codebook design for noncoherent mimo communications via reflection matrices

12
1 Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices Daifeng Wang and Brian L. Evans {wang, bevans}@ece.utexas.edu Wireless Networking and Communications Group The University of Texas at Austin IEEE Global Telecommunications Conference November 28, 2006

Upload: decima

Post on 11-Jan-2016

29 views

Category:

Documents


2 download

DESCRIPTION

Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices. Daifeng Wang and Brian L. Evans {wang, bevans}@ece.utexas.edu Wireless Networking and Communications Group The University of Texas at Austin IEEE Global Telecommunications Conference November 28, 2006. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

1

Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

Daifeng Wang and Brian L. Evans{wang, bevans}@ece.utexas.edu

Wireless Networking and Communications GroupThe University of Texas at Austin

IEEE Global Telecommunications ConferenceNovember 28, 2006

Page 2: Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

2

Problem Statement What problem I have solved?

Design an optimal codebook for noncoherent MIMO communications.

What mathematical model I have formulated? Inverse Eigenvalues Problem

What approach I have taken? Using Reflection matrices

What goal I have achieved? Low searching complexity without any limitation

Page 3: Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

3

Noncoherent Communications Unknown Channel State Information (CSI) at the

receiver Fast Fading channel

e.g. wireless IP mobile systems

No enough time to obtain CSI probably Difficult to decode without CSI

Page 4: Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

4

Noncoherent MIMO Channel Model Noncoherent block fading model [Marzetta and Hochwald, 1999]

Channel remains constant over just one block

Mt transmit antennas, Mr receive antennas, T symbol times/block T ≥ 2 Mt

Y = HX + W X – Mt×T one transmit symbol block

Y – Mr×T one receive symbol block

H – Mr× Mt random channel matrix

W – Mr×T AWGN matrix having i.i.d entries

Page 5: Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

5

Grassmann Manifold Grassmann Manifold [L. Zheng, D. Tse, 2002]

Stiefel Manifold S(T,M) – the set of all M-dimensional subspaces in a T-dimensional hyberspace.

Grassmann Manifold G(T,M) – the set of all different M-dimensional subspaces in S(T,M). X, an element in G(T,M), is an M×T unitary matrix

Chordal Distance [J. H. Conway et. al. 1996]

P, Q in G(T,M)

2( , ) H

c Fd M P Q PQ

Page 6: Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

6

Codebook Model Codebook S with N codewords

Codeword Xi is an element in G(T,Mt)

Optimal codebook S Maximize the minimum distance in S

1 2{ , ,..., }NS X X X

( , )

2

( , )

arg max {min ( , )}

arg min {max }

t

t

c i jG T M

Hi jG T M F

d

S

S

S X X

X X

Page 7: Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

7

Theoretical Support Majorization

Schur-Horn Theorem If ω majorizes λ, there exists a Hermitian matrix with diagonal

elements listed by ω and eigenvalues listed by λ.

ω majorizes λ => , with eigenvalues of

”, from [R. A. Horn & C. R. Johnson, 1985]

1

2

n

1 2 n[ ]

Page 8: Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

8

Optimal Codebook Design

Gram Matrix G of Codebook S

Optimal S The diagonal elements of G are identical Power for the entire codebook P

Allocated P/T to each codeword equally. Nonzero eigenvalues of G = P/T

Optimal Codebook Design G => Xs => S

Given eigenvalues, how to reconstruct such a Gram matrix that it has identical diagonal elements?

1 2, [ ]H H H H Hs s s NG = X X X = X X X

Page 9: Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

9

Reflection Matrix Reflection Angle θ

Equivalent to rotate by 2

Reflection matrix F Unitary matrix

Application Modify the first diagonal element of a matrix

, some value we desired

Reflect by θ

Rotate by 2θ

cos sin

sin cos

11 12 11 12

21 22 21 22

cos sin cos sin

sin cos sin cos

x x y y

x x y y

11y

Page 10: Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

10

t

t

tM K

M K-TT

P[1 1 ... 1] (1)

M K

P P P[0 0 ... 0 ... ] (2)

T T T

Flow Chart of Codebook Design

Page 11: Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

11

Comparison with other designsAlgorithm Searching

complexityDecoding method

Computational complexity

Notes

DFT [B. Hochwald et. al. 2000]

O(2RTMt) GLRT O(2RT)

Coherent Codes [I. Kammoun & J. –C. Belfiore, 2003]

O(2RT(T-Mt)) GLRT O(2RT)

PSK [V. Tarokh & I. Kim, 2002]

O(2RTMt) ML O(MtMr) T=2Mt

Orthogonal matrices [V. Tarokh & I. Kim, 2002]

O(2RTlog2Mt) ML O(Mt2Mr) T=2Mt

Mt=1,2,4,8

Training [P. Dayal et. al., 2004]

O(2RTT) MMSE O(Mt3Mr

3)

Reflection matrices O(2RTMt) GLRT O(2RT)

R: transmit data rate in units of bits/symbol period; T: coherent time of the channel in units of symbol period; Mt : number of transmit antennas; Mr: number of receive antennas.

Page 12: Codebook Design for Noncoherent MIMO Communications Via Reflection Matrices

12

Simulation Mt=1, Mr=4, P=4, T=3

is the standard code from http://www.research.att.com/~njas/grass/index.html.

, Q is a unitary matrix. Thus, are the same point in G(T,Mt)

Mt=2, Mr=4, P=8, T=8

, an 8 by 8 identical matrix

1 0 0 0.7416 0.1716 0.6485

0.3333 0.5369 0.7750 0.1266 0.5723 0.8102ˆ,0.3333 0.9396 0.0775 0.8759 0.2195 0.4296

0.3333 0.4027 0.8525 0.0077 0.9634 0.2680

s s

X X

ˆsX

1 0 0

0

0

0 0 1

s

X

ˆs sX Q X ˆ and s sX X