communication complexity - faculty.coe.drexel.edu · 6 a. k. chandra, m. l. furst and r. j. lipton,...

77
Communication Complexity Jie Ren Adaptive Signal Processing and Information Theory Group Nov 3 rd , 2014 Jie Ren (Drexel ASPITRG) CC Nov 3 rd , 2014 1 / 77

Upload: others

Post on 03-Dec-2019

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Communication Complexity

Jie Ren

Adaptive Signal Processing and Information Theory Group

Nov 3rd, 2014

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 1 / 77

Page 2: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

1 E. Kushilevitz and N. Nisan, “Communication Complexity,”Cambridge University Press, 1997.

2 L. Lovasz, “Communication Complexity: A Survey,” in Paths, Flows,and VLSI Layout, B. H. Korte, Ed., Springer Verlag: Berlin 1990.

3 T. Lee and A. Shraibman, “Lower Bounds in CommunicationComplexity: A Survey,” Now Publishers Inc., 2009.

4 A. C. Yao, “Some Complexity Questions Related to DistributedComputing,” Proc. of 11th ACM Symposium on Theory ofComputing, 1981, 308-311.

5 P. Beame and J. Lawry, “Randomized versus NondeterministicCommunication Complexity,” Proc. of 24th ACM Symposium onTheory of Computing, 1992, 188-199.

6 A. K. Chandra, M. L. Furst and R. J. Lipton, “Multi-partyProtocols,” Proc. of 15th ACM Symposium on Theory of Computing,1983, 94-99.

7 P. B. Miltersen, N. Nisan, S. Safra and A. Wigderson, “On DataStructures and Asymmetric Communication Complexity,” Proc. of27th ACM Symposium on Theory of Computing, 1995, 103-111.

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 2 / 77

Page 3: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity

Outline

1 Deterministic Communication ComplexityProblem SetupProtocol TreeCombinatorial RectanglesFooling SetsRectangle Rank

2 Nondeterministic CC & Randomized CCNondeterministic Communication Complexity: MotivationNondeterministic Communication Complexity: definitionsRandomized Communication ComplexityDistributional Complexity and Discrepancy

3 Some Analysis

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 3 / 77

Page 4: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Problem Setup

Outline

1 Deterministic Communication ComplexityProblem SetupProtocol TreeCombinatorial RectanglesFooling SetsRectangle Rank

2 Nondeterministic CC & Randomized CCNondeterministic Communication Complexity: MotivationNondeterministic Communication Complexity: definitionsRandomized Communication ComplexityDistributional Complexity and Discrepancy

3 Some Analysis

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 4 / 77

Page 5: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Problem Setup

Problem Setup

Alice Bob

x ∈ X y ∈ Y

f(x, y) ∈ {0, 1}· · ·f(x, y)

0/1

0/1

• Two party communication

• Each knows an input x ∈ X/y ∈ Y• Let one/both sides compute a function f with no error

• Only care about communication cost

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 5 / 77

Page 6: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Problem Setup

Problem Setup

Alice Bob

x ∈ X y ∈ Y

f(x, y) ∈ {0, 1}· · ·f(x, y)

0/1

0/1

• Sending binary messages

• f usually binary

• Deterministic protocol P: who to talk/what to send

• Communication cost: sum of total bits/rounds CC (P)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 6 / 77

Page 7: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Problem Setup

Deterministic Communication Complexity

Alice Bob

x ∈ X y ∈ Y

f(x, y) ∈ {0, 1}· · ·f(x, y)

0/1

0/1

D(f ) = minP

max(x ,y)∈X×Y

CC (P) (1)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 7 / 77

Page 8: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Problem Setup

A Naive Upper Bound

Proposition (naive upper bound): For every function f : X × Y → Z

D(f ) ≤ log2 |X |+ log2 |Z | (2)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 8 / 77

Page 9: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Problem Setup

A Naive Upper Bound

Example: MAX of the unionAlice and Bob hold subsets x , y ⊆ {1, . . . , n} respectively, and they with tocompute MAX (x , y).

D(MAX ) ≤ 2 log2 n (3)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 9 / 77

Page 10: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Protocol Tree

Outline

1 Deterministic Communication ComplexityProblem SetupProtocol TreeCombinatorial RectanglesFooling SetsRectangle Rank

2 Nondeterministic CC & Randomized CCNondeterministic Communication Complexity: MotivationNondeterministic Communication Complexity: definitionsRandomized Communication ComplexityDistributional Complexity and Discrepancy

3 Some Analysis

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 10 / 77

Page 11: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Protocol Tree

Definition: Protocol Tree

Definition: A protocol P over domain X × Y with range Z is a binary tree whereeach internal node v is labeled either by a function av : X → {0, 1} or by afunction bv : Y → {0, 1}, and each leaf is labeled with an element z ∈ Z .The communication cost CC (P) will be the depth of the protocol tree.

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 11 / 77

Page 12: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Protocol Tree

Example: Protocol Tree

a1(x = 1, 2) = 0

a1(x = 3) = 1

b2(y = 1, 2) = 0

b2(y = 3) = 1

0b3(y = 1) = 1

b3(y = 2, 3) = 0

1

1

a4(x = 1) = 0

a4(x = 2, 3) = 1

0 1

f(x, y) =

{1 x ≥ y0 OTH

x ∈ {1, 2, 3}y ∈ {1, 2, 3}

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 12 / 77

Page 13: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Protocol Tree

Why Binary Message?

• Entropy not involved - simple?

• No block coding (compute a single function)

• Worst case - always exists p = 1/2 s.t. h2(p) = 1

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 13 / 77

Page 14: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Protocol Tree

One Side Compute f Vs. Both Sides Compute f

• Equivalent setup

• ⇒ Need one more bit if f is binary

• ⇐ Second last round: one side must know f (x , y)

Some Lower Bounds of Communication Complexity

• D(f ) : unknown for general f

• Interested in lower bounds

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 14 / 77

Page 15: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Combinatorial Rectangles

Outline

1 Deterministic Communication ComplexityProblem SetupProtocol TreeCombinatorial RectanglesFooling SetsRectangle Rank

2 Nondeterministic CC & Randomized CCNondeterministic Communication Complexity: MotivationNondeterministic Communication Complexity: definitionsRandomized Communication ComplexityDistributional Complexity and Discrepancy

3 Some Analysis

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 15 / 77

Page 16: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Combinatorial Rectangles

Combinatorial Rectangles

Definition: Let P be a protocol and v be a node of the protocol tree. Rv

is the set of inputs (x , y) that reach node v .Proposition: If L is the set of leaves of a protocol P, then {R`, ` ∈ L} is apartition of X × Y .Definition: A combinatorial rectangle is a subset R ⊆ X × Y such thatR = A× B for some A ⊆ X and B ⊆ Y .

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 16 / 77

Page 17: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Combinatorial Rectangles

Proposition: R ⊆ X × Y is a rectangle iff

(x1, y1) ∈ R & (x2, y2) ∈ R ⇒ (x1, y2) ∈ R. (4)

Proposition: For every protocol P and leaf `, R` is a rectangle

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 17 / 77

Page 18: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Combinatorial Rectangles

a1(x = 1, 2) = 0

a1(x = 3) = 1

b2(y = 1, 2) = 0

b2(y = 3) = 1

0b3(y = 1) = 1

b3(y = 2, 3) = 0

1

1

a4(x = 1) = 0

a4(x = 2, 3) = 1

0 1

x=1

x=3

x=2

y=1 y=2 y=3

1 0 0

1

1

1 0

1 1

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 18 / 77

Page 19: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Combinatorial Rectangles

Rectangle lower bound

Definition: A subset R ⊆ X × Y is called f -monochromatic if f is fixedon R.Theorem 1.17 (Kushilevitz & Nisan): If any partition of X × Y intof -monochromatic rectangles requires at least t rectangles, then

log2 t ≤ D(f ) (5)

• P partitions X × Y into monochromatic rectangles

• Depth of its protocol tree: ≥ log2 t

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 19 / 77

Page 20: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Combinatorial Rectangles

x=1

x=3

x=2

y=1 y=2 y=3

1 0 0

1

1

1 0

1 1

D(f) ≥ log2 5

D(f) = 3

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 20 / 77

Page 21: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Fooling Sets

Outline

1 Deterministic Communication ComplexityProblem SetupProtocol TreeCombinatorial RectanglesFooling SetsRectangle Rank

2 Nondeterministic CC & Randomized CCNondeterministic Communication Complexity: MotivationNondeterministic Communication Complexity: definitionsRandomized Communication ComplexityDistributional Complexity and Discrepancy

3 Some Analysis

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 21 / 77

Page 22: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Fooling Sets

Motivation: If we exhibit a large set of input pairs such that no two ofthem can be in a single monochromatic rectangle, then the number ofpartitions of P must be large

z ?

? z

x1

y2y1

x2

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 22 / 77

Page 23: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Fooling Sets

Definition : Let f : X × Y → {0, 1}. A set S ⊆ X × Y is called a foolingset if there exits a value z ∈ {0, 1} such that

• For every (x , y) ∈ S , f (x , y) = z

• For every two distinct pairs (x1, y1) and (x2, y2) in S , eitherf (x1, y2) 6= z or f (x2, y1) 6= z

z ?

? z

x1

y2y1

x2

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 23 / 77

Page 24: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Fooling Sets

Fooling set lower bound

Theorem 1.20 (Kushilevitz & Nisan) : If f has a fooling set S of size t,then

log2 t ≤ D(f ) (6)

Proof : No monochromatic rectangle contains more than one element of S

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 24 / 77

Page 25: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Fooling Sets

Example: Alice and Bob each hold an n-bit integer 0 ≤ x , y < 2n. The“greater than or equal to” function, GTE (x , y), is defined to be 1 iffx ≥ y .

D(GT ) = n + 1 (7)

x=0

x=1

x=2

x=3

y=0 y=1 y=2 y=3

1

1

1

1

0 0 0

1 0 0

1 1 0

1 1 1

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 25 / 77

Page 26: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Fooling Sets

Example: Alice and Bob each hold an n-bit integer 0 ≤ x , y < 2n. The“greater than or equal to” function, GTE (x , y), is defined to be 1 iffx ≥ y .

D(GT ) = n + 1 (8)

x=0

x=1

x=2

x=3

y=0 y=1 y=2 y=3

1

1

1

1

0 0 0

1 0 0

1 1 0

1 1 1

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 26 / 77

Page 27: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Rectangle Rank

Outline

1 Deterministic Communication ComplexityProblem SetupProtocol TreeCombinatorial RectanglesFooling SetsRectangle Rank

2 Nondeterministic CC & Randomized CCNondeterministic Communication Complexity: MotivationNondeterministic Communication Complexity: definitionsRandomized Communication ComplexityDistributional Complexity and Discrepancy

3 Some Analysis

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 27 / 77

Page 28: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Rectangle Rank

Motivation: Give communication complexity lower bound in an algebraicwayDefinition: Associate with every function f : X × Y → {0, 1} a matrixMf of dimensions |X | × |Y |. The rows/columns of Mf are indexed by theelements of X/Y . Then rank(f ) is the linear rank of Mf over the field ofreals.

x=0

x=1

x=2

x=3

y=0 y=1 y=2 y=3

1

1

1

1

0 0 0

1 0 0

1 1 0

1 1 1

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 28 / 77

Page 29: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Rectangle Rank

Rank lower bound

Theorem 1.28 (Kushilevitz & Nisan): For any functionf : X × Y → {0, 1}

log2 rank(f ) ≤ D(f ) (9)

x=0

x=1

x=2

x=3

y=0 y=1 y=2 y=3

1

1

1

1

0 0 0

1 0 0

1 1 0

1 1 1

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 29 / 77

Page 30: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Rectangle Rank

Proof: Let L1 be the set of leaves in which the output is 1. For each` ∈ L1,

M`(x , y) =

{1 if (x , y) ∈ R`

0 otherwise(10)

Mf =∑

`∈L1

M` (11)

andrank(Mf ) ≤

`∈L1

rank(M`) ≤ |L1| ≤ |L| (12)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 30 / 77

Page 31: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Rectangle Rank

Rank lower bound

Theorem 1.28 (Kushilevitz & Nisan): For any functionf : X × Y → {0, 1}

log2 rank(f ) ≤ D(f ) (13)

x=0

x=1

x=2

x=3

y=0 y=1 y=2 y=3

1

1

1

1

0 0 0

1 0 0

1 1 0

1 1 1

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 31 / 77

Page 32: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Rectangle Rank

Rank upper bound

Proposition 2.3 (Lovasz 1990): For any function f : X × Y → {0, 1}

D(f ) ≤ rank(f ) (14)

Proof: We know that row rank = column rank = rank(f ), and we canform the row vector space with dimension rank(f ). We then claim thatthere are at most 2rank(f ) distinct row vectors, the reason is because,although the coefficients for the polynomials that represent the rowvectors can be real, the entries of the matrix M(f ) can only be 0 or 1.Hence we can build a protocol as follows: Alice merge the repeated rowsof M(f ) on the table to have M ′(f ), and then sends the index of row inM ′(f ) that contains x . Bob compute f (x , y) based on what he received.

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 32 / 77

Page 33: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Deterministic Communication Complexity Rectangle Rank

Summary

• Concept: protocol tree, combinatorial rectangles, fooling sets, rank

• Naive upper bound: log2 |X |+ 1

• Rectangle lower bound: log2 tr

• Fooling set lower bound: log2 tf

• Rank lower bound: log2 rank(f )

• Rank upper bound: rank(f )

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 33 / 77

Page 34: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC

Outline

1 Deterministic Communication ComplexityProblem SetupProtocol TreeCombinatorial RectanglesFooling SetsRectangle Rank

2 Nondeterministic CC & Randomized CCNondeterministic Communication Complexity: MotivationNondeterministic Communication Complexity: definitionsRandomized Communication ComplexityDistributional Complexity and Discrepancy

3 Some Analysis

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 34 / 77

Page 35: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Nondeterministic Communication Complexity: Motivation

Outline

1 Deterministic Communication ComplexityProblem SetupProtocol TreeCombinatorial RectanglesFooling SetsRectangle Rank

2 Nondeterministic CC & Randomized CCNondeterministic Communication Complexity: MotivationNondeterministic Communication Complexity: definitionsRandomized Communication ComplexityDistributional Complexity and Discrepancy

3 Some Analysis

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 35 / 77

Page 36: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Nondeterministic Communication Complexity: Motivation

Motivation

• How good are the rectangle lower bounds?

• Relaxing the need to partition by allowing covering of the same space

x=0

x=1

x=2

x=3

y=0 y=1 y=2 y=3

1

1

0

0

1 0 0

1 1 0

1 1 0

0 0 0

x=0

x=1

x=2

x=3

y=0 y=1 y=2 y=3

1

1

0

0

1 0 0

1 1 0

1 1 0

0 0 0

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 36 / 77

Page 37: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Nondeterministic Communication Complexity: Motivation

Motivation: Alice has a n-bit string x ∈ {0, 1}n, Bob has a n-bit stringy ∈ {0, 1}n, either side wants NEQ(x , y).

D(NEQ) = n (15)

Now assume a third person knows everything: x ,y and NEQ(x , y) andwant to convince Alice and Bob, Alice and Bob need to check thecorrectness

• Sends the index of the first bit differs

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 37 / 77

Page 38: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Nondeterministic Communication Complexity: Motivation

Setup: A prover, who sees both x and y , is trying to convince Alice andBob that “f (x , y) = 1”. If f (x , y) 6= 1, then Alice and Bob must be ableto detect the proof is wrong.

f (x , y) = 1⇒ ∃ z P(x , y , z) = 1 (16)

f (x , y) = 0⇒ ∀ z P(x , y , z) = 0 (17)

• Two-stage nondeterministic protocol PN

1 Alice and Bob receive a message z from the third person.2 Alice and Bob run a deterministic protocol PD,z based on z .

• The interesting cost in this protocol is the maximum length of z plusthe number of bits exchanged over all x , y .

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 38 / 77

Page 39: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Nondeterministic Communication Complexity: Motivation

Alternative Setup: Let f : X × Y → {0, 1} be a function. LetL = {(x , y) : f (x , y) = 1}. A successful nondeterministic protocol for fconsists of functions fA : X × {0, 1}k → {0, 1} andfB : Y × {0, 1}k → {0, 1} such that

1 ∀(x , y) ∈ L, ∃z ∈ {0, 1}k s.t. fA(x , z) ∧ fB(y , z) = 1

2 ∀(x , y) 6∈ L, ∀z ∈ {0, 1}k , fA(x , z) ∧ fB(y , z) = 0

• One stage nondeterministic protocol

1 Alice and Bob receive a message z and compute f (x , y) successfully.

• The interesting cost in this protocol is the length of z only.

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 39 / 77

Page 40: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Nondeterministic Communication Complexity: Motivation

Two-stage ⇒ One-stage: Given a two-stage nondeterministic protocolwith k bits first stage cost and d bits second stage cost, we can alwaysbuild a one-stage nondeterministic protocol by adding the d bitsdeterministic communication to the witness z with each party accepting ifthe message agrees with what Alice and Bob would have said in theprotocol.

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 40 / 77

Page 41: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Nondeterministic Communication Complexity: Motivation

In the language of “Rectangles”: A prover, who sees both x and y , istrying to convince Alice and Bob that “f (x , y) = 1” by broadcasting a1-monochromatic rectangle that cover (x , y).

• By “Nondeterministic” we mean: this 1-monochromatic rectanglemay not be unique

x=0

x=1

x=2

x=3

y=0 y=1 y=2 y=3

1

1

0

0

1 0 0

1 1 0

1 1 0

0 0 0

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 41 / 77

Page 42: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Nondeterministic Communication Complexity: definitions

Outline

1 Deterministic Communication ComplexityProblem SetupProtocol TreeCombinatorial RectanglesFooling SetsRectangle Rank

2 Nondeterministic CC & Randomized CCNondeterministic Communication Complexity: MotivationNondeterministic Communication Complexity: definitionsRandomized Communication ComplexityDistributional Complexity and Discrepancy

3 Some Analysis

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 42 / 77

Page 43: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Nondeterministic Communication Complexity: definitions

Definitions: Let f : X × Y → {0, 1} be a binary function.

• CP(f ): the smallest number of leaves in a protocol P• CD(f ): the smallest number of monochromatic rectangles that

partition X × Y

• C (f ): the smallest number of monochromatic rectangles needed tocover X × Y

• C z(f ): the smallest number of monochromatic rectangles needed tocover the z-inputs

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 43 / 77

Page 44: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Nondeterministic Communication Complexity: definitions

Proposition 2.2 (Kushilevitz & Nisan): For all f : X × Y → {0, 1},

log2(C 0(f ) + C 1(f )

)≤ log2 C

D(f ) ≤ log2 CP(f ) ≤ D(f ) (18)

Theorem 29 (Lee & Shraibman): Let f : X ×Y → {0, 1} be a function,

N1(f ) = dlog2 C1(f )e (19)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 44 / 77

Page 45: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Nondeterministic Communication Complexity: definitions

Proof:

• N1(f ) ≤ dlog2 C1(f )e: Let {R`} be a cover. If f (x , y) = 1, the

players receive the index ` that (x , y) ∈ R`• N1(f ) ≥ dlog2 C

1(f )e: Let k = N1(f ), and letfA : X × {0, 1}k → {0, 1}, fB : Y × {0, 1}k → {0, 1} be functions inthe one-stage nondeterministic protocol. DefineRz = {(x , y) : fA(x , z) ∧ fB(y , z) = 1}, Rz is a rectangle. We claim{Rz , z ∈ {0, 1}k} is a cover of the 1s. This is because by thedefinition of nondeterministic protocol:

• ∀(x , y) pairs that f (x , y) = 1, there must exists some z s.t.(x , y) ∈ Rz .

• ∀(x , y) pairs that f (x , y) = 0, (x , y) 6∈ Rz for all z .

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 45 / 77

Page 46: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Nondeterministic Communication Complexity: definitions

Definition (Lee & Shraibman):

N1(f ) = dlog2 C1(f )e (20)

N0(f ) = dlog2 C0(f )e (21)

N(f ) = max(N1(f ),N0(f )) (22)

Definition (Kushilevitz & Nisan):

N1(f ) = log2 C1(f ) (23)

N0(f ) = log2 C0(f ) (24)

N(f ) = log2(C 0(f ) + C 1(f )

)(25)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 46 / 77

Page 47: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Randomized Communication Complexity

Outline

1 Deterministic Communication ComplexityProblem SetupProtocol TreeCombinatorial RectanglesFooling SetsRectangle Rank

2 Nondeterministic CC & Randomized CCNondeterministic Communication Complexity: MotivationNondeterministic Communication Complexity: definitionsRandomized Communication ComplexityDistributional Complexity and Discrepancy

3 Some Analysis

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 47 / 77

Page 48: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Randomized Communication Complexity

Motivation:

• Introduce randomness in the protocol rA and rB : flip coins

• Allow protocols that may have error

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 48 / 77

Page 49: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Randomized Communication Complexity

Randomized Protocol Tree

Definition: A randomized protocol P over domain X × Y with range Z is a binarytree where each internal node v is labeled either by a functionav : X × RA → {0, 1} or by a function bv : Y × RB → {0, 1}, and eachleaf is labeled with an element z ∈ Z .

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 49 / 77

Page 50: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Randomized Communication Complexity

Definition: Let P be a randomized protocol. All the probabilities beloware over random choices of rA and rB .

• P computes a function f with zero error

• P computes a function f with ε−error if for all (x , y)

P[P(x , y) = f (x , y)] ≥ 1− ε (26)

• P computes a function f with one-sided ε−error if for all (x , y) suchthat f (x , y) = 0

P[P(x , y) = 0] = 1, (27)

and for all (x , y) such that f (x , y) = 1,

P[P(x , y) = 1] ≥ 1− ε (28)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 50 / 77

Page 51: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Randomized Communication Complexity

Definition: Let f : X × Y → {0, 1} be a binary function. We consider thefollowing complexity measure for f

• R0(f ) is the minimum average case cost of a randomized protocolthat computes f with zero error

• Rε(f ) is the minimum worst case cost of a randomized protocol thatcomputes f with error ε. We typically use ε = 1/3

• R1ε (f ) is the minimum worst case cost of a randomized protocol that

computes f with one-sided error ε.

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 51 / 77

Page 52: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Randomized Communication Complexity

Why we care these measures:

• worst case zero error = deterministic

• for all average case ε error, there exists a worst case problem that canconvert to

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 52 / 77

Page 53: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Randomized Communication Complexity

Proposition: Given a protocol P that makes an error ε/2 and the averagenumber of bits exchanged is t, it can always be modified as follows:execute P as long as at most 2t/ε bits are exchanged, if the protocolfinishes, use its output, otherwise output 0. This gives a worst case cost2t/ε with error upper bounded by ε.Proof:

t =∑

ra,rb,x ,y

cc · p(ra, rb, x , y)

=∑

cc≤2t/ε

cc · p(ra, rb, x , y) +∑

cc>2t/ε

cc · p(ra, rb, x , y)

≥∑

cc>2t/ε

cc · p(ra, rb, x , y) ≥ 2t

εPr [cc > 2t/ε]

(29)

Hence,

Pr [err ] ≤ ε

2Pr [P ends] + 1 · Pr [P not ends]

≤ ε

2+

t

2t/ε= ε

(30)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 53 / 77

Page 54: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Randomized Communication Complexity

1 For all 0 < ε ≤ ε′ < 1/2,

Rε(f ) ≤ O(logε′ ε · Rε′ (f )) (31)

2 For all 0 < ε ≤ 1/2,

Rε(f ) ≤ R1ε (f ) ≤ O(log ε−1R0(f )) (32)

3 For all 0 < ε ≤ 1/2,

R0(f ) = Θ(max[R1ε (f ),R1

ε (not(f ))]) (33)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 54 / 77

Page 55: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Randomized Communication Complexity

Proof of Property 1: We first prove a similar result for the 1-sided errorproblem: for all 0 < ε ≤ ε′ < 1/2,

R1ε (f ) ≤ O(logε′ ε · R1

ε′ (f )) (34)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 55 / 77

Page 56: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Randomized Communication Complexity

Proof of Property 1: Given a randomized protocol P with worst casecost T bits and one-sided error no greater than ε

′< 1/2, we can build a

new protocol P ′with worst case cost nT bits by simply running P n

times. In the new protocol, Alice and Bob will claim f (x , y) = 1 if andonly if there exists at least one time among the n repeating protocols thatthey will output 1. Now we bound the error for the new protocol P ′

:

P[err |f (x , y) = 0] = 0 (35)

P[err |f (x , y) = 1] = P[all n trails output 0|f (x , y) = 1]

= (ε′)n

(36)

Therefore, if we repeat P logε′ ε times, we can guarantee to reduce theone-sided error to ε.

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 56 / 77

Page 57: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Randomized Communication Complexity

Proof of Property 1: Now we prove property 1. We still run P n times,each gives an output Xi , i ∈ {1, . . . , n}. In the new protocol, Alice andBob will claim f (x , y) = 1 if and only if

1

n

i

Xi >1

2(37)

Now we bound the error for the new protocol P ′:

P[err |f (x , y) = 0] ≤n∑

i=dn/2e

(n

i

)(ε

′)i (1− ε′)n−i

≤ (ε′)n

(38)

P[err |f (x , y) = 1] ≤n∑

i=dn/2e

(n

i

)(ε

′)i (1− ε′)n−i

≤ (ε′)n

(39)

Therefore, if we repeat P logε′ ε times, we can also guarantee to reducethe two-sided error to ε.

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 57 / 77

Page 58: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Distributional Complexity and Discrepancy

Outline

1 Deterministic Communication ComplexityProblem SetupProtocol TreeCombinatorial RectanglesFooling SetsRectangle Rank

2 Nondeterministic CC & Randomized CCNondeterministic Communication Complexity: MotivationNondeterministic Communication Complexity: definitionsRandomized Communication ComplexityDistributional Complexity and Discrepancy

3 Some Analysis

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 58 / 77

Page 59: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Distributional Complexity and Discrepancy

Distributional Complexity

Motivation: Consider probability distributions over the inputsDefinition: Let µ be a probability distribution on X × Y . The(µ, ε)-distributional communication complexity of f , Dµ

ε (f ), is the cost ofthe best deterministic protocol that gives the correct answer for f with aprobability at least 1− ε.

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 59 / 77

Page 60: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Distributional Complexity and Discrepancy

Discrepancy

Motivation: Allow those rectangles that partition the support to be“almost” f -monochromatic.Definition: Let f : X × Y → {0, 1} be a function, R be any rectangle,and µ be a probability distribution on X × Y , Denote

Discµ(R, f ) = |Pµ

[f (x , y) = 0 & (x , y) ∈ R]− Pµ

[f (x , y) = 1 & (x , y) ∈ R]|(40)

The discrepancy of f according to µ is,

Discµ(f ) = maxR

Discµ(R, f ) (41)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 60 / 77

Page 61: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Distributional Complexity and Discrepancy

Discrepancy

Proposition 3.28 (Kushilevitz & Nisan): For every functionf : X × Y → {0, 1}, every probability distribution µ on X × Y , and everyε ≥ 0,

Dµ1/2−ε(f ) ≥ log2(2ε/Discµ(f )) (42)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 61 / 77

Page 62: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Nondeterministic CC & Randomized CC Distributional Complexity and Discrepancy

Discrepancy

Proof: Given any P with c bits to compute f , we have

2ε ≤ P[P(x , y) = f (x , y)]− P[P(x , y) 6= f (x , y)]

=∑

`

(P[P(x , y) = f (x , y)&(x , y) ∈ R`]

−P[P(x , y) 6= f (x , y)&(x , y) ∈ R`])

≤∑

`

|Pµ

[f (x , y) = 0 & (x , y) ∈ R`]− Pµ

[f (x , y) = 1 & (x , y) ∈ R`]|

≤ 2c · Discµ(f )(43)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 62 / 77

Page 63: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Outline

1 Deterministic Communication ComplexityProblem SetupProtocol TreeCombinatorial RectanglesFooling SetsRectangle Rank

2 Nondeterministic CC & Randomized CCNondeterministic Communication Complexity: MotivationNondeterministic Communication Complexity: definitionsRandomized Communication ComplexityDistributional Complexity and Discrepancy

3 Some Analysis

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 63 / 77

Page 64: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Recall

Definitions: Let f : X × Y → {0, 1} be a binary function.

• CP(f ): the smallest number of leaves in a protocol P• CD(f ): the smallest number of monochromatic rectangles that

partition X × Y

• C (f ): the smallest number of monochromatic rectangles needed tocover X × Y

• C z(f ): the smallest number of monochromatic rectangles needed tocover the z-inputs

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 64 / 77

Page 65: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Recall

Proposition: For all f : X × Y → {0, 1},

log2 C (f ) ≤ log2 CD(f ) ≤ log2 C

P(f ) ≤ D(f ) (44)

C (f ) = C 0(f ) + C 1(f ) (45)

Definition: The nondeterministic communication complexity,

N1(f ) = log2 C1(f ) (46)

N0(f ) = log2 C0(f ) (47)

N(f ) = log2 C (f ) (48)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 65 / 77

Page 66: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Protocol partition number

Theorem 2.8 (Kushilevitz and Nisan): The protocol partition numberof a function determines the deterministic communication complexity.

log2 CP(f ) ≤ D(f ) ≤ 2 log3/2 C

P(f ) (49)

Proof: Given any protocol P with t number of leaves, it can be convertedinto a “balanced” protocol.

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 66 / 77

Page 67: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Protocol partition number

Proof: Given any protocol P with t number of leaves, there must exist aninternal node v such that

t/3 < tv ≤ 2t/3 (50)

We build a new protocol based on this internal node:

1 Alice and Bob determine whether or not (x , y) ∈ Rv

2 If (x , y) ∈ Rv , Alice and Bob recursively solve f in the rectangle Rv .

3 If (x , y) 6∈ Rv , Alice and Bob recursively solve f ′ on X × Y where

f ′(x1, y1) =

{f (x1, y1) if (x1, y1) 6∈ Rv

0 otherwise(51)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 67 / 77

Page 68: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Protocol partition number

Analysis:

• Step 1 Requires 2 bits

• In Step 3, we take P and replace Tree(v) by a 0-leaf, we get aprotocol for f ′ with t − tv + 1 leaves, hence

D(t) ≤ 2 + D(2t/3) (52)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 68 / 77

Page 69: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Recall

Proposition: For all f : X × Y → {0, 1},

log2 C (f ) ≤ log2 CD(f ) ≤ log2 C

P(f ) ≤ D(f ) ≤ 2 log3/2 CP(f ) (53)

Definition: The nondeterministic communication complexity,

N1(f ) = log2 C1(f ) (54)

N0(f ) = log2 C0(f ) (55)

N(f ) = log2 C (f ) (56)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 69 / 77

Page 70: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Deterministic CC Vs. Nondeterministic CC

How good is the rectangle lower bound?

D(f )?= O(logCD(f )) (57)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 70 / 77

Page 71: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Deterministic CC Vs. Nondeterministic CC

Theorem 2.11 (Kushilevitz & Nisan): For every functionf : X × Y → {0, 1},

D(f ) = O(N0(f )N1(f )) (58)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 71 / 77

Page 72: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Deterministic CC Vs. Nondeterministic CC

Property: Let R = S × T be a 0-monochromatic rectangle, and letR ′ = S ′ × T ′ be a 1-monochromatic rectangle, then either S ∩ S ′ = ∅ orT ∩ T ′ = ∅.

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 72 / 77

Page 73: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Deterministic CC Vs. Nondeterministic CC

Proof of Theorem 2.11 (Kushilevitz & Nisan): We give a protocol Pas follows, Alice and Bob search for a 0-rectangle that contains the input(x , y), and they conclude f (x , y) = 1 if they fail. In each round, Alice andBob exchange log2 C

1(f ) + 1 bits and reduce the number of “alive”0-rectangles by a factor of 2. There will be no more than log2 C

0(f )rounds, hence

D(f ) ≤ CC (P) = O(log2 C0(f )(log2 C

1(f ) + 1)) = O(N0(f )N1(f )) (59)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 73 / 77

Page 74: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Deterministic CC Vs. Nondeterministic CC

Proof of Theorem 2.11 (Kushilevitz & Nisan): In each round, theplayers do the following:

1 Alice outputs f (x , y) = 0 if no 0-rectangles are alive. Otherwise, Alicelooks for a 1-rectangle that contains row x and intersects in rows withat most half of the alive 0-rectangles and send the name of this1-rectangle.

2 Bob looks for a 1-rectangle that contains column y and intersects incolumns with at most half of the alive 0-rectangles and send thename of this 1-rectangle. Otherwise, Bob outputs f (x , y) = 0

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 74 / 77

Page 75: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Deterministic CC Vs. Nondeterministic CC

Protocol Analysis:

• If f (x , y) = 0, it must belong to some 0-rectangle R, then R remainsalive during the protocol. Therefore, if no 0-rectangle is alive, f (x , y)must be 1

• If neither Alice nor Bob can find a 1-rectangle to announce (whichmeans both of them output f (x , y) = 1), we claim this output mustbe correct by the property.

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 75 / 77

Page 76: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Public coin

Theorem (Theo. 3 in Newman 1991, Theo. 3.14 in K & N): Letf : {0, 1}n × {0, 1}n → {0, 1} be a function. For every δ > 0 and everyε > 0, we have

Rδ+ε(f ) ≤ Rpubε (f ) + O(logn + logδ−1) (60)

• ∃ a set of t(δ, n) = O(n/δ2) public coin protocols with error ε+ δ

• Alice tells Bob which protocol to use log2 t = O(log n + log δ−1)

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 76 / 77

Page 77: Communication Complexity - faculty.coe.drexel.edu · 6 A. K. Chandra, M. L. Furst and R. J. Lipton, \Multi-party Protocols," Proc. of 15th ACM Symposium on Theory of Computing, 1983,

Some Analysis

Randomized CC Vs. Distributional CC

Theorem (Theo. 3 in Yao 1979, Theo. 3.20 in K & N):

Rpubε (f ) = max

µDµε (f ) (61)

• ⇒ The randomized protocol is correct for every distribution µ withprobability ≥ 1− ε

• ⇐ Use min-max theorem of zero-sum game

Jie Ren (Drexel ASPITRG) CC Nov 3rd, 2014 77 / 77