complete mos small-signal model prof. ali m. niknejad prof

24
Department of EECS University of California, Berkeley EECS 105 Spring 2017, Module 3 Prof. Ali M. Niknejad Prof. Rikky Muller Complete MOS Small-Signal Model

Upload: others

Post on 20-Dec-2021

5 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

Department of EECS University of California, Berkeley

EECS 105 Spring 2017, Module 3

Prof. Ali M. Niknejad Prof. Rikky Muller

Complete MOS Small-Signal Model

Page 2: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

2

Announcements

l  Welcome back! l  Pick up graded MT2 in lecture on Tuesday l  Check updated syllabus l  No lab this week l  HW8 due on Friday

University of California, Berkeley

Page 3: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

3

Review: An MOS Amplifier

University of California, Berkeley

DSI

GSV

vgs

DR DDV

vGS =VGS + vgs

ov

Input signal

Output signal

Supply “Rail”

This type of amplifier is known as “Common Source (CS)”

Page 4: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

4

Plot of Output Waveform (Gain!)

University of California, Berkeley

output

input

mV

Page 5: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

5

Total Small Signal Current

University of California, Berkeley

( )DS DS dsi t I i= +

DS DSds gs ds

gs ds

i ii v vv v∂ ∂

= +∂ ∂

1ds m gs ds

o

i g v vr

= +

Transconductance Conductance

Page 6: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

6

Changing One Variable at a Time

University of California, Berkeley

Assumption: VDS > VDS,SAT = VGS – VTn (square law)

GSV

/DSI k

Square Law Saturation

Region

Linear Triode Region

Slope of Tangent: Incremental current increase

Page 7: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

7

The Transconductance gm

University of California, Berkeley

Defined as the change in drain current due to a change in the gate-source voltage, with everything else constant

, ,

( )(1 )GS DS GS DS

D Dm ox GS T DS

GS GSV V V V

i i Wg C V V Vv v L

µ λΔ ∂

= = = − +Δ ∂

2, ( ) (1 )

2ox

DS sat GS T DSCWI V V V

λ= − +

( )m ox GS TWg C V VL

µ= −

0≈

2 2DSm ox ox DS

ox

IW Wg C C IWL LCL

µ µµ

= =

2( )

DSm

GS T

IgV V

=−

Gate Bias

Drain Current Bias

Drain Current Bias and Gate Bias

Page 8: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

8

Output Resistance ro

University of California, Berkeley

Defined as the inverse of the change in drain current due to a change in the drain-source voltage, with everything else constant

Non-Zero Slope Caused by Channel-Length Modulation

DSVδ

DSIδ

IDS / K

VDS (V )

Page 9: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

9

Evaluating ro

University of California, Berkeley

1

,GS DS

Do

DS V V

irv

−⎛ ⎞∂⎜ ⎟=⎜ ⎟∂⎝ ⎠

2( ) (1 )2ox

D GS T DSCWi V V V

λ= − +

02

1

( )2ox

GS T

r CW V VLµ

λ=

01

DS

rIλ

Page 10: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

10

Simple Small Signal Model for MOSFET

l  This is a simplified, 3-terminal small-signal model for a MOSFET

l  In later lectures we will develop a more complete model l  gm = transconductance

–  defined as dids/dvgs, units [Ohms]-1

l  ro = output resistance –  defined as [dids/dvds]-1, units Ohms

University of California, Berkeley

NMOS

Page 11: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

11

Small-Signal PMOS Model

University of California, Berkeley

l  This is a simplified, 3-terminal small-signal model for a MOSFET

l  In later lectures we will develop a more complete model l  gm = transconductance

–  defined as disd/dvsg, units [Ohms]-1

l  ro = output resistance –  defined as [disd/dvsd]-1, units Ohms

PMOS

Page 12: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

12

What we’ve ignored…until now!

l  The fourth terminal of the MOSFET is the body of the transistor… it can act like a second gate, or “back gate”

l  The junctions of the transistor form pn-junction diodes with body, this introduces parasitic capacitance

University of California, Berkeley

Page 13: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

13

MOSFET Capacitances in Saturation

University of California, Berkeley

•  Note that gate-source capacitance: channel charge is mostly controlled by gate-source and not drain in saturation

MOSFETS have many parasitic capacitances Let us analyze where each parasitic comes from

LD

Page 14: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

14

Gate-Source Capacitance Cgs

University of California, Berkeley

Wedge-shaped charge in saturation à effective area is (2/3)WL

ovoxgs CWLCC += )3/2(

Overlap capacitance along source edge of gate à

Cov = LDWCox

(Underestimate due to fringing fields)

Page 15: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

15

Gate-Drain Capacitance Cgd

University of California, Berkeley

Not due to change in inversion charge in channel. Overlap (and fringing) capacitance Cov between drain and source is Cgd

Cgd =Cov = LDWCox

Page 16: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

16

Drain-Bulk Capacitance Cdb

University of California, Berkeley

•  Drain-Bulk and Source-Bulk capacitance is caused by p-n junction depletion

Page 17: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

17

Summary of Capacitance Models

University of California, Berkeley

Cgs = (2 / 3)WLCox +Cov

Cgd =Cov

Csb =Cjsb(area+ perimeter) junctionCdb =Cjdb(area+ perimeter) junction

Csb

Page 18: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

18

Back-Gate Effect

l  Transistor really has four terminals: –  Source / Drain –  Gate / Body

l  There is a symmetry between the gate and the body. The body can act like a “back gate”

l  In many instances the body terminal is simply tied to the source (ground or VSS for NMOS, supply or VDD for PMOS)

l  What happens if there is a DC or AC voltage swing on the body?

University of California, Berkeley

Page 19: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

19

Body Bias Affects VT l  If there is a body bias VSB, a depletion capacitance

appears in parallel with Cox and affects the amount of channel charge:

l  Cdep changes with body bias, if we account for this:

University of California, Berkeley

( )0 2 2T T SB p pV V Vγ φ φ= + − − −

Qinv = −Cox VGS −VT +CdepCox

VSB⎡

⎣⎢⎢

⎦⎥⎥

VT (VSB ) =VT 0 +CdepCox

VSB

Cdep = εs / xdep,maxQinv = −Cox (VGS −VT )+CdepVSB

VT 0n =VFB − 2φ p +1Cox

2qεsNa (−2φ p )

ΔVT =1Cox

2qεsNa ( −2φ p +VSB − −2φ p )

Page 20: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

20 University of California, Berkeley

Role of the Substrate Potential

Note: Need not be the source potential, but VB < VS Effect: changes threshold voltage, which changes the drain current … substrate acts like a “backgate”

QBS

D

QBS

Dmb v

ivig

∂∂

=ΔΔ

= Q = (VGS, VDS, VBS)

gmb =∂iD∂vBS Q

=∂iD∂VTn Q

∂VTn∂vBS Q

Page 21: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

21 University of California, Berkeley

Backgate Transconductance

Result: 2 2Tn mD D

mbBS Tn BS BS pQ Q Q

V gi igv V v V

γ

φ

∂∂ ∂= = =∂ ∂ ∂ − −

( )0 2 2T T SB p pV V Vγ φ φ= + − − −

Page 22: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

22 University of California, Berkeley

Four-Terminal Small-Signal Model

1ds m gs mb bs ds

o

i g v g v vr

= + +

Page 23: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

23

Complete Small-Signal Model NMOS

University of California, Berkeley

G

S

D

gmbvbs

Page 24: Complete MOS Small-Signal Model Prof. Ali M. Niknejad Prof

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

24

Complete Small-Signal Model PMOS

University of California, Berkeley