collisions f - facweb1.redlands.edu

28
i. 10.6-.8 Scattering RE 10.b on., ab ed., i., 10.9-.10 Collision Complications L10 Collisions 1 10.5, .11 Different Reference Frames 11.1 Translational Angular Momentum Quiz 10 RE 10.c EP9 RE 11.a; HW10: Pr’s 13*, 21, 30, “39” Collisions Short, Sharp Shocks Smack! B F

Upload: others

Post on 04-Jun-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Collisions F - facweb1.redlands.edu

Fri. 10.6-.8 Scattering RE 10.b

Mon.,

Lab

Wed.,

Fri.,

10.9-.10 Collision Complications

L10 Collisions 1

10.5, .11 Different Reference Frames

11.1 Translational Angular Momentum Quiz 10

RE 10.c

EP9

RE 11.a; HW10: Pr’s 13*, 21, 30, “39”

Collisions Short, Sharp Shocks

Smack!

BF

Page 2: Collisions F - facweb1.redlands.edu

Which of the following is a property of all collisions - both “elastic” and

“inelastic” collisions?

(1) The internal energy of the system after the collision is different from what it

was before the collision.

(2) The total momentum of the system doesn’t change.

(3) The total kinetic energy of the system doesn’t change.

Page 3: Collisions F - facweb1.redlands.edu

Which of the following is a property of all “elastic” collisions?

(1) The colliding objects interact through springs.

(2) The kinetic energy of one of the objects doesn’t change.

(3) The total kinetic energy is constant at all times -- before, during, and after the

collision.

(4) The total kinetic energy after the collision is equal to the total kinetic energy

before the collision.

(5) The elastic spring energy after the collision is greater than the elastic spring

energy before the collision.

Page 4: Collisions F - facweb1.redlands.edu

1-D Collision

A B

Pow! A B

Example

System = carts A & B

initially

finally

frictionAF

frictionBF

frictionAF

frictionAF

Often know initial motion, want to predict final motion

Two unknowns: and fAv .

fBv .

Generally need two equations to solve for them

0& BABA ppp

True for all collisions

0&& BABABA UEEE

BB EK .intAA EK .int

Page 5: Collisions F - facweb1.redlands.edu

A B

iAp .

iBp .

Pow! A B

fAp .

fBp .

System = carts A & B

initially

finally

0 BA pp

0.... iBBfBBiAAfAA vmvmvmvm

csv '

1-D Collision Special Case: “Maximally Inelastic” – hit & stick

0.. iBBfBiAAfA vmvmvmvmfBfAf vvv

BA

iBBiAAf

mm

vmvmv

..

Page 6: Collisions F - facweb1.redlands.edu

A B

iAp .

iBp .

Pow! A B

fAp .

fBp .

System = carts A & B

initially

finally

02

.212

.212

.212

.21 iBBfBBiAAfAA vmvmvmvm csv '

1-D Collision

BABBAABA UEKEKE &int.int.&

Special Case: Perfectly Elastic (all internal changes ‘bounce back’)

02222

2

.

2

.2

.

2

.

B

iB

B

fB

A

iA

A

fA

m

p

m

p

m

p

m

p

iBiAfBfA pppp ....

Equation 1

Equation 2

Page 7: Collisions F - facweb1.redlands.edu

Extra special case: Say B is initially stationary

1-D Collision Special Case: Perfectly Elastic (all internal changes ‘bounce back’)

A B

Pow! A B

fAp .

fBp .

initially

finally

iA

AB

A vmm

m.

2

iA

AB

BA vmm

mm.

iAv .2

iAv .

1 iAv .

0

𝑣 𝐵.𝑓 𝑣 𝐴.𝑓

𝑚𝐵

𝑚𝐴

Initially Stationary

𝑣 𝐴.𝑓 𝑣 𝐵.𝑓

Page 8: Collisions F - facweb1.redlands.edu

Transform for B initially moving

1-D Collision Special Case: Perfectly Elastic

A B

A B

Initially I see

Finally I see

𝑣 𝐴.𝑓.𝑚𝑒 𝑣 𝐵.𝑓.𝑚𝑒

Say I’m watching this collision while I’m just sitting here. According to me

meiAv ..

0.. meiBv

Say you’re watching this collision while walking by with velocity .

Relative to you the initial velocities are youv

A B Initially you see

youv

youmeiAyouiA vvv

.... youyouiB vv

..

Similarly, after the collision, according to me

And according to you

A B Finally I see

𝑣 𝐴.𝑓.𝑦𝑜𝑢 = 𝑣 𝐴.𝑓.𝑚𝑒 − 𝑣 𝑦𝑜𝑢 𝑣 𝐵.𝑓.𝑦𝑜𝑢 = 𝑣 𝐵.𝑓.𝑚𝑒 − 𝑣 𝑦𝑜𝑢

youv

Page 9: Collisions F - facweb1.redlands.edu

Transform for B initially moving

1-D Collision Special Case: Perfectly Elastic

So, completely rephrasing things from your perspective:

A B Initially you see

youv

youmeiAyouiA vvv

.... youyouiB vv

..

A B Finally I see

𝑣 𝐴.𝑓.𝑦𝑜𝑢 = 𝑣 𝐴.𝑓.𝑚𝑒 − 𝑣 𝑦𝑜𝑢 𝑣 𝐵.𝑓.𝑦𝑜𝑢 = 𝑣 𝐵.𝑓.𝑚𝑒 − 𝑣 𝑦𝑜𝑢

youv

youiBmeiAyouiA vvv ......

youiByouiAmeiA vvv ......

youiBmefAyoufA vvv ......

youiBmefAyoufB vvv ......

youiBmeiA

AB

BAyoufA vv

mm

mmv ......

iBiBiA

AB

BAfA vvv

mm

mmv ....

youiBmeiA

AB

AyoufB vv

mm

mv ......

2

iBiBiA

AB

AyoufB vvv

mm

mv .....

2

Page 10: Collisions F - facweb1.redlands.edu
Page 11: Collisions F - facweb1.redlands.edu

P

mp

ipp .

T

mT

0. iTp

Slow (v<<C)

2-D Collision: Scattering

Page 12: Collisions F - facweb1.redlands.edu

P

mp

0,0,.. ipip pp

T

mT

0. iTp

T

P qp

qT

00sinsin:ˆ

0coscos:ˆ

0

..

...

...

TfTpfp

ipTfTpfp

ipfTfp

ppy

pppx

ppp

qq

qq

Momentum Principle Energy Principle

x

y

0,sin,cos ... pfppfpfp ppp qq

0,sin,cos ... TfTTfTfT ppp qq

Slow (v<<C)

2-D Collision: Scattering

Three Equations / Four Unknowns

Need another equation

0

0

,.int.int...

....

pttpipfTfp

iTipfTfp

UEEKKK

EEEE

0222

2

.

2

.

2

.

p

ip

T

fT

p

fp

m

p

m

p

m

p if Elastic

Or more information

Page 13: Collisions F - facweb1.redlands.edu

P

mp

0,0,.. ipip pp

T

mT

0. iTp

T

P qp

qT

00sinsin:ˆ

0coscos:ˆ

..

...

TfTpfp

ipTfTpfp

ppy

pppx

qq

qqMomentum Principle

Energy Principle – if Elastic

0222

2

.

2

.

2

.

p

ip

T

fT

p

fp

m

p

m

p

m

p

x

y

0,sin,cos ... pfppfpfp ppp qq

0,sin,cos ... TfTTfTfT ppp qq

2-D Collision: Scattering Example. Say a 2kg puck moving at 3m/s collides with a 4kg puck that’s just sitting

there. Say the 2kg puck travels off at 30° and the 4kg one travels down at 50°. What

are the final speeds and is the collision elastic?

Page 14: Collisions F - facweb1.redlands.edu

P

mp

0,0,.. ipip pp

T

mT

0. iTp

T

P qp

qT

fTfpip ppp ...

T

fT

p

fp

p

ip

m

p

m

p

m

p

222

2

.

2

.

2

.

x

y

0,sin,cos ... pfppfpfp ppp qq

0,sin,cos ... TfTTfTfT ppp qq

Slow (v<<C), Elastic Collision

2-D Collision: Scattering

Three Equations / Four Unknowns

Need another equation

Special case: equal masses

2

.

2

.

2

. fTfpip ppp

Tp mm

tfpftfpfpipipi ppppppp

2

TfpfTfpfpi ppppp

2222

compare

Must be zero

A: projectile missed target

TpTfpfTfpfpi ppppp qq cos2222

B: qp + |qT| = 90°

Page 15: Collisions F - facweb1.redlands.edu

P

mp

0,0,.. ipip pp

T

mT

0. iTp

T

P qp

qT

00sinsin:ˆ

0coscos:ˆ

0

..

...

...

TfTpfp

ipTfTpfp

ipfTfp

ppy

pppx

ppp

qq

qq

Momentum Principle Energy Principle – if Elastic

0222

0

0

2

.

2

.

2

.

...

....

p

ip

T

fT

p

fp

ipfTfp

iTipfTfp

m

p

m

p

m

p

KKK

EEEE

x

y

0,sin,cos ... pfppfpfp ppp qq

0,sin,cos ... TfTTfTfT ppp qq

Slow (v<<C), Elastic Collision

2-D Collision: Scattering

Three Equations / Four Unknowns

Need another equation

Page 16: Collisions F - facweb1.redlands.edu

P mp

0,0,.. ipip pp

T mT

0. iTp

T

P qp

qT

x

y

0,sin,cos ... pfppfpfp ppp qq

0,sin,cos ... TfTTfTfT ppp qq

Slow (v<<C), Elastic Collision

2-D Collision: Scattering

Collision geometry and Impact Parameter

Three Equations / Four Unknowns

Need another equation

P

dt

pdF

Component of momentum along line of

contact changes, other component

remains constant

b

b = Impact Parameter

00sinsin:ˆ

0coscos:ˆ

0

..

...

...

TfTpfp

ipTfTpfp

ipfTfp

ppy

pppx

ppp

qq

qq

Momentum Principle Energy Principle – if Elastic

0222

0

0

2

.

2

.

2

.

...

....

p

ip

T

fT

p

fp

ipfTfp

iTipfTfp

m

p

m

p

m

p

KKK

EEEE

Page 17: Collisions F - facweb1.redlands.edu

Which of these is true?

1) The larger the impact parameter, the larger the scattering angle (deflection).

2) The larger the impact parameter, the smaller the scattering angle (deflection).

P

T T b

Page 18: Collisions F - facweb1.redlands.edu

P mp

T mT

T

P

2-D Collision: Scattering

P

b

Qualitative effect of Impact Parameter

Miss: b too big

Glancing Blow: b big P mp

T mT

T

P

b

P

Solid Blow: b small

No deflection

minor deflection

P mp

T mT

P b

P major deflection

T

Page 19: Collisions F - facweb1.redlands.edu

Probability and Cross-sectional Area

Playing Darts Badly

Page 21: Collisions F - facweb1.redlands.edu

In the Rutherford experiment, what was surprising to the experimenters?

(1) Sometimes the alpha “rays” passed right through the gold foil.

(2) Sometimes the alpha “rays” were deflected slightly when they passed through

the gold foil.

(3) Sometimes the alpha “rays” bounced back from the gold foil.

Page 22: Collisions F - facweb1.redlands.edu

• relativistic speeds

• identifying ‘mystery’ particles

• the mathematical trick of analyzing in

the center-of-mass reference frame

Deeper Collisions

http://en.wikipedia.org/wiki/File:CDF_Top_Event.jpg

Page 23: Collisions F - facweb1.redlands.edu

P

mp

0,0,.. ipip pp

T

mT

0. iTp

T

P

0,sin,cos ... pfppfpfp ppp qq

qp

0,sin,cos ... TfTTfTfT ppp qq

qT

Conservation of Momentum

Conservation of Energy

0.... iTipfTfp EEEE

where 2

1cv

vmp

00sinsin:ˆ

0coscos:ˆ

0

..

...

...

TfTpfp

ipTfTpfp

ipfTfp

ppy

pppx

ppp

qq

qq

where 2

2

1cv

mcE

show

By plugging that into it and

recovering that.

222mcpcE

2-D Collision: Scattering

Fast

02

.

22

.

2

.

22

.

2

.

22

.

2

. cmcmcpcmcpcmcp iTipipfTfTfpfp

Note: initial and final masses differ for inelastic collisions

Page 24: Collisions F - facweb1.redlands.edu

2-D Collision: Scattering

Fast Note: initial and final masses differ for inelastic collisions

int.ppp EKE

Recall: particle energy

2

int. cmE pp

Elastic

02

int. cmE pp

In-Elastic

02222

.

222

.

222

. cmcmcpcmcpcmcp TpipTfTpfp

02

int. cmE pp

02

.

22

.

2

.

22

.

2

.

22

.

2

. cmcmcpcmcpcmcp iTipipfTfTfpfp

Page 25: Collisions F - facweb1.redlands.edu

2-D Collision: Fast Example: A beam of high energy p- (negative pions) is shot at a flask of liquid

hydrogen, and sometimes a pion interacts through the strong interaction with a proton

in the hydrogen, the reaction is where X+ is a positively charged

particle of unknown mass (essentially an excited proton.)

A proton’s rest mass is 938MeV, and a pion’s rest mass is 140 MeV. The incoming

pion has momentum 3GeV/c. It scatters through 40°, and its momentum drops to

1.510 GeV/c.

What is the rest mass of the X+?

02

.

222

.

22222

.

2

. cmcmcpcmcpcmcp ipiXXff pppp

p p p X

0sinsin:ˆ

0coscos:ˆ

..

...

XfXf

iXfXf

ppy

pppx

qq

qq

pp

ppp

p

mp

ip .p

p

mp

0. ipp

X

p

fp .p

qp

fXp .

qX Conservation of Momentum

Conservation of Energy

pp

ppp

qq

qq

sinsin

coscos

..

...

fXfX

fiXfX

pp

ppp

2

.

2

..

2

.

2

. sincossincos ppppp qqqq ffiXfXXfX ppppp

2

.

2

... sincos ppppp qq ffifX pppp ppppp qcos2 ..

2

.

2

.. fififX ppppp

Page 26: Collisions F - facweb1.redlands.edu

2-D Collision: Fast Example: A beam of high energy p- (negative pions) is shot at a flask of liquid

hydrogen, and sometimes a pion interacts through the strong interaction with a proton

in the hydrogen, the reaction is where X+ is a positively charged

particle of unknown mass (essentially an excited proton.)

A proton’s rest mass is 938MeV, and a pion’s rest mass is 140 MeV. The incoming

pion has momentum 3GeV/c. It scatters through 40°, and its momentum drops to

1.510 GeV/c.

What is the rest mass of the X+?

02

.

222

.

22222

.

2

. cmcmcpcmcpcmcp ipiXXff pppp

p p p X

p

mp

ip .p

p

mp

0. ipp

X

p

fp .p

qp

fXp .

qX

Conservation of Momentum

Conservation of Energy

ppppp qcos2 ..

2

.

2

.. fififX ppppp

22

.

2

.

2

.

222

.

222cmcpcmcmcpcmcp ffipiXX pppp

Could do algebraically further, or just plugin numbers and simplify

Page 27: Collisions F - facweb1.redlands.edu

Fri. 10.6-.8 Scattering RE 10.b

Mon.,

Lab

Wed.,

Fri.,

10.9-.10 Collision Complications

L10 Collisions 1

10.5, .11 Different Reference Frames

11.1 Translational Angular Momentum Quiz 10

RE 10.c

EP9

RE 11.a; HW10: Pr’s 13*, 21, 30, “39”

Collisions Short, Sharp Shocks

Smack!

BF

Page 28: Collisions F - facweb1.redlands.edu