combinatorial interpretations for a class of algebraic equations and uniform partitions

63
Combinatorial interpretations for a class of algebraic equations and uniform partitions Speaker: Yeong-Nan Yeh Institute of mathemetics, Academia sinica Aug. 21, 2012

Upload: mare

Post on 06-Jan-2016

27 views

Category:

Documents


0 download

DESCRIPTION

Combinatorial interpretations for a class of algebraic equations and uniform partitions. Speaker: Yeong-Nan Yeh Institute of mathemetics, Academia sinica Aug. 21, 2012. Catalan paths. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Combinatorial interpretations for a class of algebraic equations and uniform partitions

Combinatorial interpretations for a class of algebraic equations and

uniform partitions

Speaker: Yeong-Nan Yeh

Institute of mathemetics, Academia sinica

Aug. 21, 2012

Page 2: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 2页第 2页

Catalan paths• An n-Catalan path is a lattice path from (0,0)

to (2n,0) in the first quadrant consisting of up-step (1,1) and down-step (1,-1) .

Page 3: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 3页第 3页

Catanlan number

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, … ,

Page 4: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 4页第 4页

2)(1)(

:equation Algebaric

zzCzC

0

)(:function Generatingn

nn zczC

Page 5: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 5页第 5页

Motzkin paths• An n-Motizkin path is a lattice path from (0,0)

to (n,0) in the first quadrant consisting of up-step (1,1), level-step (1,0) and down-step (1,-1).

Motzkin number:1, 1, 2, 4, 9, 21, 51, 127, 323, 835, … ,

Page 6: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 6页第 6页

22 )()(1)(

:equation Algebaric

zMzzzMzM

0

)(:function Generatingn

nn zmzM

Page 7: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 7页第 7页

Combinatorial structure Generating function f(z) Algebaric equation

Catalan path:(1,1),(1,-1) in the first quadrant

C(z) C(z)=1+z[C(z)]2

=1+zC(z)·C(z)

Motzkin path:(1,1),(1,-1),(1,0) in the first quadrant

M(z) M(z)=1+zM(z)+z2[M(z)]2

=1+zM(z)·[1+zM(z)]

??? ??f(z)

Given an algebaric equation for arbitrary polynomial F(z,y) , how to construct a combinatorial structure such that its generating function f(z) satisfies this equation?

),(1 yzFzyy

),(1 yzzyFy

))(,()(1)( zfzFzzfzf

Page 8: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 8页

Lattice paths• A lattice path is a sequence

(x1,y1)(x2,y2)…(xk,yk) of vectors in the plane with (xi,yi)∈Z≥0×Z\{(0,0)}, where Z and Z≥0 are the sets of integers and nonnegative integers respectively.

Page 9: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 9页

Weight of a lattice path• Let w be a function from Z≥0

×Z to R, where R is the set of real numbers.

• For any lattice path P=(x1,y1)(x2,y2)…(xk,yk) define the weight of P, denoted by w(P), as

k

iii yxwPw

1

),()(

Page 10: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 10页

S-path and S-nonnegative path• Let S be a finite subset of Z≥0

×Z\{(0,0)}.

• An S-path is a lattice path (x1,y1)(x2,y2)…(xk,yk) with (xi,yi) S.∈

• An S-nonnegative path is an S-path in the first quadrant

Page 11: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 11页第 11页

)).(,()(1

)]([1 Then

.)(function generating a Define .)( and

(n,0)endpoint with paths enonnegativ-S ofset thebe )(Let

.)1(1)10(

)},,2,1,,2,1)1,{()}1,0{(Let :Theorem

1 1

00

zfzFzzf

zfzaf(z)

zPwf(z)LSLL

SLL

aj,-i,w,w

mjriijS

ijr

i

m

jij

n LP

n

nn

nn

ij

n

Page 12: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 12页第 12页

• A decomposition of a S-nonnegative path.

P=(0,1)P1(0,1)P2(0,1)P3…Pi-1(j,-i+1)Pi

w(0,1)=1,w(j,-i+1)=ai,j

Page 13: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 13页

More general cases

• Let λ be a function from Z≥0 ×Z to Z≥0.

• For any lattice path P=(x1,y1)(x2,y2)…(xk,yk) define the λ-length of P, denoted by λ(P), as

k

iii yxP

1

),()(

Page 14: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 14页第 14页

)).(,()(1

1

Then .function generating a Define

. and axis-on point a

at ending length - with paths enonnegativ-S ofset thebe )(Let

.1)1,( and,0)1,()1()1,()1(

Let .integers enonnegativ are and where

,)0,0( and )},,2,1,,2,1)1,{()}1,{(

Let :Theorem

1 1

0

1

zfzFzzf

[f(z)]zaf(z)

w(P)zf(z)

(S)LL(S)Lx

nSLL

a),-iw(wj, w,-ii-

SmjriiS

ijr

i

m

jij

LP

λ(P)

nn

nn

ijji

j

j

j

Page 15: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 15页

Uniform partition• An n-Dyck path is a lattice path from (0,0) to (2n,0) in the

plane integer lattice Z×Z consisting of up-step (1,1) and down-step (1,-1).

The number of n-Dyck paths is

n

n2

Page 16: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 16页第 16页

K.L. Chung, W. Feller, On fluctuations in-coin tossing, Proc. Natl. Acad. Sci. USA 35 (1949) 605-608

Chung-Feller theorem:The number of Dyck path of semi-length n with m up-steps under x-axis is the n-th Catalan number and independent on m.

Page 17: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 17页第 17页

Uniform partition (An uniform partition for Dyck paths)

The number of up-steps (1,1) lying below x-axis

Page 18: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 18页

0 0

,

0 0,

1

)()()(

have We

orem,Feller theChungby with ngSubstituti

)(

Let

n

n

k

knn

nkn

n

n

k

knkn

y

zCyzyCyzcy,zC

cc

yzcy,zC

Page 19: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 19页第 19页

Lifted Motzkin paths• A lifted n-Motizkin path is a lattice path from (0,0)

to (n+1,1) in the plane integer lattice Z×Z consisting of up-step (1,1), level-step (1,0) and down-step (1,-1), which never passes below the line y=1 except (0,0).

Page 20: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 20页第 20页

Free Lifted Motzkin paths• A free lifted n-Motizkin path is a lattice path from (0,0) to

(n+1,1) in the plane integer lattice Z×Z consisting of up-step (1,1), level-step (1,0) and down-step (1,-1).

Page 21: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 21页第 21页

• The number of free lifted n-Motzkin path with m steps at the left of the rightmost lowest point is the n-th Motzkin number and independent on m.

Page 22: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 22页第 22页

An uniform partition for free lifted Motzkin paths• Shapiro found an uniform partition for Motzkin path.

L. Shapiro, Some open questions about random walks, involutions, limiting distributions, and generating functions, Advances in Applied Math. 27 (2001), 585-596.

The number of steps at the left of the rightmost lowest point of a lattice path

Eu, Liu and Yeh proved this proposition.Eu, S. P. Liu, S. C. and Yeh, Y. N. Taylor expansions for Catalan and Motzkin numbers, Adv. Appl. Math. 29 (2002) 345-357

Page 23: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 23页

0 0

,

0 0,

1

)()()(

have We

,with ngSubstituti

)(

Let

n

n

k

knn

nkn

n

n

k

knkn

y

zMyzyMyzmy,zM

mm

yzmy,zM

Page 24: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 24页

Function of uniform partition type

• For any generating function f(x),the form

is called the function of uniform partition type for f(x).

1

)()(

y

zfyzyf

Page 25: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 25页第 25页

Combinatorial structure

Generating function Combinatorial structure

Function of uniform partition

Catalan path C(z)

C(z)=1+z[C(z)]2

n-Dyck path:

Motzkin path M(z)

M(z)=1+zM(z)+z2[M(z)]2

lifted n-Motizkin path

??? f(z)

f(z)=1+yzF(y,f(z))

???

1

)()(),(

y

zCyzyCzyC

1

)()(),(

y

zMyzyMzyM

1

)()(),(

y

zfyzyfzyCF

Function of uniform partition type

Page 26: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 26页第 26页

.)11(1)11(

and

)},,1,,2,1)1,1{()}1,1{(

set stepFix

ija,-iij,w,w

mijriiijS

Page 27: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 27页第 27页

)).(,()(1

)]([1 Then

.)(

function generating a Define .)( and

(n,0)endpoint with paths enonnegativ-S ofset thebe )(Let

.)11(1)11(

)},,1,,2,1)1,1{()}1,1{(Let

:Lemma

1 1

0

0

zfzFzzf

zfzaf(z)

zPwf(z)

LSLL

SLL

a,-iij,w,w

mijriiijS

ijr

i

m

jij

n LP

n

nn

nn

ij

n

Page 28: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 28页第 28页

• A decomposition of a S-nonnegative path.

P=(1,1)P1(1,1)P2(1,1)P3…Pi-1(j-i+1,-i+1)Pi

w(1,1)=1, w(j-i+1,-i+1)=ai,j

(j-i+1,-i+1)

Page 29: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 29页

Function of uniform partition type

r

i

m

ij

i

k

kikkjjji

r

i

m

ij

ij

k

ikjji

r

i

m

ij

ijji

nn

yzfzfyza

zfyza

zyCF

y

zfyzyfzyCF

zfzazf

zfzf

1 1

1

0

1,

1 1 0,

1 1,

0n

)()(1

)(1

),(

Then .1

)()(),(Let

.)(1)(

equation algebaric following thesatisfies )( Suppose

Page 30: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 30页第 30页

r

i

m

ij

i

k

kkikjjij

r

i

m

ij

iij

k

kjij

zfyzfyzazyH

zfyzazyG

1 1

1

0

1

1 1 0

)]([)]([1

1),(

)]([1),(Let

r

i

m

ij

i

k

kikkjjij

r

i

m

ij

ij

k

ikjij

yzfzfyza

zfyza

zyCF

1 1

1

0

1

1 1 0

)()(1

)(1

),(

Combinatorial interpretations for H(y,z) and G(y,z)?

Page 31: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 31页第 31页

Combinatorial interpretation for H(y,z)

• Recall that an S-path is a lattice path P=(x1,y1)(x2,y2)…(xk,yk) with (xi,yi) S.∈

• Define the nonpositive length of P, denoted by nl(P), as the sum of x-coordinate of steps touching or going below x-axis.

Page 32: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 32页第 32页

Combinatorial interpretation for H(y,z)• Define the nonpositive length of P, denoted

by nl(P), as the sum of x-coordinate of steps touching or going below x-axis,

nl(P)=1+1+1+2+1+1=7

Page 33: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 33页第 33页

.)(,

Then .)( and

(n,0)endpoint with paths-S ofset thebe )(Let

.)11(1)11(

)},,1,,2,1)1,1{()}1,1{(Let

:Lemma

0

)(

0

n HP

nPnl

nn

nn

ij

n

zyPwz)H(y

HSHH

SHH

a,-iij,w,w

mijriiijS

Combinatorial interpretation for H(y,z)

Page 34: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 34页第 34页

f(z)f(z)

f(z)

f(yz)

f(yz)f(yz)

H(y,z)

kkikjjij zfyzfyza )]([)]([ 1

r

i

m

ij

i

k

kkikjjij zfyzfyzazyHzyH

1 1

1

0

1 )]([)]([),(1),(

• A decomposition of a S-path.

Page 35: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 35页

• A rooted S-nonnegative path is a pair [P;k] consisting of an S-nonnegative path P=(x1,y1)(x2,y2)…(xn,yn) with xn≥1 and a nonnegative integer k with 0≤ k≤ xn-1.

• For example, P=(1,1)(1,1)(1,-2)(1,0)(1,1)(1,1)(1,1)(1,-1)(2,-1).[P;0],[P;1] and [P;2] are rooted S-nonnegative path.

Combinatorial interpretation for G(y,z)

Page 36: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 36页第 36页

.)(,

Then .)( and (n,0)endpoint with

paths enonnegativ-S rooted ofset thebe )(Let

.)11(1)11(

)},,1,,2,1)1,1{()}1,1{(Let

:Lemma

0 ];[

0

n GkP

nk

nn

nn

ij

n

zyPwz)G(y

GSGG

SGG

a,-iij,w,w

mijriiijS

Combinatorial interpretation for G(y,z)

Page 37: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 37页第 37页

ikjij zfyza )]([

f(z)

f(z)f(z)

f(z)

k

• A decomposition of a rooted S-nonnegative path.

r

i

m

ij

iij

k

kjij zfyzazyG

1 1 0

)]([1),(

Page 38: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 38页

• A lifted S-path is an S-path in the plane starting at (0,0) and ending at a point in the line y=1.

• A rooted lifted S-path is a pair [P;k] consisting of a lifted S-path P=(x1,y1)(x2,y2)…(xn,yn) with xn≥1 and a nonnegative integer k with 0≤ k≤ xn-1.

Combinatorial interpretation for CF(y,z)

Page 39: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 39页

Combinatorial interpretation for CF(y,z)

.)(,F

Then .)( and 1,1)(nendpoint with

paths-S lifted rooted ofset thebe )(Let

.)11(1)11(

)},,1,,2,1)1,1{()}1,1{(Let

:Theorem

0 ];[

)(

0

n TkP

nkPnl

nn

nn

ij

n

zyPwz)(yC

TSTT

STT

a,-iij,w,w

mijriiijS

Page 40: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 40页第 40页

The last step (1,1) from y=0 to y=1

(n+1-k,0)

A decomposition for an rooted lifted S-path

G(y,z)

H(y,z)

.)(

),(),(,F

0 ];[

)(

n TkP

nkPnl

n

zyPw

zyGzyHz)(yC

(n+1,1)

(0,0)

Page 41: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 41页

More general cases

• Let λ be a function from Z≥0 ×Z to Z≥0.

• For any lattice path P=(x1,y1)(x2,y2)…(xk,yk) define the λ-length of P, denoted by λ(P), as

k

iii yxP

1

),()(

Page 42: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 42页

• A λ-rooted lifted S-path is a pair [P;k] consisting of a lifted S-path P=(x1,y1)(x2,y2)…(xn,yn)

with λ(xn,yn)≥1 and a nonnegative integer k with 0≤

k≤ λ(xn,yn) -1.

Page 43: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 43页

• For any S-path P=(x1,y1)(x2,y2)…(xn,yn), define the λ-nonpositive length of P, denoted by nlλ(P), as the sum of λ-length of steps touching or going below x-axis.

• For example, let λ(1,1)=0, λ(x,y)=x for any (x,y)≠ ( 1,1)

nlλ (P)=1+1+0+2+1+0=5

• For any rooted lifted S-path [P;k], define the rootedλ-nonpositive length of P as nlλ(P)+k.

Page 44: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 44页n

,

];[

1)()(

1 10

j1

and 0any for on t independen

is Then .length enonpositiv rooted- and 1length -

with paths-S lifted rooted- of weightsof sum thebe Let (3)

.)(1

)()(,F

Then .paths-S lifted rooted ofset thebe (2)Let

)(1)(Then .)()(

function generating a Define axis.-on point aat ending

nlength - with paths enonnegativ-S ofset thebe Let (1)

.1)1(1,,1)(;)1()1(

)},,1,,2,1)1,{()}1,{(Let :Theorem

ffnkk

fkn

f

zyPwy

zfyzyfz)(yC

T

zfzazfzPwzf

x

L

j-i,-iαa,-iw,w

mijriiS

n,k

kn

n,k

TkP

PkPnl

r

i

m

ij

ijij

n

n LP

n

jiji-

j

n

Page 45: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 45页

Page 46: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 46页

Page 47: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 47页

Page 48: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 48页

Page 49: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 49页

Page 50: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 50页

Page 51: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 51页

Page 52: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 52页

Page 53: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 53页

Page 54: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 54页

Page 55: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 55页

Page 56: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 56页

Page 57: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 57页

Page 58: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 58页

Page 59: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 59页

Page 60: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 60页

Page 61: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 61页

Page 62: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 62页

Page 63: Combinatorial interpretations for a class of algebraic equations and uniform partitions

第 63页第 63页

Thank you for your attention!