comparisonof*laser*scanner*and total*stationsurvey*methods: … · 1" " 1.0 introduction...

57
i British Columbia Institute of Technology Geomatics Department B. Tech. Program Geomatics Project: Comparison of Laser Scanner and Total Station Survey Methods: Analysis of Time and Accuracy for Building Modeling By: William Oleksuik and Eric Sankey Prepared as a requirement for: GEOM 8230 March 31, 2014

Upload: others

Post on 13-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

i    

 

British  Columbia  Institute  of  Technology

Geomatics  Department  

B.  Tech.  Program

Geomatics  Project:

Comparison  of  Laser  Scanner  and   Total  Station  Survey  Methods: Analysis  of  Time  and  Accuracy  

for  Building  Modeling

By: William  Oleksuik

and

Eric  Sankey

Prepared  as  a  requirement  for: GEOM  8230

March  31,  2014  

Page 2: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

ii    

 

 

 

 

 

 

Acknowledgements

 

We  would  like  to  thank  the  following  people  for  their  assistance  and  guidance  throughout  

the  course  of  this  project.      

 

Mark  Hird-­Rutter:    Mr.  Hird-­‐Rutter  originally  introduced  us  to  High  Definition  Surveying  

(HDS)  and  point  cloud  modeling  in  SURV  4476.    He  is  also  our  project  Mentor  and  helped  us  

every  step  of  the  way.    From  helping  to  select  a  topic,  facilitating  the  scanner  rental  and  

insurance,  and  providing  Cyclone  troubleshooting  advice,    Mark  has  been  a  huge  part  of  the  

successful  completion  of  this  project.    

Keith  Belsham:    Mr.  Belsham,  Technical  Sales  Representative,  at  Spatial  Technologies  in  

Vancouver,  has  provided  the  Leica  C10  scanner,  bipod,  tripods,  tribrachs,  and  HDS  targets  

required  for  our  field  work.    He  was  kind  enough  to  wave  the  $500  per  day  rental  cost  of  

this  equipment,  which  was  an  astonishing  gesture  of  generosity.    Without  Mr.  Belsham’s  

support  we  would  have  likely  used  BCIT’s  Cyrax  laser  scanner.    Using  the  Cyrax  would  have  

caused  the  project  to  be  much  less  applicable  to  modern  surveying.  

 

Dave  Martens:    Mr.  Martens  was  very  helpful  in  the  selection  and  refinement  of  the  project  

topic.    His  advice  regarding  the  scope,  planning  and  execution  of  the  project  was  invaluable.    

He  also  assisted  us  during  the  fieldwork  when  we  were  having  issues  with  the  C10  scanner.    

 

Dr.  Joan  Yau:    Dr.  Yau  was  the  original  instructor  of  GEOM  7230  during  which  we  selected,  

Page 3: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

iii    

planned  and  presented  our  project  outline.    Dr.  Yau  provided  us  with  the  framework  for  

writing  successful  technical    reports  and  also  provided  useful  feedback  throughout  the  

early  stages  of  the  project.      

 

 

 

 

Executive Summary

 

The  constant  evolution  of  technology  has  contributed  to  a  greater  variety  of  on-­‐the-­‐

job  tools  available  to  Geomatics  technicians.    Different  survey  tasks  are  now  able  to  be  

conducted  using  wide  variety  of  survey  methods.    One  survey  technology,  which  has  not  

been  utilized  frequently  by  surveyors,  is  the  laser  scanner.    The  reader  of  this  report  will  be  

able  to  directly  compare  an  up  to  date  laser  scanner  with  a  commonly  used  total  station.    

The  increase  in  newer  3D  scanner’s  functionality  and  speed  could  give  surveyors  more  

options  rather  than  only  using  traditional  survey  methods.      

 

A  common  survey  task  in  which  each  method  can  be  easily  compared  is  the  

modeling  of  a  building.    Features  of  a  building  can  be  picked  up  using  either  a  total  station  

or  a  scanner  and  the  resulting  data  can  later  be  modelled.    Examining  the  processes  and  

resulting  data  of  each  survey  method  for  such  a  project,  involves  many  parameters.    Time  

and  accuracy  comparisons  of  the  two  methods  are  the  main  focus  of  this  report.    A  

comparison  of  the  final  products  derived  from  the  two  survey  methods  is  presented  in  this  

report  as  well.    Further  examination  of  cost,  convenience,  and  the  amount  of  collectable  

data  regarding  total  station  and  scanning  procedures  will  allow  for  a  thorough  and  

complete  overview.    The  final  analysis  of  total  station  and  high  definition  survey  (HDS)  

methods  can  also  be  applied  theoretically  to  more  survey  situations  than  the  one  provided.        

 

 

Page 4: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

iv    

 

 

 

 

 

 

 

Table  of  Contents                                                                                                                                                                                                page#

Acknowledgements  ………...…………………………………………………………………………   ii

Executive  Summary  ……………..……………………………………………………………………   iii

Table  of  Contents  ………………………..……………………………………………………………   iv

List  of  Tables  &  Figures  …………………….………………………………………………………   v

1.0  Introduction  &  Background  ………….…………...…………………………………………   1

2.0  Goals  &  Objectives  ……….………………………………………………………………………   2

3.0  Methodology  …….…………………………………………………………………………………   3

3.1  Expectations  of  Total  Station  Method  ..…………………………………………………   7

3.2  Expectations  of  Laser  Scanner  Method  …………………………………………………   8

4.0  Execution  …….………………………………………………………………………………...……   9

4.1  Total  Station  Field  Survey  Summary  …………………………………………….………   9

4.2  3D  CAD  Drawing  Summary  ………………………………………………………….………   10

4.3  Scanner  Field  Survey  Summary  ……………………………………………………………   11

4.4  HDS  Modeling  Summary  ……………….…………………………………………………..…   12

4.5  Elevation  check  Summary  ……………..………………………………………………..……   14

5.0  Results  &  Analysis.  …..…………………………………………………………………………..   15

5.1  Accuracy  Analysis  ……………………………………………………………………..…………   23

5.2  Point  Analysis……………………………………………………………………………………….   24

5.3  Surface  Accuracy  Analysis  …………………………………………………….……….…….   27

5.4  Time  Results  &  Analysis……………………………………………………….……….………   31

5.4.1  Total  Station  Survey  Time  Results………………………………………..…..…………   31

Page 5: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

v    

5.4.2  Laser  Scanner  Survey  Time  Results……………………………………………………   32

5.4.3  Comments  &  Analysis………………………………………………………………………..   33

5.5  Analysis  of  Other  Factors…………………………………………………………….……….   33

5.5.1  Cost………………………………………………………………………………………………….   32

5.5.2  Data  Volume…………………………………………………………………………………….   33

5.5.3  User-­‐friendliness………………………………………………………………………………   33

6.0  Conclusions...……………………………………………………………………………………….   35

References…………………………………………………………….…………………………………..   37

List  of  Figures            Figure  2.1    Survey  Building  Site  …..…………………………………………………………….       3  

Figure  2.2    Survey  Site  Map  with  Aerial  Photo.  …………………………………………..   4  

Figure  2.3    Survey  Design  Options.    ……………………………………………………………   5  

Figure  4.1    Overview  of  Traverse  Data.    ……………………………………………………..   10  

Figure  4.2    Multi-­‐planar  Surfaces  from  Total  Station  Data.    …………………………   11  

Figure  4.3    Cyclone  Patch  Statistics.    …………………………………………………………..   13  

Figure  4.4:    Cyclone  Region  Grow  Example.    ……………………………………………….   14  

Figure  5.01:    Total  Station  3D  Model  Screenshot.    ……………………………………….   15  

Figure  5.02:    HDS  3D  Model  Screenshot.    ……………………………………………………   15  

Figure  5.11    Typical  Building  Roof  Corner  in  Reality  and  in  Cyclone.  …………..   26  

Figure  5.12:  Point  Cloud  Noise  &  Building  Imperfections.  ……………………………   28  

Figure  5.13  Plane  Equation  and  Definition  Formulae.  ………………………………….   29  

Figure  5.16  Sketch  of  Plane  Locations.  ………………………………………………………..   30  

Figure  5.18  Point  to  Plane  Offset  Screenshot.  ………………………………………….…..   31  

 List  of  Tables        Table  5.03  Total  Station  Survey  Coordinates.    ……………………………………………..   17  

Table  5.04  Laser  Scanner  Survey  Coordinates.    …………………………………………..   18  

Table  5.05  Comparison  of  Laser  Scanner  and  Total  Station  Coordinates  ……..   19  

Table  5.06  Levelling  Elevations.  ………………………………………………………………...   20  

Table  5.07  Comparison  of  Total  Station  and  Levelling  Elevations.  ……………….   21  

Table  5.08  Comparison  of  HDS  and  Levelling  Elevations.  ……………………………   22  

Page 6: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

vi    

Table  5.09.    Total  Station  Control  Error  Ellipses.  …………………………………………   23  

Table  5.10  Resection  Results.  ……………………………………………………………………..   25  

Table  5.14  Total  Station  Data:  Plane  Definition  Parameters.  ………………………..   29  

Table  5.15  Cyclone  HDS  Plane  Definition  Parameters.  …………………………………   30  

Table  5.17  Comparison  of  Normal  Vectors  and  Point-­‐to-­‐Plane  Offsets.  …….….   30  

Table  5.19:  Cost  of  Hardware  and  Software  for  Each  Survey  Type.  ………….…..   33  

Tables  6.1    Summary  of  Results.  ………………………………………………………………...   35  

 

List  of  Appendices                                                                                                                                                                                                          page#  

A   Field  Notes.    …………………………………………………………………………………….  39  

B   Least  Squares  Analysis  Results.    ……………………………………………………….  46  

C   Cyclone  Registration  Results.    …………………………………………………………..  49  

D   Raw  Point  Cloud  File  ………………………………………………………………………   51  

E   Leica  C10  Traverse  File.    ……………..………………………………………………….   51  

F   Final  AutoCAD  Model.    …………………………………………………………………….   51  

G   Final  HDS  Model.    ……………………………………………………………………………   51  

H   Adjusted  Total  Station  Point  File.    …………………………………………………….  51  

I   Complete  Least  Squares  Analysis  Output  File.    ………………………………….   51  

 

Page 7: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

1    

1.0 Introduction & Background

 

As  survey  technology  rapidly  advances,  like  it  has  in  recent  years,  the  variety,  

complexity,  and  procedures  of  modern  survey  tasks  has  changed  as  well.    HDS  technology  

has  not  been  used  commonly  by  surveyors  due  to  its  high  pricing,  time  consuming  

processes,  and  higher  levels  of  noise.    3D  scanning  technology  also  requires  that  the  user  be  

familiar  with  the  scanner  and  3D  modelling  software.    These  setbacks  have  made  laser  

scanning  a  less  than  ideal  solution  to  use  in  common  survey  procedures.        There  are  two  

general  types  of  laser  scanners,  time-­‐of-­‐flight  and  phase  based.    Time-­‐of  flight  scanners  

typically  have  longer  range  capabilities,  but  slower  data  collection  speeds  compared  to  

phase  based  scanners  which  typically  offer  faster  and  short-­‐range  data  collection.    Current  

HDS  technology  is  now  less  expensive,  more  precise,  versatile,  and  easier  to  use  than  in  the  

past.    Some  scanners  even  contain  built  in  traverse  functions  to  allow  the  user  to  collect  

large  amounts  of  data  independently  from  other  survey  methods.    The  scanner  chosen  for  

this  project  is  a  time-­‐of-­‐flight  style  in  which  the  speed  has  been  increased,  but  its  range  has  

been  reduced.    Now  that  HDS  technology  has  advanced,  it  is  more  accessible  and  there  is  

more  possibility  for  it  to  become  a  familiar  tool  within  the  survey  industry.      

 

The  authors  of  this  project  will  demonstrate  the  capabilities  of  an  up  to  date  3D  scanner  

in  comparison  with  the  capabilities  of  a  typical  total  station.    The  main  aspects  of  each  

method  which  are  to  be  compared  include:  

• Time  taken  to  complete:  

○ Data  collection  in  the  field  

○ Data  processing  in  the  office  

● The  achievable  horizontal  and  vertical  accuracy  of:  

○ Building  corners    

○ Surfaces  definition  

○ Singular  control  points  

 

 

Page 8: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

2    

This  project  aims  to  determine  the  amount  of  time  and  level  of  accuracy  that  can  be  

expected  from  using  HDS  technology  and  conventional  survey  methods.    The  two  

disciplines  will  be  evaluated  in  a  construction  as-­‐built  survey  scenario.    The  advantages  and  

disadvantages  of  each  option  will  be  explored  in  an  in-­‐depth  and  hands-­‐on  analysis  of  HDS  

and  traditional  survey  methods.    

2.0 Goals & Objectives

   One  of  the  primary  goals  of  this  project  was  for  the  authors  to  gain  an  

understanding  of  3D  scanning  and  its  associated  software.    In  this  particular  case,  the  

software  being  utilized  is  Leica  Cyclone  version  8.0.2  and  the  3D  scanner  being  used  is  the  

Leica  ScanStation  C10.    Reaching  such  a  goal,  and  familiarizing  oneself  with  3D  scanning  

and  modeling  could  prove  to  be  a  favourable  career  asset.      

 

The  main  objectives  for  this  project  include  providing:  

● A  reliable  and  accurate  analysis  on  the  time  it  takes  to  conduct  3D  scanner  and  total  

station  survey  methods.    In  this  report,  it  will  be  clear  which  method  took  more  time  

collecting  field  data,  which  method  took  longer  modeling  the  collected  data,  and  

which  method  was  more  time  efficient  overall.  

● A  reliable  and  accurate  analysis  on  the  achievable  accuracy  of  3D  scanner  and  total  

station  survey  methods.    This  research  document  will  clearly  indicate  which  method  

was  more  effective.  

● Categorical  comparisons  which  extend  slightly  beyond  the  intended  scope  of  the  

project.    For  example,  comparisons  of  the  data  volume,  user-­‐friendliness  and  the  

price  of  the  hardware  and  software.  

● An  easily  interpretable  final  comparison  which  can  be  used  by  industry  

professionals.  

 

The  final  objective  for  this  research  project  is  to  meet  the  requirements  for  the  BCIT  

course    GEOM  8230  in  2014.      

Page 9: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

3    

3.0 Methodology

This  section  will  explain  the  general  methods  selected  in  the  planning  stages  of  the  

project.    The  contents  of  this  section  include  the  selection  and  planning  of  a  survey  area,  as  

well  as  expectations  of  each  survey  method.    Basic  details  and  procedures  will  also  be  

covered.  

 

The  level  of  detail  of  the  selected  site  is  an  important  factor  in  the  comparison  of  

laser  scanner  and  total  station  surveys.    A  building  site  with  basic  details  and  building  

features  would  heavily  favour  the  total  station  survey  in  terms  of  field  data  collection  

speed.    A  large,  complex  and  highly  detailed  subject  area  would  favour  the  laser  scanning  

method.    The  limitations  of  the  project  that  were  set  out  in  GEOM  7230  included  only  

having  a  maximum  of  three  days  of  fieldwork,  and  the  C10  scanner  rental  lasted  for  only  

two  days.    Due  to  these  reasons,  a  large  and  complex  building  was  not  chosen.    A  relatively  

simply  shaped  building  with  mainly  linear  features  and  with  some  fine  details  such  as  

windows,  pillars,  and  overhangs  was  selected  to  balance  the  inherent  strengths  and  

weaknesses  of  the  two  survey  methods  and  set  up  an  unbiased,  “even  playing  field”.      

 

The  selected  area  was  BCIT’s  NE28  building  and  its  immediate  surroundings.    The  

building,  which  is  shown  in  Figure  2.1,  is  concrete  and  cinder  block  construction  and  most  

of  these  surfaces  are  painted  white:  “surfaces  of  lighter  colour  with  higher  reflectance  

provide  the  most  favourable  results  in  terms  of  high  point  density  and  minimal  noise”  

(Clark  &  Robson,  2004).    

 

 Figure  2.1:    Survey  Building  Site  

Page 10: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

4    

The  site  was  conveniently  close  to  several  Government  Control  Monuments  (GCP),  

one  of  which  is  part  of  a  High  Precision  Network  (HPN).    The  HPN  monument  tablet  

marking  is  82H5025  and  has  standard  deviations  of  +/-­‐  2  mm  in  Northing  and  1  mm  in  

Easting  (GeoBC,  1994).    This  monument  was  used  as  a  starting  traverse  point  for  field  

work,  and  its  coordinates  were  held  fixed  for  the  coordinate  system.

 

 Figure  2.2:    Survey  Site  Map  with  Aerial  Photo  

 

The  design  of  the  total  station  method  survey  was  to  traverse  from  the  HPN  

monument,  back  sighting  another  GCM  (tablet  marking  82H4975)  to  the  South,  to  and  

around  NE28  with  four  instrument  setups  near  each  of  the  building  corners.    The  geometry  

of  this  survey  involves  using  oblique  angles  for  the  reflectorless  EDM  shots.    The  two  main  

options  for  setup  locations  are  displayed  in  Figure  2.3.    Oblique  angles  to  the  building  could  

have  been  reduced  by  using  the  dashed-­‐line  traverse  arrangement,  however  it  would  

increase  the  distance  of  EDM  measurements  to  building  corners,  thus  increasing  noise.    

Furthermore,  oblique  angles  do  not  affect  laser  scanner  results.    According  to  Clark  and  

Page 11: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

5    

Robson  “the  number  of  points  captured  (area  under  the  curve)  decreases  with  an  increase  

in  incident  angle.  The  charts  show  that  the  normal  distribution  improves  as  the  incidence  

angle  is  increased”  (2004,  p.6).    To  compensate  for  oblique  angles  with  the  total  station,  an  

angle-­‐offset  can  be  applied  after  the  distance  is  measured  to  an  object  placed  perpendicular  

to  the  building  feature  being  measured.    Since  the  same  instrument  stations  are  being  used,  

the  incidence  angle  will  be  the  same  for  both  survey  methods.  

   

Figure  2.3:    Survey  Design  Options  

 

In  order  to  compare  the  time  and  accuracy  of  the  two  survey  methods  in  question,  

the  field  procedures,  the  subject  of  the  survey,  and  the  recording  of  time  must  be  carefully  

planned.    The  building  scan  was    to  be  completed  several  times  before  the  field  time  was  

actually  recorded.    This  ensured  that  proficiency  with  the  scanner  was  adequate,  allowing  

for  an  accurate  time  comparison.    Practice  models  of  the  Cyclone  data  were  to  be  created  in  

order  to  obtain  familiarity  with  Cyclone  and  modelling.    Becoming  familiar  with  the  

software  was  essential  in  providing  an  accurate  time  comparison  of  the  office  work  as  the  

authors  were  much  better  acquainted  with  AutoCAD  Civil  3D.  

 

Generally,  to  obtain  high-­‐accuracy  measurement  results,  more  time  should  be  taken  

and  more  caution  exercised.    This  makes  the  comparison  of  time  AND  accuracy  challenging.    

The  surveys  were  planned  so  that  a  reasonable  amount  of  time  was  spent  in  the  field  with  

Page 12: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

6    

reasonably  precise  and  common  instrumentation  to  produce  reasonably  high  quality  

results.    The  procedures  were  selected  and  omitted  based  on  formal  education  and  

previous  work  experience.    Some  examples  of  procedures  used  and  not  used  are  listed  

below:  

 

Used:  

● A  2”  Total  Station  

● Dual-­‐faced  measurements  on  control  points  

● Least  squares  adjustment  

● Coordinate  system  based  off  of  HPN  monument  (82H5025)  

● Closed  Loop  traverse  

● Scanner  resection  

 

Not  used:  

● Forced  centered  tribrachs  

● High-­‐precision  optical  plummets  

● Scanner  traverse  (attempted)  

● Arbitrary  coordinate  system  

● Cloud  to  cloud  registration  

● True  RGB  colours  

 

  The  analysis  of  reflectorless  EDM  shots  will  be  difficult  because  no  true  and  absolute  

location  of  the  building’s  features  can  be  obtained;  All  measurements  are  subject  to  

uncertainties.    Surveying  with  the  total  station  involved  angle-­‐offset  shots  and  the  scanner  

survey  involved  no  precise  pointing  at  all  to  the  building.    The  confidence  regions  for  the  

surrounding  control  points  are  obtainable  through  least  squares  analysis,  and  this  

confidence  will  be  interpolated  to  the  building’s  position  based  on  the  published  precision  

of  the  instruments.  

   

 

 

Page 13: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

7    

Other  independent  checks  were  performed  to  obtain  additional  redundant  and  

reference  results.    The  vertical  accuracy  of  the  total  station  and  the  laser  scanner  can  be  

easily  checked  by  running  a  level  loop  from  the  HPN  monument  to  the  control  points  and  to  

some  building  features.    The  C10’s  traverse  function  will  also  be  explored  as  a  completely  

independent  survey.  

   

The  office  portion  of  the  project  will  require  lots  of  practice  and  familiarization  with  

the  software’s  3D  drafting  and  modeling  procedures  before  accurate  and  time-­‐efficient  

deliverables  can  be  produced.      

3.1 Expectations of Total Station Method

 

Leica  802  Specifications:  

● Angular  s.dev:  +/-­‐  2”        

● EDM  (IR)  s.dev:  2mm  +/-­‐  2ppm    

● EDM  (RL)  s.dev:  3mm  +/-­‐  2ppm  

● Beam  Divergence  1.5  x  0.5  milli-­‐radians  (Leica  Geosystems)  

 

Expected  Advantages:  

Total  stations  are  incredibly  versatile  instruments  with  near  limitless  measuring  

capabilities.    Advances  in  total  station  technology  such  as  robotics  and  GPS  integration  have  

increased  the  efficiency  and  accuracy  of  field  surveys.    Surveying  with  a  total  station  allows  

the  surveyor  to  choose  individual  points  to  measure  and  each  shot  is  made  with  relatively  

high  precision  in  angular  and  distance  measurements  as  seen  above.      

 

The  3D  drafting  is  relatively  simple:  connecting  the  appropriate  points  with  

polylines  and  creating  surfaces  between  the  lines.    Less  time  is  spent  managing  large  

volumes  of  data  and  navigating  through  a  complicated  point  cloud.  

 

 

 

Page 14: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

8    

Expected  Disadvantages:  

When  using  a  total  station  to  measure  complex  features,  taking  many  individual  

shots  can  be  time  consuming  and  tedious.    This  method  would  also  be  more  prone  to  

human  error  and  blunders.    Recording  data  in  field  notes  allows  for  translation  errors  

when  recording  point  numbers.    When  picking  up  features  with  a  total  station,  it  is  up  to  

the  surveyor  on  the  job  to  remember  which  areas  of  the  building  have  been  picked  up.    This  

allows  for  possible  error  in  memory.    There  is  also  a  lack  of  redundancy  when  defining  

surfaces,  small  sample  sizes  means  less  confidence  in  the  results.    Conspicuous  features  or  

abnormalities  can  be  overlooked  and  omitted  from  the  data  and  very  accurate  and  clean  

field  notes  must  be  made  to  keep  track  of  point  numbers  (see  Appendix  A).  

 

3.2 Expectations of Laser Scanner Method

 Leica  C10  Specifications:  

All  ±  accuracy  specifications  are  one  sigma  (1σ,  68%)  unless  otherwise  noted.  

● Accuracy  of  single  measurement:  Position:  6  mm,  Distance:  4  mm  (at  1  m  -­‐  50  m  

range)  

● Modeled  surface:  +/-­‐2  mm  (Subject  to  modeling  methodology  for  modeled  surface)  

● Target  acquisition:  2  mm  standard  deviation  

● Angle  (horizontal/vertical):  12"  /  12"    

● Beam  Divergence:  240  micro-­‐radians  (Leica  Geosystems)  

 

Expected  Advantages:  

When  using  the  Laser  scanner,  simplified  field  work  procedures  are  expected.    The  

field  notes  would  be  much  less  detailed  since  images  of  the  building  would  be  automatically  

taken  with  the  scanner  hardware.    All  features  of  the  building  would  also  be  visible  in  the  

Cyclone  uploaded  point  cloud.  Features  are  unlikely  to  be  left  out  of  the  dataset  making  

additional  site  visits  unnecessary.    The  modeled  surfaces  include  thousands  of  points  each  

that  fit  user-­‐defined  tolerances.    This  volume  of  data  would,  theoretically,  be  able  to  

provide  very  detailed  building  site  analysis.  

Page 15: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

9    

Expected  Limitations:  

Modern  scanners  and  associated  modeling  software  are  expensive.    Also  scanners  

are  not  ideal  for  setting  control.    Modeling  software  requires  fast-­‐processing  hardware,  and  

certain  functions  take  more  processing  time  and  may  cause  the  program  to  crash.    The  

edges  of  objects  are  not  directly  measured;  two  surfaces  are  defined  and  then  extended  to  

create  a  corner.    The  spacing  of  points  increases  with  the  distance  from  the  scanner  making  

it  possible  for  thin,  vertical  objects  to  have  little  to  no  points.    “Features  such  as  building  

corners  or  edges  falling  between  two  successive  angular  increments  of  the  laser  beam  …  

may  not  be  completely  measured  by  the  laser  beam  due  to  its  spot  size”  (Chow,  2007).      

4.0 Execution

 

  This  section  will  describe  the  details  of  carrying  out  the  planned  surveys.    The  

contents  of  this  section  include  summaries  of  field  and  office  procedures  for  both  

traditional  and  high  definition  survey  methods.  

4.1 Total Station Field Survey Summary

 

The  total  station  survey  began  at  a  nearby  Government  Control  Monument  baseline  

using  monuments  82H5025  and  82H4975.    A  closed  traverse  was  then  conducted  around  

building  NE28.    At  each  of  four  instrument  stations  around  the  building,  shots  were  taken  

to  3-­‐4  common  points  that  were  to  be  used  for  control  points  for  the  laser  scanner  

resection  and  for  redundancy  in  the  least  squares  network  adjustment.    Reflectorless  shots  

were  taken  at  the  building  envelope  corners  and  at  other  significant  corners  and  building  

faces  so  that  a  detailed  model  could  be  created.    The  resulting  building  data  collected  with  

the  total  station  is  shown  in  Figure  4.1.    This  figure  does  not  show  traverse  and  side  shot  

points.    Field  notes  included  sketches  to  keep  track  of  approximately  350  point  numbers  

(See  Appendix  A).      

Page 16: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

10    

 Figure  4.1:    Overview  of  Traverse  Data  

 

The  time  keeping  was  done  in  a  way  that  simulates  a  smooth  flow  of  work  from  

experienced  surveyors.    Field  time  does  not  include:  

● Physically  setting  control  points  (nails  &  cross-­‐cuts)  used  for  both,  cancels  out  

● Reconnaissance  (Taking  photos  &  planning)  

● In-­‐field  strategy  discussion  

● Levelling  elevation  check.  

 

Keeping  track  of  point  numbers  in  the  field  notes  required  extremely  detailed  

sketches  since  there  were  hundreds  of  points  in  a  relatively  small  area.    The  point  

numbering  of  common  points  also  created  confusion  during  the  least  squares  analysis.      

There  was  one  area  where  building  shots  to  a  large  wall  surface  were  missed.  

 

4.2 3D CAD Drawing Summary

The  points  measured  by  total  station  are  held  fixed,  however  they  show  the  

imperfections  of  the  building’s  faces  more  realistically  as  multi-­‐planar  surfaces.    (See  Figure  

4.2)    Since  the  model  of  the  total  station  data  is  produced  using  354  points  as  opposed  to  

approximately  6.4  million,  the  resulting  drawing  is  defined  much  differently  than  the  

Page 17: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

11    

cyclone  drawing.    Surfaces  were  created  using  specific  points  picked  out  and  shot  in  the  

field.    Defining  a  surface  from  the  total  station  data  promised  high  accuracy  of  the  building  

corner  points  as  these  exact  points  were  picked  out  and  shot  in  the  field.      

 

 Figure  4.2  Multi-­planar  Surfaces  from  Total  Station  Data  

Figure  4.2    Multi-­‐planar  Surfaces  from  Total  Station  Data  The  drafting  of  a  3D  model  

from  the  total  station  data  was  done  in  Civil3D  2012.    From  the  adjusted  points  and  using  

field  note  sketches  and  photos  for  reference,  3D  polylines  were  created.    Then,  “loft”  planar  

surfaces  were  created  from  the  polylines  and  the  surfaces  were  extended  to  meet  each  

other.    Each  surface  is  defined  by  3  to  4  points  and  some  surfaces  are  connected  to  other  

surfaces  where  they  would  be  all  one  surface  in  the  Cyclone  point  cloud’s  model.    In  Figure  

4.2,  the  5  vertical  pillars  and  the  uppermost  horizontal  header  are  all  one  surface,  but  it  is  

defined  by  multiple  planes.    Similarly  to  the  fieldwork,  the  time  keeping  simulated  a  smooth  

flow  of  work.    Office  time  does  not  include:  

● Title-­‐block  and  plotting  preparation  

● Least  squares  analysis:  used  for  both  methods,  cancels  out  

4.3 Scanner Field Survey Summary

Once  the  control  file  was  adjusted  and  imported  into  the  C10’s  memory,  the  scanner  

was  set  up  at  the  same  4  instrument  stations.    Using  its  resection  program,  4-­‐5  targets  were  

measured  and  the  positions  of  the  scanner  were  calculated.    Only  sub-­‐centimetre  standard  

deviations  and  residuals  were  accepted.    Several  points  had  to  be  added  and  removed  from  

Page 18: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

12    

the  resection  calculations  to  achieve  the  desired  statistics.    At  Station  #1,  residual  errors  

and  standard  deviation  of  the  calculated  set-­‐up  point  were  greater  than  1cm  in  the  vertical.    

Resection  station  coordinates  varied  up  to  6  cm  in  elevation  when  these  stations  were  

removed  from  the  calculation.    This  may  indicate  a  weighting  issue  in  the  software.  

 

A  medium  definition  scan  with  a  custom  window    (rather  than  a  full  360x270)  was  

selected  to  save  time  and  disk  space.    Similarly  to  the  total  station  survey,  the  timekeeping  

simulated  a  smooth  flow  of  work.    The  field  time  does  not  include:  

● Analysis  of  resection  results  

● Scanner  boot-­‐up  (approx.  3  minutes  each)  

● In-­‐field  strategy  discussion.  

4.4 HDS Modeling Summary

 

Several  practice  models  were  created  in  an  effort  to  become  familiar  with  Cyclone  

modelling  before  recording  time.    Both  authors  spent  many  hours  working  with  the  dataset  

(For  raw  data  see  Digital  Appendix  D).    The  main  challenge  in  point  cloud  modelling  was  

data  management.    Isolating  points  on  an  individual  surface  was  important  so  that  points  

from  other  surfaces  would  not  be  included  in  surface  definition.    Hiding  large  volumes  of  

points  often  had  processing  delays  as  did  the  region  grow  calculation  process.    Once  the  

authors  were  comfortable  with  the  software,  a  final  model  was  created  and  the  time  taken  

to  create  it  was  recorded.    The  final  modeling  process  that  was  used  is  as  follows:  

 

The  3D  point  cloud  modeling  began  with  importing  the  scanner  data  into  Cyclone  

version  8.0.2.    The  data  was  automatically  registered  into  a  complete  scan  world,  but  some  

control  point  elevations  were  off  by  as  much  as  3  cm  in  elevation.    The  adjusted  control  file  

was  imported  and  re-­‐registered  with  sub-­‐cm  errors.    For  complete  registration  results,  see  

Appendix  C.    Once  this  was  done,  adjustments  within  cyclone  were  made  in  order  to  make  

the  modeling  process  easier.    Limit  boxes  were  set  so  that  point  cloud  points  outside  the  

area  of  interest  did  not  interfere  with  the  modelling.    Reference  planes  were  set  on  

important  plane  surfaces  so  that  modelled  building  parts  could  easily  be  extended  to  them.    

Page 19: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

13    

These  planes  included  the  roof  and  the  ground  surface.    Once  the  cyclone  model  had  been  

set  up  in  a  way  that  provided  for  the  most  time  efficient  modelling,  the  modelling  of  the  

actual  building  was  conducted.      

 

The  main  features  of  the  building  were  modelled  first,  this  included  building  

columns,  walls,  and  roof.    After  this,  the  more  detailed  parts  of  the  building,  such  as  the  

windows  and  the  doors,  were  modelled.    All  major  features  were  modelled  using  the  region  

grow  command,  as  this  best  fit  a  patch  to  the  building  surface  based  on  thousands  of  points  

and  user-­‐defined  tolerances  (patch  tolerances  were  set  to  0.005m).    The  resulting  patches  

from  the  region  grow  were  not  uniformly  shaped.    Using  alignment,  extension,  rectangular  

patch  shaping,  and  extrusion  commands,  the  initial  patches  were  cleaned  up  and  fit  to  each  

other.  

 

All  of  the  points  on  a  surface  are  used  in  attempt  to  define  one  true  plane.    Several  

points  are  initially  selected  manually  by  the  operator.    From  the  hand-­‐picked  points,  a  

plane  is  defined  and  using  user-­‐defined  tolerances,  the  ‘region  grow  -­‐  patch’  command  

extends  the  plane  and  incorporates  all  points  that  fit  the  tolerances.    Cyclone  will  display  

statistics  for  the  sample  of  points  for  each  surface  as  seen  in  Figure  4.3  and  Figure  4.4.      

 

 Figure  4.3:    Cyclone  Patch  Statistics  

 

Page 20: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

14    

 Figure  4.4:    Cyclone  Region  Grow  Example  

 

The  traverse  function  of  the  C10  was  a  very  attractive  feature  because  it  required  

minimal  control  (1-­‐2  points  as  a  baseline)  to  be  placed  via  total  station.    The  scanner  could  

be  used  completely  independent  of  a  total  station.    This  feature  was  to  be  used  in  a  scanner  

traverse  in  order  to  further  compare  scanner  capabilities  with  a  total  station.    The  

monument  baseline  used  was  approximately  50  meters  in  length  and  consisted  of  a  HPN  

monument  and  a  control  nail  placed  during  the  total  station  traverse.  While  occupying  this  

baseline,  backsighting  errors  were  in  the  order  of  1-­‐2mm  horizontal  and  5mm  vertical.  

Once  the  next  leg  of  the  traverse  (approx.  50m)  was  set  and  occupied,  the  horizontal  

backsight  errors  were  acceptable  and  the  vertical  error  was  23mm.      Upon  starting  over,  

checking  and  double  checking  the  height  of  instrument  (HI)  and  height  of  target  (HT)  

measurements,  the  vertical  error  only  improved  to  15mm  at  the  same  point.  This  

magnitude  of  error  over  such  a  short  distance  was  unacceptable  and  the  traverse  was  

abandoned.    For  raw  traverse  data  see  Digital  Appendix  E.  

4.5 Elevation check Summary

 

The  initial  evaluation  of  the  field  data,  by  comparison  of  the  least  squares  analysis  of  

total  station  data  and  the  scanner  resection  results,  revealed  elevation  values  that  varied  

up  to  32  mm.    In  order  to  resolve  these  height  discrepancies,  a  level  loop  was  conducted  

Page 21: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

15    

starting  from  the  high  precision  monument  to  all  the  control  points  in  the  network.    This  

was  done  using  a  Leica  DNA03  (precision:  0.3mm/km  double-­‐run).    When  the  elevation  of  

the  building  corners  became  a  concern  as  well,  another  level  loop  was  performed  using  a  

Leica  Sprinter  100  (precision:  2mm/km  double-­‐run).    A  digital  rod  was  used  for  all  ground  

checks  and  a  pocket  tape,  pulled  down  from  each  roof  corner,  was  used  to  check  roof  

elevations  (see  Appendix  A).  

5.0 Results and Analysis

 

Two  3D  models  were  created,  both  in  .dwg  format.    The  following  Figure  5.01  and  

Figure  5.02  are  screenshots  from  the  CAD  files.    The  two  building  models  are  similar  in  

appearance,  but  their  definitions  and  origins  are  very  different.    The  complete  drawing  files  

are  found  in  the  Digital  Appendices  F  and  G.  

 Figure  5.01:    Total  Station  3D  Model  Screenshot  

 Figure  5.02:    HDS  3D  Model  Screenshot  

Page 22: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

16    

   

The  coordinates  tabulated  in  Table  5.03  are  the  total  station  survey  results  after  a  

least  squares  adjustment  in  which  the  standard  deviation  of  unit  weight  was  1.06637.    The  

complete  least  squares  analysis  results  are  found  in  Appendix  B.    The  coordinates  found  in  

Table  5.04  represent  the  points  extracted  from  the  3D  model  made  in  Cyclone  from  four  

registered  point  clouds.    The  registration  results  are  found  in  Appendix  C.    The  subtraction  

of  total  station-­‐based  point  coordinates  from  corresponding  HDS-­‐derived  point  coordinates  

are  listed  in  Table  5.05.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 23: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

17    

Total  Station  Coordinate  Results  

Instrument  Setup  Points              

Pt.  ID   Northing  (m)   Easting  (m)   Elevation  (m)   Description  1   5455508.078   500028.203   25.853   SE  setup  3   5455507.527   499986.774   25.879   SW  setup  5   5455533.463   499986.963   25.877   NW  setup  7   5455534.133   500027.215   25.854   NE  setup                

Critical  Exterior  Building  Points          Pt.  ID   Northing  (m)   Easting  (m)   Elevation  (m)   Description  1000   5455512.033   500023.486   25.870   SE  ground  1082   5455512.062   499989.671   25.886   SW  ground  1162   5455531.456   499989.697   25.853   NW  ground  1300   5455531.435   500023.515   25.836   NE  ground  1001   5455512.028   500023.487   29.257   SE  roof  1083   5455512.042   499989.676   29.340   SW  roof  1163   5455531.463   499989.698   29.354   NW  roof  1301   5455531.449   500023.515   29.322   NE  roof                Surrounding  Control  Points          Pt.  ID   Northing  (m)   Easting  (m)   Elevation  (m)   Description  103   5455507.863   500007.163   25.896   CNTRL  105   5455521.246   500027.803   25.939   CNTRL  107   5455523.987   500026.342   25.913   CNTRL  109   5455516.617   500026.349   25.917   CNTRL  113   5455509.853   500017.084   25.856   CNTRL  112   5455510.314   499997.972   25.862   CNTRL  117   5455512.127   500007.591   27.402   CNTRL  119   5455520.267   500023.428   26.496   CNTRL  115   5455532.161   499977.666   25.904   CNTRL  170   5455526.584   499988.118   25.874   CNTRL  125   5455515.774   499988.087   25.883   CNTRL  131   5455519.263   499989.753   26.677   CNTRL  123   5455538.733   500008.937   24.491   CNTRL  128   5455533.971   499998.893   25.326   CNTRL  130   5455531.750   500017.587   25.826   CNTRL  167   5455531.453   500006.740   26.945   CNTRL  

Table  5.03  Total  Station  Survey  Coordinates  

 

 

 

Page 24: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

18    

 

HDS  Coordinate  Results:  

Instrument  Setup  Stations:    (from  Cyclone  Registration)      Pt.  ID   Northing  (m)   Easting  (m)   Elevation  (m)   Description  1001   5455508.078   500028.202   25.850   SE  setup  1003   5455507.527   499986.776   25.879   SW  setup  1005   5455533.464   499986.963   25.874   NW  setup  1007   5455534.134   500027.215   25.854   NE  setup                      Critical  Exterior  Building  Points:    (from  Appendix  G)  Pt.  ID   Northing  (m)   Easting  (m)   Elevation  (m)   Description  -­‐   5455512.041   500023.490   25.818   SE  ground  -­‐   5455512.062   499989.669   25.870   SW  ground  -­‐   5455531.463   499989.695   25.862   NW  ground  -­‐   5455531.438   500023.518   25.798   NE  ground  -­‐   5455512.009   500023.510   29.341   SE  roof  -­‐   5455512.043   499989.653   29.357   SW  roof  -­‐   5455531.470   499989.684   29.353   NW  roof  -­‐   5455531.455   500023.547   29.337   NE  roof  

             Surrounding  Control  Points:    (from  Cyclone  Registration)      Pt.  ID   Northing  (m)   Easting  (m)   Elevation  (m)   Description  103   5455507.862   500007.163   25.889   CNTRL  105   5455521.246   500027.803   25.933   CNTRL  107   5455523.988   500026.341   25.909   CNTRL  109   5455516.617   500026.347   25.912   CNTRL  113   5455509.856   500017.083   25.853   CNTRL  112   5455510.316   499997.971   25.860   CNTRL  117   5455512.127   500007.591   27.400   CNTRL  119   5455520.267   500023.428   26.493   CNTRL  115   5455532.160   499977.667   25.901   CNTRL  170   5455526.584   499988.118   25.869   CNTRL  125   5455515.776   499988.089   25.879   CNTRL  131   5455519.263   499989.753   26.674   CNTRL  123   5455538.731   500008.936   24.482   CNTRL  128   5455533.970   499998.896   25.321   CNTRL  130   5455531.748   500017.587   25.823   CNTRL  

Table  5.04  Laser  Scanner  Survey  Coordinates  

 

 

Page 25: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

19    

Coordinate  Comparison  Results:  (HDS  –  T.S.)  

Instrument  Setup  Stations:    (from  Cyclone  Registration)  Pt.  ID   Δ  North.  (m)   Δ  East.  (m)   Δ  Elev  (m)  

1001  (SE  setup)   0.000   0.002   0.030  1003  (SW  setup)   0.000   0.002   0.000  1005  (NW  setup)   0.000   0.001   0.016  1007  (NE  setup)   -­‐0.001   -­‐0.001   -­‐0.002  

       Critical  Exterior  Building  Points      

Pt.  ID   Δ  North.  (m)   Δ  East.  (m)   Δ  Elev  (m)  SE  ground   0.008   0.004   -­‐0.052  SW  ground   -­‐0.001   -­‐0.002   -­‐0.016  NW  ground   0.007   -­‐0.002   0.009  NE  ground   0.003   0.003   -­‐0.038  SE  roof   -­‐0.019   0.022   0.084  SW  roof   0.001   -­‐0.023   0.017  NW  roof   0.006   -­‐0.014   0.000  NE  roof   0.005   0.032   0.015  

       Surrounding  Control  Points:      Pt.  ID   Δ  North.  (m)   Δ  East.  (m)   Δ  Elev  (m)  103   -­‐0.001   0.000   -­‐0.007  105   0.000   -­‐0.001   -­‐0.006  107   0.001   -­‐0.001   -­‐0.004  109   0.000   -­‐0.002   -­‐0.005  113   0.003   -­‐0.001   -­‐0.004  112   0.002   -­‐0.001   -­‐0.002  117   0.000   0.000   -­‐0.002  119   0.000   0.000   -­‐0.003  115   -­‐0.001   0.001   -­‐0.003  170   0.000   0.000   -­‐0.005  125   0.002   0.003   -­‐0.004  131   0.000   0.000   -­‐0.003  123   -­‐0.001   -­‐0.001   -­‐0.009  128   -­‐0.001   0.003   -­‐0.005  130   -­‐0.002   -­‐0.001   -­‐0.003  

Table  5.05  Comparison  of  Laser  Scanner  and  Total  Station  Coordinates  

 

 

 

Page 26: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

20    

Levelling  Results:  

Instrument  Setup  Stations  Pt.  ID   Elev.  (m)   Description  1   25.852   CNTRL  3   25.879   CNTRL  5   25.872   CNTRL  7   25.855   CNTRL  

           Surrounding  Control  Points  

Pt.  ID   Elev.  (m)   Description  103   25.893   CNTRL  105   25.936   CNTRL  107   25.911   CNTRL  109   25.915   CNTRL  113   25.853   CNTRL  112   25.86   CNTRL  115   25.905   CNTRL  170   25.872   CNTRL  125   25.882   CNTRL  123   24.488   CNTRL  128   25.321   CNTRL  130   25.822   CNTRL  

           Critical  Exterior  Building  Points    

Pt.  ID   Elev.  (m)   Description  SE  GROUND   25.794   BLDG  PT  SW  GROUND   25.83   BLDG  PT  NW  GROUND   25.834   BLDG  PT  NE  GROUND   25.794   BLDG  PT  SE  ROOF   29.352   BLDG  PT  SW  ROOF   29.369   BLDG  PT  NW  ROOF   29.363   BLDG  PT  NE  ROOF   29.345   BLDG  PT  Table  5.06      Levelling  Elevations  

 

 

 

 

 

Page 27: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

21    

    Elevation  Comparison:  (Total  Station  results)  –  (Levelling  results)  

Instrument  Setup  Stations  Pt.  ID   ΔElev.(m)   Description  1   0.001   CNTRL  3   0.000   CNTRL  5   0.005   CNTRL  7   -­‐0.001   CNTRL  

   Surrounding  Control  Points  

Pt.  ID   ΔElev.(m)   Description  103   0.003   CNTRL  105   0.003   CNTRL  107   0.002   CNTRL  109   0.002   CNTRL  113   0.003   CNTRL  112   0.002   CNTRL  115   -­‐0.001   CNTRL  170   0.002   CNTRL  125   0.002   CNTRL  123   0.003   CNTRL  128   0.005   CNTRL  130   0.004   CNTRL  

     Critical  Exterior  Building  Points    

Pt.  ID   Elev.  (m)   Description  SE  GROUND   0.076   BLDG  PT  SW  GROUND   0.056   BLDG  PT  NW  GROUND   0.019   BLDG  PT  NE  GROUND   0.042   BLDG  PT  SE  ROOF   -­‐0.095   BLDG  PT  SW  ROOF   -­‐0.029   BLDG  PT  NW  ROOF   -­‐0.009   BLDG  PT  NE  ROOF   -­‐0.023   BLDG  PT  

Table  5.07  Comparison  of  Total  Station  and  Levelling  Elevations.  

 

 

 

 

 

Page 28: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

22    

  Elevation  Comparison:  (HDS  model  elevations)  -­‐  (Levelling  elevations)  

Instrument  Setup  Stations    Pt.  ID   ΔElev.  (m)   Description  1   -­‐0.002   CNTRL  3   0.000   CNTRL  5   0.002   CNTRL  7   -­‐0.001   CNTRL  

           Surrounding  Control  Points    

Pt.  ID   ΔElev.  (m)   Description  103   -­‐0.004   CNTRL  105   -­‐0.003   CNTRL  107   -­‐0.002   CNTRL  109   -­‐0.003   CNTRL  113   -­‐0.001   CNTRL  112   0.000   CNTRL  115   -­‐0.004   CNTRL  170   -­‐0.003   CNTRL  125   -­‐0.002   CNTRL  123   -­‐0.006   CNTRL  128   0.000   CNTRL  130   0.001   CNTRL  

           Critical  Exterior  Building  Points    

Pt.  ID   Elev.  (m)   Description  SE  GROUND   0.024   BLDG  PT  SW  GROUND   0.040   BLDG  PT  NW  GROUND   0.028   BLDG  PT  NE  GROUND   0.004   BLDG  PT  SE  ROOF   -­‐0.011   BLDG  PT  SW  ROOF   -­‐0.012   BLDG  PT  NW  ROOF   -­‐0.010   BLDG  PT  NE  ROOF   -­‐0.008   BLDG  PT  

Table  5.08  Comparison  of  HDS  and  Levelling  Elevations.  

       

Page 29: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

23    

5.1 Accuracy Analysis

 

The  analysis  of  results  proved  difficult  since  the  building  itself  was  measured  almost  

completely  by  reflectorless  EDM.    Table  5.06  displays  the  results  obtained  from  conducting  

an  independent  level  loop.    These  elevation  results  will  be  considered  “true”  since  the  

levelling  methods  and  instruments  used  yield  far  more  accurate  elevations  than  either  total  

station  (2”  vertical  angle  error  +  human  error  in  measuring  instrument/target  heights)  or  

laser  scanner  methods  (12”  vertical  angle  error  +  human  error  in  modeling  procedures).    

The  level  loop  which  was  conducted  had  a  misclosure  error  of  0.5  mm  indicating  an  

accurate  level  run.    The  least  squares  adjustment  results  of  the  total  station  measurements  

will  be  considered  “true”  for  the  horizontal  coordinate  comparison  of  the  surrounding  

control  points  because  these  are  coordinated  with  a  high  level  of  confidence.    The  95%  

error  ellipse  data  for  control  points  is  displayed  in  Table  5.09  below:  

Pt  ID   Semi-­‐Major  Axis  (m)  

Semi-­‐Minor  Axis  (m)   NE-­‐axis  Azimuth  1   0.006   0.005   154°  53'  10"  3   0.008   0.006   175°  37'  23"  7   0.007   0.006   5°  06'  36"  5   0.009   0.007   20°  55'  15"  101   0.005   0.003   137°  09'  33"  103   0.008   0.007   93°  40'  59"  105   0.007   0.006   177°  25'  00"  107   0.009   0.006   178°  29'  49"  109   0.009   0.006   171°  17'  31"  113   0.008   0.007   100°  22'  36"  112   0.008   0.007   82°  07'  07"  117   0.008   0.007   94°  34'  28"  119   0.008   0.006   172°  00'  10"  115   0.010   0.008   19°  19'  07"  170   0.010   0.007   5°  26'  05"  125   0.010   0.007   4°  42'  02"  131   0.010   0.007   5°  58'  25"  123   0.009   0.008   84°  32'  22"  128   0.009   0.008   58°  08'  16"  130   0.009   0.007   65°  33'  41"  

Table  5.09.    Total  Station  Control  Error  Ellipses.  

   

Page 30: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

24    

For  the  building  corner  horizontal  coordinates,  it  is  difficult  to  define  which  method  

should  be  considered  true.    The  precise  pointing  of  the  total  station  inspires  some  

confidence  in  its  building  corner  coordinates,  however,  the  frequent  use  of  angle-­‐offsets  for  

distances  does  not.      

5.2 Point Analysis

The  coordinate  results  in  the  above  tables  reveal  several  initial  patterns.    The  first  

was  noticed  in  the  field  when  residuals  and  standard  deviation  resection  results  with  the  

C10  scanner  were  greater  than  expected  in  the  vertical  plane.    The  levelling  results  

confirmed  the  resection’s  vertical  errors.    After  the  4  scanner  point  clouds  were  adjusted  in  

the  registration  process,  the  total  station  and  scanner  control  point  and  instrument  station  

coordinates  were  in  agreement.    The  other  pattern  was  that  both  total  station  and  HDS  

building  corner  point  coordinates  did  not  agree  with  each  other  horizontally,  but  varied  

more  significantly  in  elevation.    The  levelling  results  showed  that  for  both  total  station  and  

HDS  methods,  building  corners  at  ground  level  were  observed  to  be  too  high,  and  building  

corners  at  roof  level  were  observed  to  be  too  low.    The  analysis  of  these  patterns  is  detailed  

in  the  following  paragraphs:  

When  conducting  resections  with  the  C10  scanner  in  the  field,  the  resulting  

standard  deviations  and  residuals,  shown  in  Table  5.10  indicated  that  the  coordinate  

results  for  setup  points  1,  3,  5,  and  7  were  accurate  as  all  standard  deviations  were  sub  

centimetre.    Upon  examination  of  the  coordinate  differences  between  the  computed  

resection  results  and  the  total  station  control  results  from  Table  5.03,  a  discrepancy  was  

discovered  in  the  elevation  values.    There  is  a  notable  elevation  variance  (>15  mm)  which  

occurs  at  three  instrument  setup  locations  (points  1,  3,  and  5).  The  instrument  set  up  at  

point  1,  indicates  an  elevation  discrepancy  of  -­‐32  mm.    These  elevation  variations  are  

concerning  especially  considering  that  the  horizontal  coordinate  differences  vary  only  up  

to  a  maximum  of  4  mm  in  the  Northings  (point  3)  and  2  mm  in  the  Eastings  (point  7).    A  

levelling  check  on  the  set  up  stations  confirmed  that  the  computed  scanner  resection  

elevations  were  not  accurate  (errors  up  to  32  mm).    The  levelling  of  the  instrument  stations  

yielded  elevations  close  to  those  of  the  computed  total  station  values  (≤5mm)  as  shown  in  

Table  5.07.  

Page 31: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

25    

Station   Northing  (m)   Easting  (m)   Elev.  (m)  St.  dev.  N  (m)  

St.  dev.  E.  (m)  

St.  dev.  El.  (m)  

1001   5455508.078   500028.201   25.820   0.002   0.002   0.009  

1003   5455507.527   499986.778   25.860   0.002   0.002   0.004  1005   5455533.464   499986.960   25.858   0.002   0.001   0.002  1007   5455534.135   500027.216   25.856   0.002   0.002   0.005  

Table  5.10  Resection  Results  

 

After  Cyclone  registration,  the  total  station  control  coordinates  coincide  very  closely  

with  the  HDS  coordinates  with  an  average  error  of  1mm  in  northing  and  easting  and  an  

average  error  of  4mm  and  a  maximum  error  of  9mm  in  elevation  (see  Table  5.03).    The  

difference  between  the  Cyclone-­‐registered  control  point  elevations  and  the  level  loop  

control  point  elevations  was  an  average  of  2mm  and  maximum  of  6mm  (see  Table  5.08).      

The  largest  elevation  differences  between  total  station  and  levelling  elevations  is  +5mm,  

(as  indicated  in  Table  5.07)  and  reside  in  points  5  and  128  for  the  surrounding  control  

points.    The  post-­‐registration  laser  scanner  survey  results  agree  with  the  levelling  and  total  

station  results,  which  were  considered  to  be  of  higher  accuracy.    

 

The  elevation  values  of  building  corners,  however  had  a  greater  variation  between  

the  scanner  and  total  station  results  as  seen  in  Table  5.05.    The  building  points  were  

compared  using  the  final  Cyclone  building  model  and  the  measured  total  station  data.    

There  is  a  +84mm  difference  in  elevation  values  in  point  coordinates  for  the  SE  roof  corner.    

The  next  largest  discrepancy  is  -­‐52  mm  and  resides  in  the  SE  ground  corner.    Ground  points  

would,  typically,  have  more  uncertainty  as  these  points  were  defined  by  the  intersection  of  

the  building  corner,  which  was  formed  by  two  wall  planes,  and  the  mesh  ground  surface,  

which  was  decimated  from  hundreds  of  thousands  of  points  down  to  only  several  

thousand.    The  elevation  variations  in  the  roof  corners  could  be  explained  by  the  uneven  

flashing  on  top  of  the  roof  being  picked  up  by  the  scanner  or  possibly  by  the  imprecise  

instrument  pointing  of  the  operator  when  using  the  total  station.    The  unique  roof  corners  

are  shown  in  Figure  5.11.  

 

Page 32: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

26    

 Figure  5.11    Typical  Building  Roof  Corner  in  Reality  and  in  Cyclone.  

 

During  the  levelling  check,  it  was  discovered  that  any  individual  roof  corner  did  not  

vary  more  than  7  mm  in  elevation  because  of  the  flashing  (see  field  notes  in  Appendix  A).  

Comparing  the  building  corner  elevations  determined  via  levelling  with  the  elevations  

derived  from  total  station  measurements,  as  shown  in  Table  5.07,  yield  results  as  large  as  -­‐

95  mm  (SE  roof  corner).    Comparing  the  level  loop  building  elevations  with  the  elevations  

from  the  cyclone  model  have  the  largest  variations  in  the  SW  ground  corner  (+40mm).    The  

average  vertical  error  from  the  HDS  roof  corners  was  -­‐10mm  and  the  average  ground  point  

error  was  +24mm.    The  average  vertical  error  from  the  total  station  roof  corners  was  -­‐

39mm  and  the  average  ground  point  error  was  +48mm.      

 

An  interesting  pattern  is  that  all  of  the  elevation  errors  at  roof-­‐level  corners  are  

negative  values  and  all  elevation  errors  at  ground-­‐level  corner  points  are  positive  values.    

The  vertical  errors  are  of  higher  magnitude  than  expected  and  suggest  possible  blunders.    

The  directions  of  these  errors  are  away  from  the  building  edges,  where  the  EDM  shot  was  

placed  before  turning  the  offset  angles  to  the  corner.    If  the  horizontal  angle  offset  was  

applied,  (and  the  horizontal  building  corner  errors  suggest  that  it  was)  and  the  vertical  

angle  offset  was  not,  errors  of  this  size  and  direction  are  probable.    This  however,  is  the  risk  

taken  when  so  much  importance  is  placed  into  a  single  shot  and  when  operator  errors  can  

occur  during  data  collection  instead  of  at  the  data  processing  stage.  

 

 

     

Page 33: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

27    

  Nevertheless,  level  loop  elevation  results  indicate  that  the  building  points  derived  

from  the  Cyclone  model  are  more  accurate  than  those  derived  from  total  station  

measurements.    The  scanner  data  is  so  dense  (as  seen  in  Figure  5.11),  especially  at  the  

building  corners,  that  small  imperfections  are  measured  and  can  be  modeled  in  the  

software.  

 

Horizontal  building  points  more  or  less  agree  between  the  total  station  and  laser  

scanner  results  in  Table  5.05.    The  discrepancies  are  all  sub-­‐centimetre  at  the  ground-­‐level  

building  corners  with  a  maximum  of  8mm.    The  most  coordinate  disagreement  is  found  

again  at  the  roof  corners,  but  it  is  no  more  than  23mm.    This  can  be  explained  by  the  

irregular  flashing  seen  in  Figure  5.11  interfering  with  the  point  cloud  data  and  making  it  

difficult  to  measure  a  single  point  at  the  corner  with  the  total  station.      

5.3 Surface Accuracy Analysis

 Once  planes  were  defined  and  statistics  were  accepted,  millions  of  points  were  

uploaded  and  presented  within  the  point  cloud  file.    Different  areas  of  the  point  cloud  

contained  certain  amounts  of  noise.    For  instance,  if  a  square  is  picked  up  by  the  scanner,  

the  scanner  will  pick  up  points  that  lie  on  the  inside  and  on  the  outside  of  the  true  surface  

of  the  square.    This  occurs  for  several  reasons.    First  of  all,  there  are  unavoidable  but  minor  

systematic  and  random  errors  in  the  point  cloud  coordinates.    Varying  amounts  of  noise  

resulted  in  a  difficulty  in  fitting  modelled  objects  perfectly  to  the  point  cloud.    Conducting  a  

region  grow  command  to  best  fit  surfaces  to  the  model  seemed  to  be  the  best  way  of  fitting  

surfaces  to  the  point  cloud.    Considering  the  effects  of  noise,  the  final  model  of  the  building  

is  subject  to  minor  errors  in  positioning.      

 

In  some  cases,  where  objects  were  not  as  densely  populated  with  points,  the  Cyclone  

operator  would  have  to  make  a  ‘best  guess’  as  to  where  the  true  surface  of  an  object  begins  

and  ends.    This  was  especially  apparent  in  the  modelling  of  more  detailed  and  intricate  

objects  such  as  windows  and  doors.    ‘Best  guesses’  were  made  in  a  few  areas  where  objects  

were  not  scanned  in  an  optimal  geometry  with  regards  to  the  placement  of  the  scanner.    

Page 34: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

28    

The  fact  that  objects  created  in  cyclone  are  mathematically  uniform  and  parts  of  a  building  

are  not,  creates  ambiguity.    Cyclone’s  mathematically  generated  surfaces  might  not  

perfectly  fit  the  true,  imperfect  building  surfaces.    This  difference  in  surfaces  must  be  

considered  when  using  a  model  to  obtain  coordinate  information  and  measurements.    As  

seen  in  Figure  5.12,  there  are  small  groups  of  points  that  did  not  fit  the  tolerances  of  the  

defined  surface.    The  irregularly  shaped  point  clusters  at  (A),  (B),  and  (C)  appear  to  

represent  the  true  building  surface  where  the  vertical  lines  at  (D)  are  inaccurate  since  their  

spacing  suggests  they  were  measured  from  the  station  on  the  far  side.  

 

           Figure  5.12:  Point  Cloud  Noise  &  Building  Imperfections  

 

Planar  surfaces  require  a  minimum  of  3  points  (Pi  =  xi,  yi,  zi)  to  be  defined,  all  other  

measurements  add  redundancy  and  increased  confidence.    The  mathematical  equation  of  a  

3D  plane  is  ax  +  by  +  cz    =  d,    where  a,  b,  and  c    are  coefficients.    An  expression  of  a  plane’s  

orientation  is  the  normal  vector:                                                            This  is  the  way  a  plane  is  defined  in  

Cyclone.    The  individual  points  from  the  total  station  survey  are  put  into  formulae  (1)  and  

(2)  seen  in  Figure  5.13  to  derive  similar  plane  equations  (Keisan,  2014).  

 

Page 35: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

29    

             Figure  5.13  Plane  Equation  and  Definition  Formulae.    (Source:  Keisan,  2014)  

 

The  results  for  several  planes  selected  from  the  total  station  3D  model  are  tabulated  

in  Table  5.14  which  includes  a,  b,  c,  normal  vector  values,  and  point  numbers  of  the  points  

that  were  used  to  define  the  planes  (full  points  list  in  Digital  Appendix  H).    The  

corresponding  planes  from  the  Cyclone  HDS  model  are  listed  in  Table  5.15  which  include  

statistical  information  as  well  as  a,  b,  c,  and  d  values.    A  diagram  of  the  selected  plane  

locations  is  found  in  Figure  5.16  and  a  plane  comparison  is  found  in  Table  5.17.  

 

Plane  ID   a   b   c   Point  #1   Point  #2   Point  #3  1   0.0303   12.5525   -­‐0.0057   1042   1043   1044  2   -­‐1.0161   0.0012   -­‐0.0105   1030   1031   1032  3   0.0041   -­‐2.8047   -­‐0.0245   1146   1147   1148  4   0.0007   0.5188   -­‐0.0003   1074   1075   1076  

Table  5.14  Total  Station  Data:  Plane  Definition  Parameters.  

 

 

 

 

Page 36: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

30    

Plane  ID   a   b   c   #  of  points   St.  dev.  (m)  

Max.  abs.  error  (m)  

1   0.0026   1.0000   0.0016   92,329   0.001   0.004  2   1.0000   -­‐0.0009   -­‐0.0015   52,370   0.002   0.004  3   0.0000   1.0000   0.0003   7,325   0.002   0.003  4   0.0008   1.0000   0.0030   3,147   0.002   0.004  

Table  5.15  Cyclone  HDS  Plane  Definition  Parameters.  

 

 

 Figure  5.16  Sketch  of  Plane  Locations.  

 

Plane  ID  Angle  between  

vectors  Pt.#1  Offset  

(m)  Pt.#2  Offset  

(m)  Pt.#3  Offset  

(m)  

1   0°  06’  53”   0.0045   0.0001   -­‐0.0004  2   -­‐0°  39’  51”   0.0030   0.0033   0.0000  3   -­‐0°  29’  32”   0.0016   -­‐0.0025   0.0068  4   0°  13’  45”   -­‐0.0038   -­‐0.0039   -­‐0.0028  Table  5.17  Comparison  of  Normal  Vectors  and  Point-­to-­Plane  Offsets.  

 

  The  planes  defined  in  Cyclone  obviously  have  the  most  confidence  and  redundancy  

given  their  statistics  in  Table  5.17.    The  Leica  C10  also  has  less  beam  divergence  than  the  

TPS802  total  station.    The  beam  divergence  of  the  C10  (0.24  mrads)  is  at  least  half  of  the  

TPS802  (min.  0.5mrads)  (Leica  Geosystems).    For  these  reasons,  the  position  and  

orientation  of  planes  defined  by  the  C10  will  be  considered  “true”.    Defining  a  small  plane  

Page 37: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

31    

from  3  total  station  points  however,  has  alignment  issues.    The  planes  defined  by  total  

station  do  not  agree  with  those  calculated  in  Cyclone.    Some  points  are  offset  by  less  than  a  

millimetre  from  their  highly  defined  counterparts,  but  some  are  only  offset  by  a  few  

millimetres.    Figure  5.18  shows  an  example  of  a  negative  point-­‐to-­‐plane  offset.      Negative  

offset  values  represent  points  on  the  near  side  of  the  Cyclone  plane  and  positive  values  

represent  points  on  the  far  side  relative  to  the  instrument  station.    Since  there  is  no  

redundancy  in  the  plane  defined  by  total  station  data,  the  plane  is  constrained  to  these  

points  and  a  noticeable  rotational  error  is  introduced.      

 

                                                                                               Figure  5.18  Point  to  Plane  Offset  Screenshot.      

   

5.4  Time  Results  &  Analysis 5.4.1  Total  Station  Survey  Time  Results

 

Field  time:    3h  33m  

Office  time:  

                  Drafting:  6h50m  @  full  detail  

Total:  10h  23m  

Page 38: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

32    

5.4.2 Laser Scanner Survey Time Results

 Field  Time:  Setting  control  with  total  station  =  1h  02m  (from  field  notes)    

Field  Time:  Scanner  data  collection  =  1h  37m  (from  field  notes)    

Office  Time:  6h  17m  

  Total:  8h  56m  (1h  27m  faster)  

5.4.3 Comments & Analysis

 “Experience  shows  that  the  ratio  of  field  to  office  working  time  of  a  scanning  survey  

is  about  1:5.  The  office  time  can  be  reduced  with  the  accumulation  of  the  experience  of  

staff”  (Chow,  2007).    The  laser  scanner  survey  of  NE28  had  a  ratio  of  1:3.9  and  the  total  

station  survey  was  1:1.9.    Every  project  will  yield  different  time  results,  “the  field  to  office  

processing  time  ratio  increases  with  point  density,  complexity  of  the  object(s)  being  

scanned,  and  deliverable  detail”  (California  DoT,  2011).    For  this  project,  the  laser  scanner  

method  was  16%  faster.  

5.5 Analysis of Other Factors 5.5.1 Cost

 The  hardware  and  software  listed  in  Table  5.19  are  only  the  major  purchases.    Other  

necessary  equipment  such  as  tripods,  prism  poles,  computers  etc.  are  not  included  in  the  

calculation  since  they  are  so  common  to  all  surveyors.    Please  note  the  following:  

●  *The  Autodesk  software  is  capable  of  point  cloud  modeling  so  the  cost  of  Leica  

Cyclone  was  not  included  in  the  total  cost  of  the  laser  scanner  survey.  

● **The  cost  of  the  total  station  is  included  in  the  HDS  column  as  it  is  required  for  

setting  control  points.  

 

 

 

 

Page 39: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

33    

Equipment for Total Station Survey Equipment for HD Survey

Leica 2” total station $12,000 Leica C10 $100,000

AutoCAD Civil 3D $6,825 Leica Cyclone * $9,000

Leica HDS targets (2) $780

AutoCAD Civil 3D $6,825

Leica 2” total station ** $12,000

Total: $18,825 Total: $119,605

Table  5.19:  Cost  of  Hardware  and  Software  for  Each  Survey  Type.  

(Source:  Keith  Belsham  pers.  comm.  March  17,  2014)  

5.5.2 Data Volume

 For  this  project  the  volume  of  data  included  in  the  total  station  survey  was  2.87  

megabytes  which  includes  the  fieldbook,  least  squares  input/output  files  and  the  CAD  

drawing  file.    For  the  laser  scanner  survey,  the  total  volume  of  data  was  284.63  megabytes  

which  includes  the  complete  cyclone  database  project  folder,  and  the  exported  Cad  

drawing.  

5.5.3 User-friendliness

    Since  the  authors  were  already  familiar  with  Leica  total  station  and  GPS  programs,  

the  transition  to  HDS  hardware  was  simple.    The  use  of  the  C10  scanner  hardware  was  

intuitive.    The  interface  of  the  C10  scanner  was  the  same  as  other  Leica  products  like  the  

Viva  controller.    The  traverse  and  resection  procedures  within  the  scanner  hardware  were  

exactly  the  same  as  those  presented  in  the  Viva  data  collector.    The  most  difficulty  with  the  

hardware  use  arose  when  attempting  to  pick  HDS  targets  from  a  touch  screen  with  a  live  

digital  camera  display.    It  proved  difficult  to  see  a  6  inch  HDS  target  from  90m  away.    It  took  

approximately  six  hours  of  scanner  practice  to  become  well  versed  with  its  interface.    It  can  

Page 40: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

34    

be  concluded  that  the  Leica  C10  scanstation  scanner  would  prove  simple  to  use  for  any  

experienced  total  station  user.      

 

  The  authors  were  also  familiar  with  CAD  software,  but  Leica  Cyclone  8.0.2  is  not  

similar.    Navigation,  registration,  point  selection,  object  creation  and  modification  in  

Cyclone  are  the  main  functions  to  learn  and  master.    Considering  the  complexity  of  the  

program  and  its  many  capabilities,  the  basic  commands  were  not  difficult  to  find  and  

operate.    It  took  about  twenty  five  hours,  per  person,  of  practice  modelling  to  become  

proficient  with  the  basics  of  Cyclone  software.    In  order  to  completely  master  Cyclone  

commands  and  modelling  procedures,  more  time  would  be  needed.  

                                               

 

Page 41: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

35    

6.0 CONCLUSION

 Based  on  the  results  of  dataset  comparisons  summarized  in  Table  6.1  below,  and  the  

scope  of  the  project,  the  laser  scanner  survey  method  is  the  more  effective  method.    

Modern  day  scanning  has  the  potential  to  become  a  powerful  tool  to  Geomatics  

professionals.    HDS  methods  however,  will  not  replace  traditional  survey  instruments  for  

this  type  of  project.    Total  stations  are  still  required  to  set  control  points.    Using  a  scanner  

to  set  control  proved  to  have  limitations,  mainly  in  the  precision  of  short  distance  

measurements  (<50m)  that  did  not  undergo  registration.  

Category HDS Traditional Field Time 2X quicker 2X Office Time Slightly faster Slightly slower

Control Point Accuracy Equal Equal Bldg Corner Accuracy Better Inferior

Planar Surface Accuracy Far Superior Inferior Cost 10x greater 10x less

Data Volume 10x greater 10x less User Friendliness Short learning curve Long learning curve

Tables  6.1    Summary  of  Results.  

 

The  accuracy  of  both  survey  methods  were  similar  with  regards  to  horizontal  

control  points  and  horizontal  building  corner  coordinates.    The  HDS  results  however,  

surpassed  the  total  station’s  when  it  came  to  the  building  corner  elevations  compared  to  

levelling  results  and  also  in  the  ability  to  define  planar  surfaces.    The  laser  scanner  method  

was  also  more  time  efficient  compared  to  the  total  station  method.  

 

Overall,  human  error  was  found  to  be  more  apparent  in  the  conduction  of  the  total  

station  survey.    Taking  many  individual  measurements  with  little  to  no  redundancy  

increases  the  risk  of  operator  error  which  would  require  another  trip  to  the  project  site.    

Total  station  surveys  require  more  detailed  field  notes,  as  all  singular  points  need  to  be  

identified.    This  spread  of  information  requires  the  operator  to  interpret  data  uploaded  

from  the  total  station,  as  well  as  information  recorded  in  field  notes.    This  caused  drafting  

Page 42: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

36    

total  station  data  to  be  more  time  consuming  than  was  expected.    Having  to  keep  track  of  

points  in  the  field  when  collecting  data  with  a  total  station  also  proved  to  be  subject  to  

human  errors.    In  this  particular  survey,  a  small  portion  of  the  building  was  missed  in  the  

collection  of  data  with  the  total  station.    It  can  be  concluded  that  these  factors  render  total  

station  data  collection  to  be  more  susceptible  to  human  error  than  3D  scanner  data  

collection  and  drafting  procedures.  

 

The  sheer  amount  of  collected  points  in  a  single  scan  far  outweighs  any  total  station  

capabilities  (354  points  vs.  6.4  million).    This  volume  of  data  is  a  disadvantage  in  terms  of  

computer  performance  and  modeling  procedures.    Modelling  scanner  data  has  the  benefit  

of  all  required  information  being  present  within  the  raw  data  files.    This  will  reduce  or  

remove  any  requirements  to  return  to  the  field  to  capture  more  data  and  is  highly  

advantageous  for  measuring  inaccessible  features.  

 

Another  issue  surrounding  modern  day  scanners  is  cost.    As  can  be  seen  in  the  cost  

analysis,  figure  5.19,  the  required  hardware  and  software  to  conduct  an  accurate  scanner  

survey  is  greater  than  $100,000.    Comparing  this  to  total  station  survey  hardware  and  

software  cost  requirements  yields  a  difference  of  approximately  $80,000.    If  a  particular  

scan  is  to  be  linked  to  a  specific  control  network,  then  the  use  of  a  total  station  or  GPS  

would  be  needed,  as  the  C10  scanner  is  not  practical  for  setting  control.    The  user-­‐

friendliness  of  the  HDS  systems  used  in  this  project  were  not  unreasonably  complicated  for  

those  with  knowledge  of  similar  geomatics  equipment.  

 

Each  survey  method  has  its  strengths  and  limitations  and  none  are  free  of  operator’s  

errors.      For  this  project  the  laser  scanner  method  was  the  most  efficient  and  effective.    

Ideally,  the  most  efficient  survey-­‐grade  data  collection  method  would  be  a  combination  of  

the  total  station’s  single-­‐point  precision,  long-­‐distance  measurement  to  a  prism,  and  

accurate  orientation  combined  with  the  high  level  of  detail  and  completeness  of  a  laser  

scanner.    Recent  innovations  have  begun  to  integrate  several  Geomatics  technologies  

including  GPS.    As  technology  advances,  so  does  the  ability  to  collect  accurate,  detailed,  

time  and  cost  effective  spatial  data.  

Page 43: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

37    

References:

Autodesk  (2014)  AutoCAD  Civil  3D  Retrieved  from:  

http://www.autodesk.com/store/autocad-­‐civil-­‐3d  on  March  16,  2014.  

California  Department  of  Transportation  (2011).    Laser  Scanner  Specifications  Chapter  15.      

Retrieved  from:  

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&v

ed=0CCkQFjAA&url=http%3A%2F%2Fwww.dot.ca.gov%2Fhq%2Frow%2Flandsur

veys%2FSurveysManual%2F15_Surveys.pdf&ei=yuEUU_-­‐

4MoTkoASv4YGwCA&usg=AFQjCNGW39QJOx1Muhao8YZAWTnwjU6-­‐Ng&sig2=-­‐

7hqM9f5jco9Y5BXvEzE9Q&bvm=bv.61965928,d.cGU    

Chow,  K.  L.  (2007)  “Engineering  Survey  Applications  of  Terrestrial  Laser  Scanner  in        

Highways    

Department  of  the  Government  of  Hong  Kong  Administration  Region”    Retrieved        

from:  

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&v

ed=0CF0QFjAG&url=http%3A%2F%2Fwww.fig.net%2Fpub%2Ffig2007%2Fpapers

%2Fts_6f%2Fts06f_05_lam_1488.pdf&ei=yuEUU_-­‐

4MoTkoASv4YGwCA&usg=AFQjCNEpgUrn6CzCV9i2nYDES0DANHn1eA&sig2=RQFq

vcmptE1Vg5WTKzjD3Q&bvm=bv.61965928,d.cGU    

Clark,  J.  and  Robson,  S.  (2004)  “Accuracy  of  Measurements  Made  with  a  Cyrax  2500  Laser  

Scanner    

Against  Surfaces  of  Known  Colour”    University  College  London,  Department  of  

Geomatics  Engineering.  

GeoBC  (1996)  Geodetic  Control  Marker  -­  Long  Form:  GCM  No  41996.    Retrieved  from:    

http://a100.gov.bc.ca/pub/mascotw/protected/part1f.html?Q_GCM_NO=41996&Q_

OPT=0    

Keisan  (2014)  Plane  Equation  Given  Three  Points  Calculator    Retrieved  from:    

http://keisan.casio.com/has10/SpecExec.cgi?id=system/2006/1223596129    

 

 

Page 44: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

38    

 

Leica  Geosystems.    Leica  TPS  800  Series  User  Manual.    Retrieved  from:  

http://www.surveyequipment.com/PDFs/TPS800_UserManual_en.pdf    

Leica  Geosystems.    Leica  ScanStation  C10  Product  Specifications.    Retrieved  from:    

http://hds.leica-­‐

geosystems.com/downloads123/hds/hds/ScanStation%20C10/brochures-­‐

datasheet/Leica_ScanStation_C10_DS_en.pdf  

Leica  Geosystems.    Leica  ScanStation  C10  p.  32.    Retrieved  from:    

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&u

act=8&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.gefos-­‐

leica.cz%2Fftp%2FHDS_Laser_sken%2FPrezentace%2FLeica%2520ScanStation%2

520C10.ppt&ei=CYQwU7_mDMPTqgGNsoDYAw&usg=AFQjCNFssnVcKLpU_K2jqnJw

HRhA59FhzQ&sig2=rwxSkb2hbClJYMaKP4b4cw&bvm=bv.62922401,d.aWM    

Leica  Geosystems.    Leica  Sprinter  Electronic  Level.    Retrieved  from:            

http://www.fltgeosystems.com/uploads/brochures/2574_1.pdf?1395552204  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 45: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

39    

Appendices  

Appendix  A:    Field  Notes  

Page 46: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

40    

Page 47: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

41    

 

Page 48: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

42    

Page 49: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

43    

Page 50: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

44    

Page 51: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

45    

 

 

 

Page 52: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

46    

Appendix  B:  Least  Squares  Analysis  Output  File  (condensed)  

*NOTE:  Linear  distances  are  imperial  values  and  were  scaled  to  metric  for  the  Report*  

 SURVEY  LEAST  SQUARES  CALCULATION  Tue  May  28  14:11:32  2013  Project:  WOES_Proj  Input  File:  U:\WILL\SCHOOL\PROJECT\WOES_PROJ\PROJECT\NETWORK_IN.LSI    Total  #  of  Unknown  Points:  20  Total  #  of  Points                :  22  Total  #  of  Observations    :  259  Degrees  of  Freedom              :  199  Confidence  Level            :  95%  Number    of  Iterations        :  3  Chi  Square  Value                  :  226.29122  Goodness  of  Fit  Test          :  Passes  at  the  5%  Level    Standard  Deviation  of  Unit  Weight:  1.06637  

 ************************************************************************  

OBSERVATIONS  ************************************************************************  

(For  full  list  of  observations  see  Digital  Appendix  I)    

************************************************************************  ADJUSTED    COORDINATES  

************************************************************************    

Point              Northing                      Easting                  Elevation  ______          _____________          _____________          ____________  

1          17898648.5508            1640512.4754                    84.8179  3          17898646.7412            1640376.5558                    84.9042  7          17898734.0333            1640509.2365                    84.8242  5          17898731.8326            1640377.1736                    84.8988  101          17898628.1304            1640816.0522                    78.8555  103          17898647.8438            1640443.4477                    84.9596  105          17898691.7514            1640511.1658                    85.1019  107          17898700.7457            1640506.3724                    85.0166  111          17898676.5658            1640506.3945                    85.0297  113          17898654.3736            1640475.9971                    84.8306  115          17898655.8857            1640413.2938                    84.8483  117          17898661.8326            1640444.8536                    89.9009  119          17898688.5399            1640496.8098                    86.9278  125          17898727.5621            1640346.6739                    84.9867  127          17898709.2637            1640380.9638                    84.8881  129          17898673.7996            1640380.8617                    84.9193  131          17898685.2449            1640386.3280                    87.5218  141          17898749.1227            1640449.2698                    80.3507  

Page 53: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

47    

147          17898733.5006            1640416.3161                    83.0905  149          17898726.2134            1640477.6488                    84.7297  

 ************************************************************************  

Standard  Deviations  -­‐  Adjusted  Coordinates  ************************************************************************  

STANDARD  DEVIATIONS  Point                    North                      East                    Elevation  ______          ____________          ___________          ___________  1                  0.007085                0.006469                0.002873  3                  0.009870                0.007907                0.003338  7                  0.008438                0.007412                0.003243  5                  0.010751                0.008619                0.003511  101                  0.005613                0.005449                0.003712  103                  0.008754                0.010535                0.003808  105                  0.009148                0.007110                0.003418  107                  0.010819                0.007546                0.003852  111                  0.010686                0.007475                0.003894  113                  0.008293                0.010343                0.003804  115                  0.009288                0.010283                0.003810  117                  0.008777                0.010088                0.012462  119                  0.010004                0.007601                0.008553  125                  0.012006                0.010270                0.004064  127                  0.012610                0.008816                0.004047  129                  0.012592                0.008613                0.004046  131                  0.012156                0.008684                0.010625  141                  0.009979                0.010971                0.011574  147                  0.010495                0.011096                0.005872  149                  0.009498                0.010810                0.004017  

 ************************************************************************  

Least  Squares  Error  Ellipses  at  95%  Confidence  Level  

************************************************************************    

Point          Semi-­‐Major  Axis          Semi-­‐Minor  Axis          NE-­‐Axis  Azimuth  ______          _______________          _______________          _______________  

1                0.0191566630                0.0166044236                      154-­‐53-­‐10  3                0.0261071790                0.0208589819                      175-­‐37-­‐23  7                0.0223159885                0.0195605611                          5-­‐06-­‐36  5                0.0292640266                0.0216643001                        20-­‐55-­‐15  

101                0.0172660235                0.0113636601                      137-­‐09-­‐33  103                0.0278541002                0.0231089172                        93-­‐40-­‐59  105                0.0241843268                0.0187750660                      177-­‐25-­‐00  107                0.0285925151                0.0199322464                      178-­‐29-­‐49  111                0.0284066724                0.0195035693                      171-­‐17-­‐31  113                0.0274972823                0.0217014687                      100-­‐22-­‐36  115                0.0272197572                0.0244891088                        82-­‐07-­‐07  117                0.0266770966                0.0231659090                        94-­‐34-­‐28  119                0.0265457678                0.0199372022                      172-­‐00-­‐10  

Page 54: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

48    

125                0.0323143244                0.0264293063                        19-­‐19-­‐07  127                0.0333996456                0.0231832543                          5-­‐26-­‐05  129                0.0333327423                0.0226703285                          4-­‐42-­‐02  131                0.0322052967                0.0228239584                          5-­‐58-­‐25  141                0.0290137585                0.0263425798                        84-­‐32-­‐22  147                0.0302750108                0.0266845303                        58-­‐08-­‐16  149                0.0293978333                0.0241124677                        65-­‐33-­‐41  

 ************************************************************************  

Least  Squares  Error  Ellipses  STANDARD  ERROR  ELLIPSES  

************************************************************************    

Point          Semi-­‐Major  Axis          Semi-­‐Minor  Axis          NE-­‐Axis  Azimuth  ______          _______________          _______________          _______________  

1                0.0077310000                0.0067010000                      154-­‐53-­‐10  3                0.0105360000                0.0084180000                      175-­‐37-­‐23  7                0.0090060000                0.0078940000                          5-­‐06-­‐36  5                0.0118100000                0.0087430000                        20-­‐55-­‐15  

101                0.0069680000                0.0045860000                      137-­‐09-­‐33  103                0.0112410000                0.0093260000                        93-­‐40-­‐59  105                0.0097600000                0.0075770000                      177-­‐25-­‐00  107                0.0115390000                0.0080440000                      178-­‐29-­‐49  111                0.0114640000                0.0078710000                      171-­‐17-­‐31  113                0.0110970000                0.0087580000                      100-­‐22-­‐36  115                0.0109850000                0.0098830000                        82-­‐07-­‐07  117                0.0107660000                0.0093490000                        94-­‐34-­‐28  119                0.0107130000                0.0080460000                      172-­‐00-­‐10  125                0.0130410000                0.0106660000                        19-­‐19-­‐07  127                0.0134790000                0.0093560000                          5-­‐26-­‐05  129                0.0134520000                0.0091490000                          4-­‐42-­‐02  131                0.0129970000                0.0092110000                          5-­‐58-­‐25  141                0.0117090000                0.0106310000                        84-­‐32-­‐22  147                0.0122180000                0.0107690000                        58-­‐08-­‐16  149                0.0118640000                0.0097310000                        65-­‐33-­‐41  

 ************************************************************************  

Blunder  Detection/Analysis  ************************************************************************  

(For  full  list  of  observations  see  Digital  Appendix  I)    

   

 

 

 

 

Page 55: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

49    

Appendix  C:  Cyclone  Registration  Results  Status:  VALID  Registration  Mean  Absolute  Error:  for  Enabled  Constraints  =  0.005  m  for  Disabled  Constraints  =  0.000  m    Date:  2014.02.21  14:34:10  Database  name  :  Proj_jan4    ScanWorlds  Cyclone_Control.txt  (Leveled)  1001:  SW-­‐001  (Leveled)  1003:  SW-­‐004  (Leveled)  1005:  SW-­‐003  (Leveled)  1007:  SW-­‐002  (Leveled)    Constraints  

Name   ScanWorld    Weight    Error   Error  Vector  (X)    Error  Vector  (Y)    Error  Vector  (Z)  103   SW-­‐001            1.0000    0.004   0.003   -­‐0.002   -­‐0.001  103   SW-­‐004            1.0000    0.005    -­‐0.002   -­‐0.003   -­‐0.004  105   SW-­‐001            1.0000    0.002    -­‐0.001   -­‐0.002    0.001  105   SW-­‐002            1.0000    0.004   0.000    0.000   -­‐0.004  115   SW-­‐004            1.0000    0.003   0.002   -­‐0.002   -­‐0.001  115   SW-­‐003            1.0000    0.002   0.000   -­‐0.001    0.001  125   SW-­‐004            1.0000    0.004   0.004    0.001    0.001  125   SW-­‐003            1.0000    0.005   0.004    0.004    0.000  123   SW-­‐003            1.0000    0.008    -­‐0.004   -­‐0.002   -­‐0.006  123   SW-­‐002            1.0000    0.005   0.000   -­‐0.002   -­‐0.005  128   SW-­‐003            1.0000    0.006   0.005   -­‐0.002    0.003  128   SW-­‐002            1.0000    0.005   0.005   -­‐0.001    0.001  107   SW-­‐001            1.0000    0.002   0.000    0.001   -­‐0.002  107   SW-­‐002            1.0000    0.005    -­‐0.004    0.003    0.003  109   SW-­‐001            1.0000    0.005    -­‐0.005    0.001   -­‐0.001  113   SW-­‐001            1.0000    0.005    -­‐0.003    0.004    0.001  113   SW-­‐004            1.0000    0.005    -­‐0.001    0.004    0.003  112   SW-­‐004            1.0000    0.006    -­‐0.002    0.004    0.004  

Page 56: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

50    

 ScanWorld  Transformations  Cyclone_Control.txt  (Leveled)  translation:  (0.000,  0.000,  0.000)  m  rotation:  (0.0000,  1.0000,  0.0000):0.000  deg    1001:  SW-­‐001  (Leveled)  translation:  (500028.200,  5455508.078,  27.545)  m  rotation:  (0.0000,  0.0000,  1.0000):-­‐93.799  deg    1003:  SW-­‐004  (Leveled)  translation:  (499986.777,  5455507.527,  27.596)  m  rotation:  (-­‐0.0000,  -­‐0.0000,  -­‐1.0000):90.491  deg    1005:  SW-­‐003  (Leveled)  translation:  (499986.962,  5455533.464,  27.614)  m  rotation:  (-­‐0.0000,  -­‐0.0000,  -­‐1.0000):11.003  deg    1007:  SW-­‐002  (Leveled)  translation:  (500027.215,  5455534.134,  27.559)  m  rotation:  (0.0000,  0.0000,  1.0000):-­‐98.354  deg    Unused  ControlSpace  Objects  Cyclone_Control.txt  (Leveled):            Vertex  :  TargetID  :  1001          Vertex  :  TargetID  :  1003          Vertex  :  TargetID  :  1005          Vertex  :  TargetID  :  1007          Vertex  :  TargetID  :  101          Vertex  :  TargetID  :  170    1001:  SW-­‐001  (Leveled):            Vertex  :  unlabeled  1003:  SW-­‐004  (Leveled):            Vertex  :  unlabeled  1005:  SW-­‐003  (Leveled):            Vertex  :  unlabeled  1007:  SW-­‐002  (Leveled):            Vertex  :  unlabeled    

 

Page 57: Comparisonof*Laser*Scanner*and Total*StationSurvey*Methods: … · 1" " 1.0 Introduction & Background " Assurveytechnologyrapidlyadvances,like ithasinrecentyears,thevariety, complexity,andproceduresofmodernsurveytaskshaschangedaswell

51    

DIGITAL  APPENDICES