAI-21

Page 2: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

If n is a positive integer, prove that

θ2

πnisin θ

2

πn cos

θ icosθsin 1

θ icosθsin 1

n

θ2

πisin θ

2

π cos θ icosθsin zLet

θ2π

isin θ2π

cos

1

z

1Then

θ2

πisin θ

2

π cos

θ icosθsin

Page 3: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

n

n

z

11

z1

θ icosθsin 1

θ icosθsin 1

n

z

1zz1

nz

θ2

πisin θ

2

π cos

n

θ2

πnisin θ

2

πn cos

Page 4: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

If a = cos 2 + isin 2, b = cos2 + isin 2, c = cos 2 + isin 2. Prove that (i) γβα2cos

abc

1abc

a = cos 2 + isin 2

b = cos 2 + isin 2

c = cos 2 + isin 2

abc = (cos 2 + isin 2 )(cos 2 + isin 2) (cos 2 + isin 2)

= cos (2 + 2 + 2) + isin (2 + 2 + 2)

2

1

γ2β22αsinγ2β22αcosabc i

Page 5: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

= cos ( + + ) + isin ( + + ) ……..(1)

2

γ2β22αsini

2

γ2β22αcos

11γβαsiniγβαcosabc

abc

1

= cos ( + + ) – i sin ( + + ) …….(2)

adding (1) and (2) we get

γβαcos2abc

1abc

Page 6: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

= (cos 2 + isin 2 )(cos 2 + isin 2)(cos 2 + isin 2)– 1

= (cos 2 + isin 2 )(cos 2 + isin 2)(cos 2 – isin 2)= (cos 2 + isin 2 )(cos 2 + isin 2)(cos (–2) + isin (–2))= cos(2 + 2 – 2) + isin(2 + 2 – 2)= cos 2( + – ) + isin 2( + – )………….(1)

If a = cos 2 + isin 2, b = cos2 + isin 2, c = cos 2 + isin 2. Prove that (ii)

γβα2cos2abc

cba 222

abc

cbaLHS

222

abc

c

abc

ba 222

ab

c

c

ab

1abcc

ab

Page 7: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

-1

c

ab

ab

c

= [cos 2( + – ) + i sin 2( + – )]-1

= cos 2( + – ) – i sin 2( + – )………(2)

Adding (1) and (2), we get,

)γβα(2cos2abc

cba 222

γβα2cos2ab

c

c

ab

Page 8: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Simplify: 32

43

)4θisin θ4 (cos3θisin θ3cos

3θisin θ3cosθ2siniθ2cos

32

43

)4θisin θ4 (cos3θisin θ3cos

3θisin θ3cosθ2siniθ2cos

3423

432

)θisin θ (cosθisin θcos

3θ -isinθ)3cos(θsiniθcos

4323

4332

)θisin θ (cosθisin θcos

θisin θcosθsiniθcos

126

126

θisin θ cos θisin θcos

θisin θcos θisin θcos

(cos + isin )0

= 1

Page 9: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Simplify:6

6

πcos i

6

πsin

6

6

πcos i

6

πsin

6

6

π

2

πsin i

6

π

2

πcos

6

6

2πsin i

6

2πcos

6

2π6sin i

6

2π6 cos

2πsin i2π cos

101 i

Page 10: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Prove that: 1

8

πcos i

8

πsin1

8

πcos i

8

πsin1

8

8

πcos i

8

πsinzLet

8

π

2

πsin i

8

π

2

πcos

8

π4πsin i

8

π4πcos

8

3πsin i

8

π3 cosz

Page 11: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

1

8

3πsin i

8

π3cos

z

1

8

3πsin i

8

π3cos

z

1

88

z

11

z1

8

πcos i

8

πsin1

8

πcos i

8

πsin1

8

8

z

z

z1z1

8

8

3πsin i

8

π3cos

3πsin i3π cos

101 i

Page 12: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

If cos + cos + cos = 0 = sin + sin + sin : prove that(i) cos 3 + cos 3 + cos 3 = 3cos( + + )(ii) sin 3 + sin 3 + sin 3 = 3sin( + + )

Given: cos + cos + cos = 0 and

sin + sin + sin = 0

(cos + cos + cos ) + i(sin + sin + sin ) = 0

(cos + isin )(cos + isin )(cos + isin ) = 0

Let a = cos + isin

b = cos + isin

c = cos + isin

Page 13: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

If a + b + c = 0, then a3 + b3 + c3 = 3abc

(cos + isin )3 + (cos + isin )3 + (cos + isin )3

= 3(cos + isin )(cos + isin )(cos + isin )

(cos 3 + isin 3) + (cos 3 + isin 3) + (cos 3 + isin 3)

= 3[cos ( + + ) + isin ( + + )]

(cos 3 + cos 3 + cos 3) + i(sin 3 + sin 3 + sin 3)

= 3cos ( + + ) + 3isin ( + + )

Equating real and imaginary parts

cos 3 + cos 3 + cos 3 = 3cos ( + + )

sin 3 + sin 3 + sin 3 = 3sin ( + + )

Page 14: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

If n is a positive integer, prove that

(i) (1 + i)n + (1 – i)n =

Let 1 + i = r(cos + isin )

4

nπcos2 2

2n

22 11 r 211

θisin θ cos2i1

2

1θ cos

2

1θsin

4

πθ

4

πisin

4

π cos2i1

Page 15: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

n

nn

4

πisin

4

π cos2i)(1

)1(..........4

nπisin

4

nπ cos)2(i)1( 2

nn

Substituting i = - i

n

nn

4

πisin

4

π cos2i)(1

)2.(..........4

nπisin

4

nπ cos)2(i)(1 2

nn

Adding (1) and (2), we get

Page 16: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

4

nπisin

4

nπ cos

4

nπisin

4

nπ cos)2(

i)(1i)(1

2

n

nn

4

nπ 2cos)2( 2

n

4

nπ cos)2(

12

n

4

nπ cos)2(i)(1i)(1 2

2nnn

Page 17: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

If n is a positive integer, prove that

(ii) (3 + i)n + (3 – i)n = 6

nπcos2 1n

Let 3 + i = r(cos + isin )

22 1)3( r

2413

θisin θ cos2i3

2

3θ cos

2

1θsin

6

πθ

6

πisin

6

π cos2i3

Page 18: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Substituting i = –i

n

nn

6

πisin

6

π cos2i)3(

)2.(..........6

nπisin

6

nπ cos)2(i)3( nn

Adding (1) and (2), we get

)1......(6

nπisin

6

nπ cos2i)3( nn

n

nn

6

πisin

6

π cos2i)3(

Page 19: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

6

nπ 2cos)2( n

4

nπ cos)2( 1n

6

nπ cos)2(i)3(i)3( 1nnn

6

nπisin

6

nπ cos

6

nπisin

6

nπ cos)2(

i)3(i)3(

n

nn

Page 20: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

If n is a positive integer, prove that(1 + cos + isin )n + (1 + cos - isin )n

(1 + cos + isin )n + (1 + cos - isin )n2

nθcos

2

θcos2 n1n

n2

n2

2

θcos

2

θi2sin

2

θcos2

2

θcos

2

θi2sin

2

θcos2

nnn

nnn

2

θisin

2

θcos

2

θcos2

2

θisin

2

θcos

2

θcos2

2

nθisin

2

nθcos

2

θcos2

2

nθisin

2

nθcos

2

θcos2 nnnn

2

nθisin

2

nθcos

2

nθisin

2

nθcos

2

θcos2 nn

Page 21: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

2

nθcos2

2

θcos2 nn

2

nθcos

2

θcos2 n1n

2

nθcos

2

θcos2 n1n

Page 22: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

If and are the roots of x2 – 2x + 4 = 0 prove that n – n = i2n+1 sin (n/3) and deduce 9 – 9

x2 – 2x + 4 = 0 a = 1, b = –2, c = 4

a2

ac4bb-x

2

12

414(-2)(-2)- 2

2

1642

2

122

2

i 342 2

2

3i22

3 i1

The two roots are

3 i1α 3 i1β

Page 23: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Let 1 + i 3 = r(cos + isin )

22 )3(1 r 2431

θisin θ cos23i1

2

1θ cos

2

3θsin

3

πθ

3

πisin

3

π cos23i1

n

nnn

3

πisin

3

π cos23i1 α

)1....(..........3

nπisin

3

nπ cos2 α nn

Page 24: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Substituting i = –i we get

)2....(..........3

nπisin

3

nπ cos2 β nn

Subtracting (2) from (1) we get

nnnn 3i13i1 βα

3

nπisin

3

nπ cos2

3

nπisin

3

nπ cos2 nn

3

nπisin

3

nπ cos

3

nπisin

3

nπ cos2n

3

nπsin 2i2n

3

nπsin 2 1ni

Page 25: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

If n = 9

9 – 9

3

9πsin 2 19i

3sin 210i

sin 210i

0)0(210 i

Page 26: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

If x + 1/x = 2cos prove that (i)xn + 1/xn = 2cos n (ii) xn – 1/xn = 2isin n

θ 2cosx

1x

θ 2cosx

1x2

θ cos2x 1x2

0 1θ cos2x x2

a2

ac4bb-x

2

12

1142cosθ-2cosθ--x

2

2

4θ4cos2cosθ 2

2

θcos-14-θ 2cos 2

2

θsin4-θ 2cos 2

2

θsin4-θ 2cos 2

Page 27: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

2

θsini2θ 2cos θsiniθ cos

θsiniθ cosx θsiniθ cosx

1

nn

nn θsiniθ cosθsiniθ cos

x

1x

nθsininθ cosnθsininθ cos

nθ cos2

nn

nn θsiniθ cosθsiniθ cos

x

1x

nθsininθ cosnθsininθ cos

nθsin i2

Page 28: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

If x + 1/x = 2cos, y + 1/y = 2cos, prove that one of the values of

nm2cos x

y

y

x (i)

m

n

n

m

2cosx

1x

2cosx

1x2

cos2x 1x2

0 1 cos2x x2

a2

ac4bb-x

2

12

1142cos-2cos--x

2

2

44cos 2cos 2

nm2isin x

y

y

x (i)

m

n

n

m

Page 29: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

2

sin i2 2cos

2

sin4- cos2 2

2

cos142cos 2

sin i cos

sin i cosx

sin i cosx

1

mm sin i cosx

msin im cosxm

similarly

sin i cosy

sin i cosy

1

nn sin i cosy

nsin in cosyn

Page 30: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Adding (1) and (2)

nm2cos x

y

y

x (2)(1)

m

n

n

m

1nmn

m

nsin in cosmsin im cosyxy

x

nsin in cosmsin im cos

(1).......nmsin inm cos

(2).....nmsin inm cos

yx

1

x

y

n

mm

n

nm2isin x

y

y

x(2)(1)

m

n

n

m

Page 31: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Solve: x8 + x5 – x3 – 1 = 0

x8 + x5 – x3 – 1 = 0

x5(x3 + 1) – (x3 + 1) = 0

(x3 + 1)(x5 – 1) = 0

x3 + 1 = 0, x5 – 1 = 0

Case (1) x3 + 1 = 0

x3 = – 1

= cos + isin

= cos(2k + ) + isin(2k + )

x = {cos(2k + ) + isin(2k + )}1/3

Page 32: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

0,1,2k,3

π2kπsini

3

π2kπcos

The three values are

,3

πsini

3

πcos , πsiniπcos

3

5πsini

3

5πcos

Case (2) x5 – 1 = 0

x5 = 1

= cos 0 + isin 0

= cos(2k) + isin(2k)

x = {cos(2k) + isin(2k)}1/5

0,1,2,3,4k,5

2kπsini

5

2kπcos

Page 33: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

The five values are

1 0sini0cos 0,kfor

,5

2πsini

5

2πcos 1, k for

,5

4πsini

5

4πcos 2, k for

,5

6πsini

5

6πcos 3, k for

5

8πsini

5

8πcos 4, k for

Page 34: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Solve: x7 + x4 + x3 + 1 = 0

x7 + x4 + x3 + 1 = 0

x4(x3 + 1) + (x3 + 1) = 0

(x3 + 1)(x4 + 1) = 0

x3 + 1 = 0, x4 + 1 = 0

Case (1) x3 + 1 = 0

x3 = – 1

= cos + isin

= cos(2k + ) + isin(2k + )

x = {cos(2k + ) + isin(2k + )}1/3

Page 35: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

0,1,2k,3

π2kπsini

3

π2kπcos

The three values are

,3

πsini

3

πcos , πsiniπcos

3

5πsini

3

5πcos

Case (2) x4 + 1 = 0

x4 = – 1

= cos + isin

= cos(2k + ) + isin(2k + )

x = {cos(2k + ) + isin(2k + )}1/4

0,1,2,3k,4

1)π (2k sini

4

1)π (2k cos

Page 36: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

The four values are

2

1i

2

1

4sini

4cos 0,kfor

2

1

2

1

4

3πsini

4

3πcos 1, k for i

2

1

2

1

4

5πsini

4

5πcos 2, k for i

2

1

2

1

4

7πsini

4

7πcos 3, k for i

Page 37: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Find all the values of (1 + i)1/4

22 11 r 211

θisin θ cos2i1

2

1θ cos

2

1θsin

4

πθ

4

πisin

4

π cos2i1

Let 1 + i = r(cos + isin )

Page 38: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

4

π2kπisin

4

π2kπ cos2i1

4

1

4

1

4

1

4

π2kπisin

4

π2kπ cos2i1

4

π2kπ

4

1isin

4

π2kπ

4

1cos2 4

1

For k = 0,1,2,3,4 we get all the values

Page 39: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Find all the values of

22

2

3

2

1 r

1

4

4

2

1θ cos

2

3θsin

3

πθ

And hence prove that the product of the values is 1

4

3

2

3

2

1

i

)sin(cos2

3

2

1Let iri

)sin(cos2

3

2

1 ii

Since sin is – ve and cos is +ve

lies in the fourth quadrant

3sin

3cos

2

3

2

1

ii

Page 40: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

4

34

3

3

πisin

3

π cos

2

3

2

1

i

For k = 0,1,2,3, we get all the values

4

1

πisinπ cos

4

1

π2kπisinπ2kπ cos

π2kπ

4

1isinπ2kπ

4

1cos

4

sini4

cos 0,kfor

4

πsini

4

πcos 1, k for

4

3πsini

4

3πcos 2, k for

4

5πsini

4

5πcos 3, k for

Page 41: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Their product =

4

5sini

4

5cos

4

3sini

4

3cos

4sini

4cos

4sini

4cos

4

5

4

3

44sini

4

5

4

3

44cos

4

8sini

4

8cos

2sini2cos

= 1

Page 42: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

x2 – 2px + (p2 + q2) = 0 a = 1, b = –2p, c = p2 + q2

a2

ac4bb-x

2

12

qp14(-2p)(-2p)- 222

2

)qp(44p2p 222

2

q42p 2

2

i q 42p 22

2

iq22p q ip

The two roots are

q ipα q ipβ

If and are the roots of x2 – 2px + (p2 + q2) = 0 and tan = q/ y+p prove that

n1

nn

sin

nsin )(y)(y

nq

py

qtan

Page 43: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

py

q

cos

sin

qsinθ

cosθpy

pqsinθ

cosθy

iqppqsinθ

cosθy

iqqsinθ

cosθy

sinθ

)sin iq(cosθy

θsin

)sin i(cosθq)(y

n

nn n

iqppqsinθ

cosθy

iqqsinθ

cosθy

sinθ

)sin iq(cosθy

θsin

)sin i(cosθq)(y

n

nn n

)1....(θsin

)sin(cosnq)(y

n

n nin

Page 44: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

)2.....(θsin

)sinn i(cosnθq)(y

n

n n

nn )(y)(y

)()(sin

)sinn i(cosnθq)sinn i(cosnθqn

nn

iqpiqp

2iq θsin

nsin i2qn

n

θsin

nsin qn

1-n

n1

nn

sin

nsin )(y)(y

nq

Page 45: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

P represents the variable complex number z, find the locus of P if

Let z = x + iy be the variable complex number

1 iz

1zRe

iiyx

1iyx

iz

1z

)1i(yx

iy)1(x

)1i(yx

)1i(yx

)1i(yx

iy)1(x

Page 46: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

)1(yix

1)y(yi1)1)(yi(xixy)1x(x222

2

)1(yx

1)1)(y(xxyi1)y(y)1x(x22

1 iz

1zRe

1 )1(yx

1)y(y)1x(x22

x(x + 1) + y(y + 1) = x2 + (y + 1)2

x2 + x + y2 + y = x2 + y2 + 2y + 1

x + y = 2y + 1

x – 2y + y – 1 = 0

x – y – 1 = 0

The locus of P is

x – y – 1 = 0

Page 47: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

Find the square root of – 8 – 6i.Let square root of – 8 – 6i be x + iy

– 8 – 6i = (x + iy)2

= x2 + 2ixy + i2y2

= x2 + 2ixy – y2

– 8 – 6i = x2 – y2 + 2ixy

Equating the real and imaginary parts

x2 – y2 = – 8 ……..(1)

2xy = –6 ……..(2)

xy = –3

y = –3/x

Sub y = –3/x in (1)

83

22

x

x

89

22

x

x

89

2

4

x

x

Page 48: Complex Numbers XII – STANDARD MATHEMATICS. If n is a positive integer, prove that

x4 – 9 = – 8x

x4 + 8x2 – 9 = 0

x4 + 9x2 – x2 – 9 = 0

x2(x2 + 9) – 1(x2 + 9) = 0

(x2 + 9)(x2 – 1) = 0

x2 = –9, 1

x = ±3i, ±1

Since is real x = ±1

If x = 1, then y = –3

If x = –1, then y = 3

The square root = 1 – 3i and –1 + 3i