colonization: a permanent habitat for the …...colonization a permanent habitat for the...

26
COLONIZATION A P ERMANENT H ABITAT FOR THE C OLONIZATION OF M ARS A thesis submitted in fulfilment of the requirements of the degree of Master in Engineering Science (Research) in Mechanical Engineering BY MATTHEW HENDER THE UNIVERSITY OF ADELAIDE SCHOOL OF MECHANICAL ENGINEERING SUPERVISORS DR. GERALD SCHNEIDER & COLIN HANSEN August 2009

Upload: others

Post on 27-Jan-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

COLONIZATION

A PERMANENT HABITAT FOR THE

COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of Master in Engineering Science (Research) in

Mechanical Engineering

B Y

M A T T H E W H E N D E R

T H E U N I V E R S I T Y O F A D E L A I D E

S C H O O L O F M E C H A N I C A L E N G I N E E R I N G

S U P E R V I S O R S – D R . G E R A L D S C H N E I D E R &

C O L I N H A N S E N

A u g u s t 2 0 0 9

Page 2: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

N O A C H I S T E R R A

Dia-Cau

Wicklow

Huancayo

Kong

Lachute

AzusaTimbuktu

Batoka

Innsbruck

Bamba

Tarata

ChinjuRakke

Chimbote

Camiling

Mega

OglalaPinglo

Manti

Berseba

Tuskegee

BalboaBahn

Rypin

Windfall

Aromatum

Chaos

Ravi Vallis

Zulankav

H Y D R A O T E S C H A O S

A U R E U M

C H A O S

EO

S C

HA

SM

A

A r s i n o e s

C h a o s

P y r r h a e

C h a o s

I A N I

C H A O S

Airy

MA R G A R I T I F E R

C H A O S

X A N T H E

T E R R A

CA

PR I

C H A SM

A

Ga n g e s

C h a s ma

E o s

C h a o s

V i n o g r a d o v

Golden

Buta

Bigbee

SigliPolotsk

Nitro

GlazovLonga

Lorica

Shambe

Grójec Aspen

Kirsanov YegrosCircle

Falun

Murgoo

Seminole

Thule

Balta

AlgaInta

IrbitKasimov

ElyGlobe

BograBoru

Revda Chekalin

Loto

Chapais

Guir

SibuKarshi Cartago

Lebu

J o n e s

B e e r

Newcomb

Kansk

Kimry

SingaKita

P e t a

Dingo

Kantang

Dison

Ruby

NepaFastov

Kuba

Edam

NavanRana

TuraGardo

SangarTiwi

Lamas

Kanab

Noma

Olt

isV

alle

s

Him

era

Val

les

Kashira

Calbe

Bison

Nardo

Luki

Livny

Say

O s t r o v

Runa

Vallis

H o l d e n

M A R G A R I T I F E R

T E R R A

Loi r e

Va

l l es

Paraná

Valles

Gagra

Erythraea Fossa

.

. Novara

.

.

..

. ..

..

.Groves

Kaid_

.

.

.. .

.

.

. .

.

.

Sitka

SpryLocana

Stobs

. ..

..

.

VaalsConches

Manah

Byske

Quorn

.

. .

...

.

Wink

KholmDaet

PaksSfax

RinconGlide

.

.

.Butte

Creel

V A LL

ES

MA R I N E R I S

A U R O R A E C H A O S

Arda Val les .

.

.

.

..

.

.

..

..

....

Cluny

..

.

.

Campos

Manzi-

Bend

Gori

Ladon Va

lles

. .

.

.

..

.

Goba

Galu.

.

..

..

.. Deba..Cheb

. Kagul

Bentong .Honda

N

i r g

a l

V a l l i s

U

zboi

V

allis

SurindaValles

.Sandila

.. Lar.

.TakJal

. Cobalt

Harad,.

.Eads

.

.Omura_

. .

Pabo

.

.Timaru

.

C l ota

Val

lis

..Mila

.Blitta

..

Samara Va

lles

Sam

a ra Vall e s

.

..

.Airy-0

..Bar

Flat

.Crewe

..

..

Plum

Kirs

Nan

Voo

.

.Echt

.Kaj

.Romny

A R A B I A

T E R R A

.Gatico

O

suga Va l l e

s

M E R I D I A N I P L A N U M *

Eos

Men

sa*

315°E (45°W)

-5°

320°E (40°W)

-10°

-15°

-20°

-25°

-30°

325°E (35°W) 330°E (30°W) 335°E (25°W) 340°E (20°W) 345°E (15°W) 350°E (10°W) 355°E (5°W) 360°E (0°W)0°

-5°

-10°

-15°

-20°

-25°

-30°

315°E (45°W) 320°E (40°W) 325°E (35°W) 330°E (30°W) 335°E (25°W) 340°E (20°W) 345°E (15°W) 350°E (10°W) 355°E (5°W) 360°E (0°W)

010

00

3000

-100

0

-300

0

-500

0

-700

0

-900

0

5000

7000

9000

1100

0

1300

0

1500

0

1700

0

1900

0

2100

0

-8200 Minimum 21229 MaximumElevations above 9000 meters

found only on the larger volcanos.

Elevation in meters

Page 3: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

Airy

N O A C H I S

T E R R A

T E R R A

S A B A E A

Mädler

Wislicenus

Bakhuysen

F l a u g e r g u e s

N e w c o m b

Denning

D a w e s

Teisserencde Bort

Lambert

Bouguer

Pollack

Brazos

Valles

Bra

zos

Va

lles

S c h i a p a r e l l i

Evros Vallis

M

osaVallis

Scy

lla

Sco

pulu

sC

hary

bdis

S

copu

lus

Airy-0.

0°E (360°W)

-5°

0°5°E (355°W)

-10°

-15°

-20°

-25°

-30°

10°E (350°W) 15°E (345°W) 20°E (340°W) 25°E (335°W) 30°E (330°W) 35°E (325°W) 40°E (320°W) 45°E (315°W)0°

-5°

-10°

-15°

-20°

-25°

-30°

0°E (360°W) 5°E (355°W) 10°E (350°W) 15°E (345°W) 20°E (340°W) 25°E (335°W) 30°E (330°W) 35°E (325°W) 40°E (320°W) 45°E (315°W)

010

00

3000

-100

0

-300

0

-500

0

-700

0

-900

0

5000

7000

9000

1100

0

1300

0

1500

0

1700

0

1900

0

2100

0

-8200 Minimum 21229 MaximumElevations above 9000 meters

found only on the larger volcanos.

Elevation in meters

Page 4: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

Schaeberle

Niesten

Oe

no

t ri a

S c o p u l u s

Fournier

T Y R R H E N A

T E R R A

IsilSuzhi

Kasabi

Millochau

Briault

Jarry-Desloges

Tisia

Valles

L i r i s

Va

l l es

H U Y G E N S

T e r b y

S c h r o e t e r

Teisserencde Bort

Verlaine

Nar

o

Val

lis

.

.

.

T E R R A

S A B A E A

.

010

00

3000

-100

0

-300

0

-500

0

-700

0

-900

0

5000

7000

9000

1100

0

1300

0

1500

0

1700

0

1900

0

2100

0

-8200 Minimum 21229 MaximumElevations above 9000 meters

found only on the larger volcanos.

Elevation in meters

45°E (315°W)

-5°

0°50°E (310°W)

-10°

-15°

-20°

-25°

-30°

55°E (305°W) 60°E (300°W) 65°E (295°W) 70°E (290°W) 75°E (285°W) 80°E (280°W) 85°E (275°W) 90°E (270°W)0°

-5°

-10°

-15°

-20°

-25°

-30°

45°E (315°W) 50°E (310°W) 55°E (305°W) 60°E (300°W) 65°E (295°W) 70°E (290°W) 75°E (285°W) 80°E (280°W) 85°E (275°W) 90°E (270°W)

Page 5: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

Briault

Suata

Rayadurg

Loon

Igol

Ulya

Tala

Espino

Kunes

Solano

Piyi

Faqu

Wajir

Kinkora

Bazas Torup

Baro

Knobel

H e r s c h e l

M ü l l e r

S a v i c h

H E S P E R I A

P L A N U M

T E R R A

C I M M E R I ATYRRHENA PATERA

TyrrhenaMons

Tyrrhena

Fos

sae

Ta

gu

s

Va

l l es

Peraea

Cavus

Aus

onia

M

onte

s

Bombala

Boulia

Sinop

Arica

Trinidad

Khurli

Escalante

Kamativi

Chefu

Hes

peria

Dors

a

Licus

Val l is

Cerberus Dorsa

Cerberus Dorsa

Tyrrhena Dorsa

H

espe

ria

D

orsa

Palos

Tinto V

allis

T Y R R H E N A

T E R R A

.

010

00

3000

-100

0

-300

0

-500

0

-700

0

-900

0

5000

7000

9000

1100

0

1300

0

1500

0

1700

0

1900

0

2100

0

-8200 Minimum 21229 MaximumElevations above 9000 meters

found only on the larger volcanos.

Elevation in meters

90°E (270°W)

-5°

0°95°E (265°W)

-10°

-15°

-20°

-25°

-30°

100°E (260°W) 105°E (255°W) 110°E (250°W) 115°E (245°W) 120°E (240°W) 125°E (235°W) 130°E (230°W) 135°E (225°W)0°

-5°

-10°

-15°

-20°

-25°

-30°

90°E (270°W) 95°E (265°W) 100°E (260°W) 105°E (255°W) 110°E (250°W) 115°E (245°W) 120°E (240°W) 125°E (235°W) 130°E (230°W) 135°E (225°W)

Page 6: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

A E OL I S

ME N S A E

G a l e

Lasswitz

Wien

Moleswor th

G r a f f

Hadley

Boeddicker

Reuyl

Kayne

ThiraG u s e v

de Vaucouleurs

E L Y S I U M P L A N I T I A

T E R R A C I M M E R I A

Val

l is

Al-Qahira

Avernus

Colles

Apollinaris

Patera

ApollinarisTholus

ZephyriaTholus

AvernusCavi

AvernusCavi

Ave

rnu

s R

upes

ApollinarisSulci

Tartarus

Rupes

LUCUS

PLANUM

Zephyria

Mensae

Ave

rnu

s D

ors

a

Ave

rnus

Dor

sa

Tarta rus Scopulus

Matrona

Vallis

Ma

'ad

im

V

al l

i s

Durius

Valles

.Zutphen*.

.

.

..

Galdakao*

Crivitz*

New Plymouth*Downe*

010

00

3000

-100

0

-300

0

-500

0

-700

0

-900

0

5000

7000

9000

1100

0

1300

0

1500

0

1700

0

1900

0

2100

0

-8200 Minimum 21229 MaximumElevations above 9000 meters

found only on the larger volcanos.

Elevation in meters

135°E (225°W)

-5°

0°140°E (220°W)

-10°

-15°

-20°

-25°

-30°

145°E (215°W) 150°E (210°W) 155°E (205°W) 160°E (200°W) 165°E (195°W) 170°E (190°W) 175°E (185°W) 180°E (180°W)0°

-5°

-10°

-15°

-20°

-25°

-30°

135°E (225°W) 140°E (220°W) 145°E (215°W) 150°E (210°W) 155°E (205°W) 160°E (200°W) 165°E (195°W) 170°E (190°W) 175°E (185°W) 180°E (180°W)

Page 7: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

180°E (180°W)

185°E (175°W)

190°E (170°W)

195°E (165°W)200°E (160°W)

205°E (155°W) 210°E (150°W) 215°E (145°W)220°E (140°W)

225°E (135°W)

230°E (130°W)

235°E (125°W)

240°E (120°W)-30°

-35°

-40°

-45°

-50°

-55°

-60°

-65°

-30°

-35°

-40°

-45°

-50°

-55°

-60°

-65°180°E

(180°W)

185°E

(175°W)

190°E

(170°W)

195°E

(165°W)

200°E (160°W)

205°E (155°W)

210°E (150°W)

215°E (145°W)

220°E (140°W) 225°E (135°W) 230°E (130°W) 235°E (125°W) 240°E (120°W)

Atlantis

Chaos

Gorgonum

Chaos

Magelhaens

M a r i n e r

N e w t o n

Ptolemaeus

C o p e r n i c u s

Very

Liu Hsin

Nordenskiöld

Millman

Tader Valles

Li Fan

Hipparchus

Eudoxus

Nansen

Sirenum

Fossae

Sirenum

Fossae K o v a l ' s k y

Pickering

Hussey

Dokuchaev

Clark

Wright

Keeler

Trumpler

Kuiper

I ca

r i a F

os

sa

e

T E R R A

S I R E N U M

010

00

3000

-100

0

-300

0

-500

0

-700

0

-900

0

5000

7000

9000

1100

0

1300

0

1500

0

1700

0

1900

0

2100

0

-8200 Minimum 21229 MaximumElevations above 9000 meters

found only on the larger volcanos.

Elevation in meters

Page 8: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

240°E (120°W)

245°E (115°W)

250°E (110°W)

255°E (105°W)260°E (100°W)

265°E (95°W) 270°E (90°W) 275°E (85°W)280°E (80°W)

285°E (75°W)

290°E (70°W)

295°E (65°W)

300°E (60°W)-30°

-35°

-40°

-45°

-50°

-55°

-60°

-65°

-30°

-35°

-40°

-45°

-50°

-55°

-60°

-65°240°E

(120°W)

245 E

(115°W)

250°E

(110°W)

255°E

(105°W)

260°E(100°W)

265°E(95°W)

270°E(90°W)

275°E(85°W)

280°E(80°W) 285°E(75°W) 290°E(70°W) 295°E(65°W) 300°E(60°W)

Fontana

R o s s

Lamont

Brashear

Porter

S l i p h e r

Coblentz

L o w e l l

Pulawy

Aniak

Vik

Voeykov

Babakin Kumak

Lampland

CL

AR

I TA

S

FO

SS

AE

CO

RA

CI S

FO

SS

AE

Dinorwic

Virrat

Wukari Tugaske

Sripur

Douglass

B O S P O R O S

P L A N U M

I C A R I A

P L A N U M

TH

AU

MA

SI

A

Wa r r ego

Va l l e s

F

OS

SA

E

Bianchini

Claritas R

upes

.S O L I S P L A N U M

.Aki

Gari.

Los

A r g y r e R

up

es

Pro

tvaV

alle

s

Melas

Fossae

A O N I A T E R R A

A O N I A P L A N U M *

010

00

3000

-100

0

-300

0

-500

0

-700

0

-900

0

5000

7000

9000

1100

0

1300

0

1500

0

1700

0

1900

0

2100

0

-8200 Minimum 21229 MaximumElevations above 9000 meters

found only on the larger volcanos.

Elevation in meters

Page 9: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

300°E (60°W)

305°E (55°W)

310°E (50°W)

315°E (45°W)320°E (40°W)

325°E (35°W) 330°E (30°W) 335°E (25°W)340°E (20°W)

345°E (15°W)

350°E (10°W)

355°E (5°W)

360°E (0°W)-30°

-35°

-40°

-45°

-50°

-55°

-60°

-65°

-30°

-35°

-40°

-45°

-50°

-55°

-60°

-65°300°E

(60°W)

305°E

(55°W)

310°E

(50°W)

315°E(45°W)

320°E(40°W)

325°E(35°W)

330°E(30°W)

335°E(25°W)

340°E(20°W) 345°E(15°W) 350°E(10°W) 355°E(5°W)

360°E(0°W)

BungeMagadi

Sumgin

Tabor

Ruza

B o n d

Alit

us

Zongo

Zilair

Foros

H a l e

Labria

Hartwig

Vogel

Mena

Shatskiy

Baltisk

Kartabo

Torsö

FloraSarno

Tara

Turbi AzulSokol

BozkirKushva

Gali

Valga

Ochakov

ArkhangelskyChoctawKakori

Tarakan

Luga

H o o k e

CamiriPodor

Rengo

Satka

TazaYungay

Halley

Cypress

N O A C H I S

T E R R A

Bo

sp

or o

s

Ru

pe

s

Mafra

L o h s e

H e l m h o l t z

Dese

Karpinsk

W i r t z

G a l l e

A R G Y R E

P L A N I T I A

Mari Milford

Oceanidum

MonsLodwar

Chalce Montes

Kamloops

Horarum

Mons

Frento

Vallis

Roddenberry

D a r w i n

M a r a l d i

Vo n

K á r m á n Wegener

Auxo Dorsu

m

Salaga

Eger

.

.

.

G r e e n

Protva Valles

O

gy

gis

Ru

pe

s

Uz

b

o i Vallis

.

.

.

.

.

..

.Maidstone

. Dessau

. Vätö

.Talsi

. Kampot

. Kribi . Porvoo

.

.

.

. Gandu

. Kifri_

.Delta

.Tabou

P

allacopas Vallis

Pallacop as

Vallis

Nia Val l i s

N ia Va

llis

Phaenna Dorsu

m Cle ia D

orsum

Heg

emon

e

D

orsu

m

Octantis

Cavi

P

asith

ea

D

orsu

m

Charis

Dor

sum

Doanus Vallis

Ocea

nidum

Fossa

C H A R I T U M MO

N

TE

S

NE

R

EI

DU

M M O N T E S

Argyre

Cavi

Jezzav

Chalce

Fossa

Oodnadatta.

.

Octantis

Mons

.Bentham

Albi.

.Lemgo

Dubki.

....Kem'

Gah

HamSauk

. Tombe

. Wau

S i s y p h i

P l a n u m *

.

..

.

Dz ig

ai Vallis

Sur

ius

V

alli

s

S

ur i

us

Va

llis

010

00

3000

-100

0

-300

0

-500

0

-700

0

-900

0

5000

7000

9000

1100

0

1300

0

1500

0

1700

0

1900

0

2100

0

-8200 Minimum 21229 MaximumElevations above 9000 meters

found only on the larger volcanos.

Elevation in meters

Page 10: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

0°E (360°W)

5°E (355°W)

10°E (350°W)

15°E (345°W)20°E (340°W)

25°E (335°W) 30°E (330°W) 35°E (325°W)40°E (320°W)

45°E (315°W)

50°E (310°W)

55°E (305°W)

60°E (300°W)-30°

-35°

-40°

-45°

-50°

-55°

-60°

-65°

-30°

-35°

-40°

-45°

-50°

-55°

-60°

-65°0°E

(360°W)

5°E

(355°W)

10°E

(350°W)

15°E(345°W)

20°E(340°W)

25°E(335°W)

30°E(330°W)

35°E(325°W)

40°E(320°W) 45°E(315°W) 50°E(310°W) 55°E(305°W) 60°E(300°W)

Le Verrier

Maunder

.

K a i s e r

Russell

Rabe

Peneus Patera

Barnard

Pityusa

Rupes

Ch

alc

op

oro

s

Rup

es

Hel

lesp

onte

s

Mon

tes

P r o c t o r

A l p h e u s

C o l l e s

H e l l a sC h a o s

H E L L A S

P L A N I T I A

M A L E AP L A N U M

N O A C H I S

T E R R A

MaleaPatera*

SISYPHI

PLANUM*

010

00

3000

-100

0

-300

0

-500

0

-700

0

-900

0

5000

7000

9000

1100

0

1300

0

1500

0

1700

0

1900

0

2100

0

-8200 Minimum 21229 MaximumElevations above 9000 meters

found only on the larger volcanos.

Elevation in meters

Page 11: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

60°E (300°W)

65°E (295°W)

70°E (290°W)

75°E (285°W)80°E (280°W)

85°E (275°W) 90°E (270°W) 95°E (265°W)100°E (260°W)

105°E (255°W)

110°E (250°W)

115°E (245°W)

120°E (240°W)-30°

-35°

-40°

-45°

-50°

-55°

-60°

-65°

-30°

-35°

-40°

-45°

-50°

-55°

-60°

-65°60°E

(300°W)

65°E

(295°W)

70°E

(290°W)

75°E(285°W)

80°E(280°W)

85°E(275°W)

90°E(270°W)

95°E(265°W)

100°E(260°W) 105°E(255°W) 110°E(250°W) 115°E(245°W) 120°E(240°W)

Coronae

Scopulus

Anseris Mons

CañasGander

Nazca

Tignish

HADRIACA PATERA

Peraea Mons

AusoniaMensa

AusoniaCavus

Hellas

Montes

Sebec

Tikhov

W a l l a c e

Gledhill

Krishtofovich

Huxley

Heinlein

Redi

SpallanzaniS e c c h i

Barnard

AMPHITRITES

PATERA

Ma

d

AX

IU

S V

al l i s

VA

LL

ES

Zea

Dorsa

Daan

Quines

Santaca

Mliba

Thom

Tungla

Njesko

Taejin

PotiNegele

Coronae Mons

Dao

Va

l li s

Apia

Cue

Ayr

H E L L A S

P L A N I T I A

P R O M E T H E I

T E R R A

H E L L A S C H A O S

M A L E A P L A N U M

Alpheus

Colles

..

N ige r

V

a l l is

R e u l l V a l l i

s

R e u l l Va

l l i s

Cen

tau

r i Montes

Har

mak

his

Val l is

Gunnison*

Tev i o t Va

llis*

Euripus

Mons*

010

00

3000

-100

0

-300

0

-500

0

-700

0

-900

0

5000

7000

9000

1100

0

1300

0

1500

0

1700

0

1900

0

2100

0

-8200 Minimum 21229 MaximumElevations above 9000 meters

found only on the larger volcanos.

Elevation in meters

Page 12: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

120°E (240°W)

125°E (235°W)

130°E (230°W)

135°E (225°W)140°E (220°W)

145 E (215°W) 150°E (210°W) 155°E (205°W)160°E (200°W)

165°E (195°W)

170°E (190°W)

175°E (185°W)

180°E (180°W)-30°

-35°

-40°

-45°

-50°

-55°

-60°

-65°

-30°

-35°

-40°

-45°

-50°

-55°

-60°

-65°120 E

(240°W)

125°E

(235°W)

130°E

(230°W)

135°E

(225°W)

140°E(220°W)

145°E(215°W)

150°E(210°W)

155°E(205°W)

160°E(200°W) 165°E(195°W) 170°E(190°W) 175°E(185°W) 180°E(180°W)

Martz

K e p l e r

Tycho Brahe HugginsDrava

Valles

Rossby

Campbell

Mendel

Haldane

Priestley

Vinogradsky

PL A

NU

M C

HR

ON

I UM

Alexey

Tolstoy

Arrhenius

Ariadnes

Colles

Cruls

Bjerknes

Wells

Byrd

T E R R A

C I M M E R I A

M or

p h e o s R u p e s

S i r e n u m

F o s s a e

Er i d

an

i a

S

c op

ul u

s

E

r id a n i a

S c o p u l us

010

00

3000

-100

0

-300

0

-500

0

-700

0

-900

0

5000

7000

9000

1100

0

1300

0

1500

0

1700

0

1900

0

2100

0

-8200 Minimum 21229 MaximumElevations above 9000 meters

found only on the larger volcanos.

Elevation in meters

Page 13: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

0°E (0°W)10°E (350°W)

20°E (340°W)

30°E (330°W)

40°E (320°W)

50°E (310°W)

60°E (300°W

)

70°E (290°W

)

80

°E (2

80

°W)

90°E (270°W)

10

0°E

(2

60

°W)

110°

(25

0°W

)

120°

E (

240°

W)

130°

E (230

°W)

140°E (2

20°W)

150°E (210°W

)

160°E (200°W)

170°E 190°W)

180°E (180°W)

190°E (170°W)

200°E (160°W)

210°E (150°W)

220°E (140°W)

230°E (130°W)

240°E (120°W

)

250°E (110°W

)

26

0°E

(10

0°W

)

270°E (90°W)

28

0°E

(8

0°W

)

290°

E (

70°W

)

300°

E (

60°W

)

310°

E (50°

W)

320°E (4

0°W)

330°E (30°W

)

340°E (20°W)

350°E (10°W)

-65°

-70°

-75°

-80°

-85°

-85°

-80°

-75°

-70°

-65°

P L A N U M

A U S T R A L E

C h a s m aA u s t r a l e

P R OM

ET

HE

I

RU

PE

S

L i a i s

R a y l e i g h

Burroughs

Hutton

Weinbaum

G i l b e r tVishniac

M i t c h e l

H o l m e s

M a i n

S o u t h

McMurdo

B y r d

Jeans

Richardson

Charlier

S t o n e y

Playfair

L a u

Chamberlin

Smith

Heaviside

A g a s s i z

Joly

Dana

Daly

L y e l l

Sarn

Du Toit

P h i l l i p s

M e l l i s h

S c h m i d t

S t e n o

Suess

T E R R A

C I M M E R I A

Dunhuang

Dzeng

Lomela

Reynolds

A O N I A

T E R R A

CA

VI

AN

GU

ST

I

-

AustralisPatera

AngustaPatera

PLA

NU

M

AN

GU

STU

M

D O R S A A R G E N T E A

T E R R A

N O A C H I S

S I S Y P H I

C AV I

P R O M E T H E I

T E R R A

SISYPHI

MONTES

SISYPHI

MONTES

P R O M E T H E I

RU

PE

S

Pityusa

Rupes

D

OR

SA

B

RE

VI

A

Th

yl e

s

Ru

pe

s

Th

yl e

s

Ru

pe

s

Uly

xis

Ru

pes

.

.

.

.

Cavi

Frigores_

.

. .

Au

st

ra

le

Mo

nt

es

*

Pityusa

Patera*

AR

GE

NT

EA

PL

AN

UM

*

A R G E N T E A P L A N U M *

M A L E A

P L A N U M

PARVA PLANUM* P

RO

ME

TH

EI P

LA

NU

M*

S I S Y P H I P L A N U M *

Ch i c o V a l l

e s

T E R R A

S I R E N U M

010

00

3000

-100

0

-300

0

-500

0

-700

0

-900

0

5000

7000

9000

1100

0

1300

0

1500

0

1700

0

1900

0

2100

0

-8200 Minimum 21229 MaximumElevations above 9000 meters

found only on the larger volcanos.

Elevation in meters

Page 14: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

149

APPENDIX B – ELEMENTAL COMPOSITION MAPS OF THE MARTIAN SURFACE

Some of the maps of the elemental composition of the Mars surface layer are included

below (more are expected to become available in the future). They are created from data

acquired by the Gamma-ray Spectrometer (GRS) aboard the 2001 Mars Odyssey orbiter.

The GRS instrument is a collaboration between the University of Arizona‟s Lunar and

Planetary Laboratory, the Los Alamos National Laboratory and Russia‟s Space Research

Institute. The GRS consists of three instruments, a gamma-ray spectrometer, a neutron

spectrometer and a high energy neutron detector.

Each map represents the fully corrected, CO2 frost free elemental concentrations. Data

for all non-radioactive species have been masked to exclude polar regions where it is not

currently possible to adequately deal with dilution by the large amounts of water ice.

The letters on the maps indicate the landing sites of various landers (V1 and V2 – the

Viking landers; PF – Pathfinder; M – Opportunity, at Meridiani; and G – Spirit, at Gustev

Crater).

Water

Page 15: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

150

Iron

Silicon

Chlorine

Page 16: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

151

Thorium

Potassium

Page 17: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

152

GLOSSARY

Albedo – The fraction of incident

solar radiation reflected back into

space without absorption.

Aphelion – The point of a planet‟s

orbit at which it is furthest from the

sun.

C3 – A grouping of plants that

produce a molecule containing three

carbon atoms as the first product of

photosynthesis.

C4 – A grouping of plants that

produce a molecule containing four

carbon atoms as the first product of

photosynthesis.

Diurnal Temperature Range – The

temperature range over an average

day.

Extra Vehicular Activity (EVA) –

activities undertaken in the external

environment to the vehicle or habitat

(such as in space or on the Martian

surface).

ISRU – in-situ resource utilisation

– the use of local resources (typically

as opposed to importing resources

from elsewhere).

Opposition – when two planets

are on opposite sides of the sun.

Optical Depth – A measure of how

much light is absorbed in travelling

through a medium, such as the

atmosphere of a star, from the source of

light to a given point. A completely

transparent medium has an optical depth

of zero. >1 indicates opacity.

Rectenna – a rectifying antenna, a

special type of antenna used to convert

microwave energy into electricity.

rem – The measure of radiation used

in the United States of America (100 rem

equals one Sievert).

Rhizosphere – the region of soil in the

vicinity of plant roots.

Smectite – a type of clay characterised

by their one-directional swelling with

changes in moisture content.

Specific Impulse (Isp) – a measure of

the acceleration of a rocket or other

spacecraft engine.

Sievert (Sv) – The SI unit for the

measure of radiation dose (one Sievert

equals 100 rem).

Perihelion – The point of a planet‟s

orbit at which it is closest to the sun.

Page 18: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

153

Descriptions of nomenclature used in describing Martian surface features, including

some examples and locations.

ALBEDO feature Geographic area distinguished by amount of reflected light

ARCUS Arc-shaped feature

ASTRUM Radial-patterned features on Venus

CATENA Crater chain. Mostly not secondary impact craters but rather

features which resemble collapsed lava tubes. Acheron Catena

(38ºN, 101ºW)

CAVUS Irregular, steep-sided depressions not of impact origin. Cavi

Augusti (4ºS, 187ºW)

CHAOS Distinctively broken or jumbled terrain. Aureum Chaos (4ºS,

27ºW)

CHASMA A steep-walled trough or a large canyon. Condor Chasma (6ºS,

71ºW)

COLLIS Hill or knob. Scandia Colles (65ºN, 153ºW)

CORONA Ovoid-shaped feature

CRATER A circular depression

DORSUM A ridge or other elongate, raised structure. Cerberus Dorsa (16ºS,

255ºW)

FACULA Bright spot

FARRUM Pancake-like structure, or a row of such structures

FLEXUS A very low curvilinear ridge with a scalloped pattern

FLUCTUS Terrain which resembles flows. Only Galaxias Fluctus (32ºN,

217ºW)

FOSSA Long, narrow, shallow depression or a narrow linear trench, ditch.

Tatalus Fossae (44ºN, 102ºW)

LABES Landslide. Coprates Labes, Melas Labes in the Vallis Marineris

complex

Page 19: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

154

LABYRINTHUS Valley network, intersecting canyons. Noctis Labyrinthus (7ºS,

101ºW)

LINEA A dark or bright elongate marking, may be curved or straight

LINGULA Extension of plateau having rounded lobate or tongue-like

boundaries

MACULA Dark spot, may be irregular

MARE "Sea"; large circular plain

MENSA Flat-topped, steep-sided elevated feature. Aeolis Mensae (3ºS,

218ºW)

MONS Mountain. Highlands surrounding impact basin (Nereidum

Montes; 41ºS, 43ºW), ridges in Valles Marineris or large volcanoes

(Olympus Mons; 18ºN, 133ºW)

PALUS "Swamp"; small plain

PATERA Shallow crater with scalloped complex walls or edges. Either

craters which don‟t resemble impact craters (Orcus Patera; 14ºN,

181ºW) or those of volcanic origin (Tyrrhena Patera; 21ºS, 253ºW)

PLANITIA Low plain or large level lowlands without features. Elysium

Planitia (20ºN, 230ºW)

PLANUM Large high plateau. Sinai Planum (15ºS, 87ºW)

REGIO A large area marked by reflectivity or colour distinctions from

adjacent areas, or a broad geographic region

RIMA Fissure

RUPES Linear scarp or cliff face. Bosporos Rupes (42ºS, 58ºW)

SCOPULUS Irregular scarp or cliff. Coronae Scopulus (33ºS, 295ºW)

SINUS "Bay"; small plain

SULCUS Parallel furrows and ridges which make up wrinkled terrain, semi-

parallel ridges and troughs. Memnonia Sulci (5ºS, 176ºW)

TERRA Heavily cratered highlands. Noachis Terra (35ºS, 335ºW)

Page 20: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

155

TESSERA Tile-like, polygonal terrain

THOLUS Isolated somical mountain or hill, usually of volcanic origin.

Tharsis Tholus (14ºN, 91ºW)

UNDA Undulatory features. Only Abalos Undae (81ºN, 83ºW) and

Hyperboreae Undae (77ºN, 46ºW)

VALLIS Basically a valley, but on Mars a variety of shapes. From gigantic

Valles Marineris to topographically ill-defined Simud Vallis. Large

ones named after names of Mars in other languages, smaller ones

named after terrestrial rivers.

VASTITAS Extensive plain, widespread lowlands. Only Vastitas Borealis.

VIRGA A streak or stripe of color

Page 21: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

156

REFERENCES

Allen, G.A. 1993, “Colonizing Mars, The New Human Migration,” Spaceflight, Vol. 35, September.

Allen, G.A 1995, “An Interplanetary Transportation System for Delivering Large Groups of People to Mars,” Journal of the British Interplanetary Society, Vol. 48, No. 9.

Angelo, J.A. Jr., Buden, D. 1985, “Power Requirements for the Conquest of Mars,” AAS 84-177 in McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and Technology Series of the American Astronautical Society, Univelt.

Ash, R.L., Werne, J.A., Haywood, M.B. 1989, “Design of a Mars Oxygen Processor,” AAS 87-263 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Atkinson, D.H., Gwynne, O. 1992, “Design Considerations for a Mars Solar Energy System,” Journal of the British Interplanetary Society, Vol. 45, No. 5.

Banin, A. 1989, “Mars Soil – A Sterile Regolith or a Medium for Plant Growth?” AAS 87-215 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Banin A., Clark, B.C., Wänke, H. 1992, “Surface Chemistry and Mineralogy,” in Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Mars, Space Science Series, The University of Arizona Press.

Baker, D.A., Zubrin, R.M. 1990, “Mars Direct: Combining Near-Term Technologies to Achieve a Two-Launch Manned Mars Mission,” Journal of the British Interplanetary Society, Vol. 43, No. 11.

Bamberger, J.A., Coomes, E.P., Segna, D.R. 1991, “Exploration Mission Enhancements Possible with Power Beaming,” American Institute of Physics, Conference Proceedings No. 217, part 2.

Beattie, R.M. Jr. 1989, “Fire Protection for a Martian Colony,” AAS 87-218 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Beaty, D.W., Snook, K., Allen, C.C., Eppler, D., Farrell, W.M., Heldmann, J., Metzger, P., Peach, L., Wagner, S.A., and Zeitlin, C. 2005, “An Analysis of the Precursor Measurements of Mars Needed to Reduce the Risk of the First Human Missions to Mars,” Unpublished white paper, posted June, 2005 by the Mars Exploration Program Analysis Group at http://mepag.jpl.nasa.gov/reports/index.html.

Bents, D.J., McKissock, B.I., Withrow, C.A. 1991, “Comparison of Dynamic Isotope Power Systems for Distributed Planetary Surface Applications,” American Institute of Physics.

Bernold, L.E. 1991, “Experimental Studies on Mechanics of Lunar Excavation,” Journal of Aerospace Engineering, Vol. 4, No. 1.

Billingham, J. 1989, “An Overview of Selected Biomedical Aspects of Mars Missions,” AAS 87-189 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Bluem, V., Paris, F. 2001, “Aquatic Food Production Modules in Bio-regenerative Life Support Systems Bases on Higher Plants,” Advanced Space Research, Vol. 27, No. 9.

Boston, P.J. 1981, “Low-Pressure Greenhouses and Plants for a Manned Research Station on Mars,” Journal of the British Interplanetary Society, Vol. 34.

Boston, P.J. 1981, “Life Support Workshop Summary,” AAS 81-241 in Boston, P.J. (ed.) Case for Mars I, Vol. 57, Science and Technology Series of the American Astronautical Society, Univelt.

Boston, P.J. 1985, “Critical Life Science Issues for a Mars Base,” AAS 84-167 in McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and Technology Series of the American Astronautical Society, Univelt.

Boston, P.J. 1988, “Mars Mission Life Support,” AAS 86-177 in Reiber, D.B. (ed.) The NASA Mars Conference, Vol. 71, Science and Technology Series of the American Astronautical Society, Univelt.

Boston, P.J. 1995, “Moving in on Mars: The Hitchikers‟ Guide to Martian Life Support,” AAS 95-487, in Stoker, C.R. and Emmart, C. (eds.) Strategies for Mars: A Guide to Human Exploration, Vol. 86, Science and Technology Series of the American Astronautical Society, Univelt.

Boyd, R.C., Thompson, P.S., Clark, B.C. 1989, “Duricrete and Composites Construction on Mars,” AAS 87-213 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Brazell, J.W., Williams, W.M. Jr. 1997, “Omnidirectional Platform for Unstructured Surfaces,” AAS 90-254, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

Breedlove, B.K., Ferrence, G.M., Washington, J., Kubiak, C.P. 2001, “A Photoelectrochemical Approach to Splitting Carbon Dioxide for a Manned Mission to Mars,” Materials and Design, Vol. 22.

Page 22: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

157

Brierley, G.S., Neely, D.B., Newkirk, M.T. 1997, “A Remotely Deployable Martian Habitat,” AAS 90-258, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

Bula, R.J., Morrow, R.C., Mankamyer, M. 1997, “Biomass Production Model for a Bio-regenerative Life Support System,” AAS 90-278, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

Cadogan, D., Stein, J., Grahne, M. 1999, “Inflatable Composite Habitat Structures for Lunar and Mars Exploration,” Acta Astronautica, Vol. 44, No. 7.

Capps, S., Case, C. 1993, “A New Approach for a Lunar Airlock Structure,” AIAA 93-0994, Aerospace Design Conference, Irvine, CA, USA, Feb 16-19.

Caudill, T.R. 1985, “Mass-Balance Model for a Controlled Ecological Life Support System on Mars,” AAS 84-184 in McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and Technology Series of the American Astronautical Society, Univelt.

Christensen, P.R., Moore, H.J. 1992, “The Martian Surface Layer,” in Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Mars, Space Science Series, The University of Arizona Press.

Clapp, W.M. 1985, “Water Supply for a Manned Mars Base,” AAS 84-181 in McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and Technology Series of the American Astronautical Society, Univelt.

Clapp, W.M. 1985, “Water Supply for a Manned Mars Base,” AAS 84-181 in McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and Technology Series of the American Astronautical Society, Univelt.

Clapp, W.M., Scardera, M.P. 1989, “Applications of In-Situ Carbon Monoxide – Oxygen Propellent Production at Mars,” AAS 87-212 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Clark, B.C. 1981, “Chemistry of the Martian Surface: Resources for the Manned Exploration of Mars,” AAS 81-243 in Boston, P.J. (ed.) Case for Mars I, Vol. 57, Science and Technology Series of the American Astronautical Society, Univelt.

Clark, B.C. 1985, “The H-Atom Resource on Mars,” AAS 84-179 in McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and Technology Series of the American Astronautical Society, Univelt.

Clark, B.C. 1989, “Survival and Prosperity Using Regolith Resources on Mars,” Journal of the British Interplanetary Society, Vol. 42, No. 2.

Clark, B.C., Pettit, D.R. 1989, “The Hydrogen Peroxide Economy on Mars,” AAS 87-214 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Clearwater, Y.A., Harrison, A.A. 1990, “Crew Support for an Initial Mars Expedition,” Journal of the British Interplanetary Society, Vol. 43, No. 11.

Cockell, C.S. 1995, “The Polar Exploration of Mars,” Journal of the British Interplanetary Society, Vol. 48, No. 8.

Cockell, C.S. 2001a, “The Martian and Extraterrestrial UV Radiation Environment Part II: Further Considerations on Materials and Design Criteria for Artificial Ecosystems,” Acta Astronautica, Vol. 49, No. 11.

Cockell, C.S. 2001b, “Martian Polar Expeditions: Problems and Solutions,” Acta Astronautica, Vol. 49, No. 12.

Cockell, C.S., Andrady, A.L. 1999, “The Martian and Extraterrestrial UV Radiation Environment–I. Biological and Closed-loop Ecosystem Considerations,” Acta Astronautica, Vol. 44, No. 1.

Cohen, M.M., 1995, “First Mars Outpost Habitation Strategy,” AAS 95-491, in Stoker, C.R. and Emmart, C. (eds.) Strategies for Mars: A Guide to Human Exploration, Vol. 86, Science and Technology Series of the American Astronautical Society, Univelt.

Connerney, J., Acuña, M., Ness, N., Kletetschka, G., Mitchell, D., Lin, R., Rème, H. 2005, Proceedings of the National Academy of Sciences, Vol. 102, Iss. 42, pp. 14970-14975, 18 Oct 2005

Connors, M.M., Harrison, A.A. 1995, “The Human Side of Marsflight: A Review of Human Factor Issues,” AAS 95-484, in Stoker, C.R. and Emmart, C. (eds.) Strategies for Mars: A Guide to Human Exploration, Vol. 86, Science and Technology Series of the American Astronautical Society, Univelt.

Cordell, B.M. 1985, “A Preliminary Assessment of Martian Natural Resource Potential,” AAS 84-185 in McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and Technology Series of the American Astronautical Society, Univelt.

Criswell, D.R. 2000, “Lunar Solar Power System: Review of the Technology Base of an Operational LSP System,” Acta Astronautica, Vol. 46, No. 8.

De Young, R.J., Conway, E.J., Meador, W.E., Humes, D.H. 1989, “Laser Power Transmission Concepts for Martian Applications,” AAS 87-225 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Drake, B.G. (ed.). 1998, “Reference Mission Version 3.0. Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team,” NASA.

Drake, R.M., Richter, P.J. 1992, “Concept Evaluation Methodology for Extraterrestrial Habitats,” Journal of Aerospace Engineering, Vol. 5, No. 3.

Esposito, P.B., Banerdt, W.B., Lindal, G.F., Sjogren, W.L., Slade, M.A., Bills, B.G., Smith, D.E., Balmino, G. 1992, “Gravity and Topography,” in Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Mars, Space Science Series, The University of Arizona Press.

Page 23: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

158

Fanale, F.P., Salvail, J.R., Zent, A.P., Postawko, S.E. 1986, “Global Distribution and Migration of Subsurface Ice on Mars,” Journal of the British Interplanetary Society, Vol. 67, No. 1.

Farrier, J. 2000, “On Martian Soil,” Civil Engineering, Vol. 70, No. 4.

Finn, J.E., Sridhar, K.R., McKay, C.P. 1996, “Utilization of Martian Atmospheric Constituents by Temperature-Swing Adsorption,” Journal of the British Interplanetary Society, Vol. 49, No. 11.

Fogg, M.J. 1995, “Exploration of the Future Habitability of Mars,” Journal of the British Interplanetary Society, Vol. 48, No. 7.

Fogg, M.J. 1996, “The Utility of Geothermal Energy on Mars,” Journal of the British Interplanetary Society, Vol. 49, No. 11.

French, J.R. 1989a, “Mission Strategy Workshop Summary,” AAS 87-276 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

French, J.R. 1989b, “Rocket Propellants from Martian Resources,” Journal of the British Interplanetary Society, Vol. 42, No. 4.

Friedman, L. (moderator). 1981, “Should Human Colonization of Mars be the Next Major Goal of the Space Program?” Summary of a Panel Discussion, AAS 81-252 in Boston, P.J. (ed.) Case for Mars I, Vol. 57, Science and Technology Series of the American Astronautical Society, Univelt.

Gaines, M. 2000, “Radiation and Risk,” New Scientist, No. 2230, March.

Geels, S., Miller, J.B., Clark, B.C. 1989, “Feasibility of Using Solar Power on Mars: Effects of Dust Storms on Incident Solar Radiation,” AAS 87-266 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Giudici, B. 1989, “A Get Started Approach for Resource Processing,” AAS 87-262 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Goldman, M. 1996, “Cancer Risk of Low-level Exposure,” Science, Vol. 271, No. 5257.

Goldman, N.C. 1981, “Legal and Political Implications of Colonizing Mars,” AAS 81-248 in Boston, P.J. (ed.) Case for Mars I, Vol. 57, Science and Technology Series of the American Astronautical Society, Univelt.

Goodyear Aerospace Corp. 1982, “Innovative Structures for Space Applications,” NASA Report GAC 19-1563.

Grymes, R.A., Wade, C.E., Vernikos, J. 1995, “Biomedical Issues in the Exploration of Mars,” AAS 95-483, in Stoker, C.R. and Emmart, C. (eds.) Strategies for Mars: A Guide to Human Exploration, Vol. 86, Science and Technology Series of the American Astronautical Society, Univelt.

Gwynne, O., McKay, C.P. 1997, “Extracting Water from the Martian Soil Using Microwaves,” AAS 90-297, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

Haberle, R.M., McKay, C.P., Pollack, J.B., Gwynne, O.E., Atkinson, D.H., Appelbaum, J., Landis, G.A., Flood, D.J. 1993, “Atmospheric Effects on the Utility of Solar Power on Mars,” in Lewis, J., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, Space Science Series, The University of Arizona Press.

Hagen, J. 1989, “Considerations for the Living Areas Within Space Settlements,” AAS 87-242 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Harrison, A.A., Struthers, N.J., Putz, B.J. 1991, “Mission Destination, Mission Duration, Gender, and Student Perceptions of Space Habitat Acceptability,” Environment and Behaviour, Vol. 23, No. 2.

Hart, H.M. 1985, “Extraction of Water from the Mars Atmosphere: Passive Constriction of Wind Flow,” AAS 84-183 in McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and Technology Series of the American Astronautical Society, Univelt.

Haslach, Jr. H.W. 1989, “Wind Energy: A Resource for A Human Mission to Mars,” Journal of the British Interplanetary Society, Vol. 42, No. 4.

Helleckson, B. 1997, “A Conceptual Design for an Interface Between Habitable Volumes and Life Support Facilities,” AAS 90-279, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

Hemmat, A., Nguyen, C., Singh, B., Wylie, K. 1999, “Conceptual Design of a Martian Power Generating System Utilizing Solar and Wind Energy,” University of Houston.

Hender, M. 2007, “Suitability of Martian Environmental Conditions for Crop Growth on Mars,” J Agronomy & Crop Science, Vol. 193, No. 5.

Higuchi, S. 2002, “Living Environments and Human Biological Rhythms,” Interdisciplinary Symposium on 'Human Beings and Environments': Approaches from Biological Anthropology, Social Anthropology and Developmental Psychology, Cambridge, UK, 25 August 2002.

Isenberg, L., Heller, A. 1989, “The SP-100 Space Reactor as a Power Source for Mars Exploration Missions,” AAS 87-217 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Page 24: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

159

Ishikawa, Y., Ohkita, T., Amemiya, Y. 1990, “Mars Habitation 2057: Concept Design of a Mars Settlement in the Year 2057,” Journal of the British Interplanetary Society, Vol. 43.

Ishikawa, Y., Ohkita, T., Amemiya, Y. 1997, “Constructing a Mars Base – Mars Habitation 2057 Concept,” AAS 90-251, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

Jahshan, S.N., Bennett, R.G. 1992, “A Modular Reactor for Lunar and Planetary Base Service,” American Institute of Physics.

Johnson, R.D., Holbrow, C. (eds.) 1975, “Space Settlements: A Design Study,” NASA, SP-413, Scientific and Technical.

Johnson, S.W., Leonard, R.S. 1989, “Manned Mars Missions and Extraterrestrial Resource Engineering Test and Evaluation,” AAS 87-261 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Jones, D., Webb, C.F., LaPointe, M.R., Hart, H.M., Larson, A. 1985, “The Retrieval, Storage, and Recycling of Water for a Manned Base on Mars,” AAS 84-180 in McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and Technology Series of the American Astronautical Society, Univelt.

Kahn, R.A., Martin, T.Z., Zurek, R.W., Lee, S.W. 1992, “The Martian Dust Cycle,” in Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Mars, Space Science Series, The University of Arizona Press.

Keller, T.S., Strauss, A.M. 1993, “Predicting Skeletal Adaptation in Altered Gravity,” Journal of the British Interplanetary Society, Vol. 46.

Kieffer, H.H., Jakosky, B.M., Snyder, C.W. 1992, “The Planet Mars: From Antiquity to the Present,” in Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Mars, Space Science Series, The University of Arizona Press.

Klingler, J.M., Mancinelli, R.L., White, M.R. 1989, “Biological Nitrogen Fixation Under Primordial Martian Partial Pressures of Dinitrogen,” Advanced Space Resources, Vol. 9, No. 6.

Kuznetz, L.H., Gwynne, O. 1992, “Space Suit and Life Support Systems for the Exploration of Mars,” Journal of the British Interplanetary Society, Vol. 45, No. 5.

Landis, G.A. 1997, “Novel Propellants Derived from Atmospheric CO2 on Mars,” AAS 90-320, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

Landis, G.A., Appelbaum, J. 1997, “Photovoltaic Power System Operation on Mars,” AAS 90-247, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

Landis, G.A., Scheiman, D., Baraona, C., Brinker, D. 1997, “Exploring PV on the Red Planet: Mars Array Technology Experiment and Dust Accumulation and Removal Technology,” Photovoltaics Research and Technology Conference, Cleveland, OH, USA, June 10-12.

Littman, F. 1993, “First Mars Outpost Power Systems,” IEEE Aerospace and Electronics System Magazine, Vol. 8, No. 12.

Longhi, J., Knittle, E., Holloway, J.R., Wänke, H. 1992, “The Bulk Composition, Mineralogy and Internal Structure of Mars,” in Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Mars, Space Science Series, The University of Arizona Press.

MacCallum, T., Nelson, M., Allen, J.P., Leigh, L., Alling, A., Alverez-Romo, N. 1997, “The Biosphere 2 Project: Applications for Space Exploration and Mars Settlement,” AAS 90-281, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

Mackenzie, B.A. 1989, “Building Mars Habitats Using Local Materials,” AAS 87-216 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Mackenzie, B.A. Dunand, D.C. 1997, “Plant-Rated Greenhouses,” AAS 90-257, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

Mandell, H.C. Jr. 1981, “The Cost of Landing Man on Mars,” AAS 81-251 in Boston, P.J. (ed.) Case for Mars I, Vol. 57, Science and Technology Series of the American Astronautical Society, Univelt.

Masariki, J., and Reedyz, R.C. 1997, “Production of Carbon-C14 in Martian Soil Nitrogen,” 28th Lunar and Planetary Science Conference, Huston, USA, 17-21 March 1997.

Mason, L.S., Cataldo, R.L. 1993, “Nuclear Power Systems for the First Lunar Outpost,” American Institute of Physics.

Meyer, T.R., McKay, C.P. 1989, “The Resources of Mars for Human Settlement,” Journal of the British Interplanetary Society, Vol. 42, No. 4.

Meyer, T.R., McKay, C.P. 1981, “The Atmosphere of Mars – Resources for the Exploration and Settlement of Mars,” AAS 81-244 in Boston, P.J. (ed.) Case for Mars I, Vol. 57, Science and Technology Series of the American Astronautical Society, Univelt.

Meyer, T.R., McKay, C.P. 1995, “Using the Resources of Mars for Human Settlement,” AAS 95-489, in Stoker, C.R. and Emmart, C. (eds.) Strategies for Mars: A Guide to Human Exploration, Vol. 86, Science and Technology Series of the American Astronautical Society, Univelt.

McKay, C. 1988, “Living and Working on Mars,” AAS 86-178 in Reiber, D.B. (ed.) The NASA Mars Conference, Vol. 71, Science and Technology Series of the American Astronautical Society, Univelt.

Page 25: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

160

Morley, N.J., El-Genk, M.S., Cataldo, R., Bloomfield, H. 1991, “Estimates of Power Requirements for a Manned Mars Rover by a Nuclear Reactor,” American Institute of Physics.

Nagem, R., Bon, R., Sandri, G., Weaver, M. 1991, “Pneumatic Structures for Lunar and Martian Habitats,” Building Research and Information, Vol. 19, No. 1.

NASA. 1989, “Report of the 90-Day Study on Human Exploration of the Moon and Mars,” National Aeronautics and Space Administration, Washington DC.

NASA. 1995, “Man-Systems Integration Standard, Volume I,” NASA-STD-3000, Revision B, National Aeronautics and Space Administration, Washington DC.

NASA, Mineralogy and Geochemistry Science Operations Group. 1998, “Analysis of Martian Samples by the Alpha Proton X-Ray Spectrometer: Preliminary Results,” posted by NASA at http://mpfwww.jpl.nasa.gov/MPF/science/apxs_comparison.html.

NASA, Toxicology Group. 1999, “Spacecraft Maximum Allowable Concentrations for Airborne Contaminants,” NASA-STD-3000, Revision B, National Aeronautics and Space Administration, Washington DC.

National Research Council, Committee on Toxicology. 1984, “Emergency and Continuous Exposure Limits For Selected Airborne Contaminants, Volume 1,” Board on Toxicology and Environmental Health Hazards, Commission on Life Sciences, NRC, National Academy Press, Washington D.C.

Nelson, M., Dempster, W.F. 1995, “Living in Space: Results from Biosphere 2‟s Initial Closure, An Early Testbed for Closed Ecological Systems on Mars,” AAS 95-488, in Stoker, C.R. and Emmart, C. (eds.) Strategies for Mars: A Guide to Human Exploration, Vol. 86, Science and Technology Series of the American Astronautical Society, Univelt.

Nitta K. 2005, “The Mini-Earth facility and present status of habitation experiment program,” Advanced Space Research, Vol. 35, No. 9.

Nitta, K., Otsubo, K., Ashida, A. 2000, “Integrated Test Project of CEEF – A Test Bed for Closed Ecological Life Support Systems,” Advanced Space Research, Vol. 26, No. 2.

Owen, T. 1992, “Composition and Early History of the Atmosphere,” in Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Mars, Space Science Series, The University of Arizona Press.

Peercy, R.L. Jr., Raasch, R.F., Rockoff, L.A. 1985, “Space Station Crew Safety Alternatives Study–Final Report: Volume 1–Final Summary Report,” NASA report CR-3854, NASA Scientific and Technical Information Branch.

Phillips, L. 1985, “Utilizing the Permafrost on Mars,” AAS 84-182 in McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and Technology Series of the American Astronautical Society, Univelt.

Portree, D.S.F. 2001. Humans to Mars: Fifty Years of Mission Planning, 1950–2000. Monographs in Aerospace History Series, Number 21, NASA publication SP-2001-4521.

Powell, F.T. 1989, “Life Support System Considerations and Characteristics for a Manned Mars Mission,” AAS 87-188 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Powell, J., Maise, G., Paniagua, J., Powell, J.R. 2000, “Development of Self-Sustaining Mars Colonies Utilising the North Polar Cap and the Martian Atmosphere,” Final Report, NIAC Research Grant 07600-053.

Ponomarev-Stepnoi, N.N., Pavshook V.A., Usov, V.A. 1992, “NPS Options for Lunar Bases Power Supply,” American Institute of Physics Conference 920104.

Quattrone, P.D. 1981, “Extended Mission Life Support Systems,” AAS 81-237 in Boston, P.J. (ed.) Case for Mars I, Vol. 57, Science and Technology Series of the American Astronautical Society, Univelt.

Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G., McSween Jr. H.Y. 1997, “The Chemical Composition of Martian Soil and Rocks Returned by the Mobile Alpha Proton X-ray Spectrometer: Preliminary Results from the X-ray Mode,” Science, Vol. 278.

Rieder, R., Gellert, R., Anderson, R.C., Brückner, J., Clark, B.C., Dreibus, G., Economou, T., Klingelhöfer, G., Lugmair, G.W., Ming, D.W., Squyres, S.W., d‟Uston, C., Wänke, H., Yen, A., Zipfel, J. 2004a, “Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer,” Science, Vol 306.

Rieder, R., Gellert, R., Brückner, J., Clark, B.C., Dreibus, G., d‟Uston, C. , Economou, T., Klingelhöfer, G., Lugmair, G.W., Wänke, H., Yen, A., Zipfel, J., Squyres, S.W. 2004b, “APXS on Mars: Analyses of Soils and Rocks at Gusev Crater and Meridiani Planum,” 35th Lunar and Planetary Science Conference, Huston, USA, 15-19 March 2004.

Roberts, M. 1989, “The Use of Inflatable Habitation on the Moon and Mars,” AAS 87-217 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Rosenberg, S.D. 1992, “Weight and Power Requirements for a Lunar Oxygen Plant,” AIChE Symposium Series, 28th National Heat Transfer Conference, San Diego, CA, USA, Aug 9-12, 1992.

Ryan, W.G., Samarin, A. (eds.). 1992, Australian Concrete Technology, Longman Cheshire.

Saha, P.R. Trumbo, P.R. 1996, “The Nutritional Adequacy of a Limited Vegan Diet for a Controlled Ecological Life-Support System,” Advanced Space Research, Vol. 18, No. 4/5.

Page 26: Colonization: A Permanent Habitat for the …...COLONIZATION A PERMANENT HABITAT FOR THE COLONIZATION OF MARS A thesis submitted in fulfilment of the requirements of the degree of

161

Salerno, L.J., Kittel, P. 1999, “Cryogenics and the Human Exploration of Mars,” Cryogenics, Vol. 39. Presented at the Space Cryogenics Workshop, Eugene, OR, USA, Aug 4-5, 1997.

Schubert, G., Solomon, S.C., Turcotte, D.L., Drake, M.J., Sleep, N.H. 1992, “Origin and Thermal Evolution of Mars,” in Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Mars, Space Science Series, The University of Arizona Press.

Siegfried, W.H. 1999, “Lunar Base Development Missions,” Acta Astronautica, Vol. 44, No. 7-12.

Smernoff, D.T., MacElroy, R.D. 1989, “Use of Martian Resources in a Controlled Ecological Life Support System (CELSS),” Journal of the British Interplanetary Society, Vol. 42, No. 4.

Spiero, F., Dunand, D.C. 1997, “Simulation of Martian Materials and Resources Exploitation on a Variable Gravity Research Facility,” AAS 90-300, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

Stanford, M., Jones, J.A. 1999, “Space Radiation Concerns for Manned Exploration,” Acta Astronautica, Vol. 45, No. 1.

Stoker, C.R., Moore, J.M., Grossman, R.L. Boston, P.J. 1985, “Scientific Program for a Mars Base,” AAS 84-166 in McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and Technology Series of the American Astronautical Society, Univelt.

Stoker, C.R., Gooding, J.L., Roush, T., Banin, A., Burt, D., Clark, B.C., Flynn, G., Gwynne, O. 1993, “The Physical and Chemical Properties of and Resource Potential of Martian Surface Soils,” in Lewis, J., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, Space Science Series, The University of Arizona Press.

Sullivan, T.A., Koenig, E., Knudsen, C.W., Gibson, M.A. 1994, “Pneumatic Coveying of Materials at Partial Gravity,” Journal of Aerospace Engineering, Vol. 7, No. 2.

Tamponnet, C. 1996, “Life Support Systems for Lunar Missions,” Advanced Space Research, Vol. 18, No. 11.

Taylor, R.L.S. 1993, “The Effects of Prolonged Weightlessness and Reduced Gravity Environments on Human Survival,” Journal of the British Interplanetary Society, Vol. 46.

Thangavelu, M. (Faculty Advisor). 1999, “The Exploration of Mars: Crew Surface Activities,” Department of Aerospace Engineering, University of Southern California, Los Angeles.

Thomson, R.E. 1989, “Mars Base Design Projects at the University of Wisconsin,” AAS 87-183 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Thornton, M.G. 1989, “Tool and Equipment Requirements for Human Habitation of Mars,” AAS 87-219 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

Tillotson, B. 1997, “Regolith as Propellant for Mars Missions,” AAS 90-204, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

University of Arizona. 2004, “Potassium and Thorium Tell an Interesting Story,” posted July, 2004 by the University of Arizona‟s Lunar and Planetary Lab at http://grs.lpl.arizona.edu/latestresults.jsp?lrid=14.

University of Texas. 2001, “Mars Advanced Greenhouse Integrated Complex,” University of Texas, San Antonio, Texas, USA.

Wänke, H., Brückner, J., Dreibus, G. 2000, “The Chemical Composition of the Martian Surface as Derived from APXS on Pathfinder,” 33rd COSPAR Scientific Assembly, Warsaw, Poland, 16-23 July 2000

Walkinshaw, C.H. 1986, “Space Greenhouses Could Operate Efficiently at Low Pressures if Fungi are Controlled,” Phytopathology, Vol. 76.

Williams, J.D., Coons, S.C., Bruckner, A.P. 1995, “Design of a Water Vapour Adsorption Reactor for Martian In Situ Resource Utilization,” Journal of the British Interplanetary Society, Vol. 48, No. 8.

Wittwer, S.H. 1992, “Rising Carbon Dioxide is Great for Plants,” Policy Review.

Zubrin, R.M. 1989, “Indigenous Martian Propellant,” Aerospace America, August.

Zubrin, R.M. 1997, The Case for Mars: the plan to settle the red planet and why we must. The Free Press.