cmb y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass:...

25
SU(2) U(1) and the nature of light John Hopkins workshop 1 – 3 August 2005 Budapest Ralf Hofmann Universitäten Frankfurt/Heidelberg today CMB = Y hep-th/0504064 (Int. J. Mod. Phys. A 20)

Upload: others

Post on 07-Aug-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

SU(2) U(1) and the nature of light

John Hopkins workshop

1 – 3 August 2005

Budapest

Ralf Hofmann

Universitäten Frankfurt/Heidelberg

today

CMB = Y

hep-th/0504064 (Int. J. Mod. Phys. A 20)

Page 2: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

2

Outline

• motivation

• nonperturbative SU(2) Yang-Mills thermodynamics:

A very brief introduction

• electric-magnetic coincidence and U(1)

• CMB fluctuations at large angles as radiative corrections

• Summary and Outlook

Y

Page 3: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

3

Motivation

for

SU(2) U(1)today

CMB =Y

Page 4: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

4

WMAP 1-year release of temperature map

Page 5: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

5

⇒power spectrum of TE cross correlation:

excess compared to primordial prediction !

(reionization versus mobile electric monopoles at )

temperature-polarization cross correlation at large angles

20...10=z

?

Page 6: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

6

• Universe´s equation of state:

(slowly rolling Planck-scale axion)

• nontrivial ground state physics related to

physics of photon propagation?

(invisible ether)

• intergalactic magnetic fields ?

(condensed, electrically charged monopoles)

critDMcritcrit Ω=ΩΩ=ΩΩ=Ω Λ 3.0,7.0,

more motivation

GB 910−≤

Page 7: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

7

SU(2) Yang-Mills

thermodynamics,

nonperturbatively

Page 8: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

8

SU(2) Yang-Mills thermodynamics

at large temperatures:

spatial coarse-graining over both

plane-wave fluctuations

(small quantum fluctuations,

perturbation theory)

topological fluctuations

(large, topology changing quantum fluctuations,

calorons)

1. induce magnetic monopole constituents in calorons

2. induce interactions between monopoles

3. after coarse-graining:

pure-gauge configuration

[Nahm 1980, Lee & Lu 1998, Kraan & van Baal 1998, Brower et al. 1998, Diakonov et a. 2004, Ilgenfritz et al. 2005, Polyakov 1974]

1. provide spatial correlations to resolve the infrared catastrophe

2. after coarse-graining:

inert adjoint scalar with dependent modulus

quasiparticle masses by Higgs mechanism

T

Page 9: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

9

SU(2) Yang-Mills thermodynamics: phase diagram

T

deconfiningpreconfiningconfining

↔↔2nd order

Hage-dorn

ground state:

short-lived (attracting) BPS monopoles and antimonopoles

( )

plus dilute, screened BPS monopoles and antimonopoles

(spin-1) excitations:

two massive modes

one massless mode

apparent gauge-symmetry breaking:

Mgs TP 3Λ−=⇒ π

Tem

Ew π2

23Λ=

±

)1()2( USU →

ground state:

monopole condensate

plus collapsing,

closed magnetic

flux lines (CVL)

(spin-1) excitation:

massive, dual mode

apparent gauge-symmetry breaking:

Egs TP 34 Λ−=⇒ π

1)1( →DU

ground state:

CVL condensate

(spin-1/2) excitation:

single and self-intersecting CVLs

Page 10: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

10

microscopics of ground-state dynamics: deconfining phase

inert adjoint scalar after spatial coarse-grainingφ

pure gauge after spatial coarse-graining bgaµ

Page 11: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

11

quasiparticle excitations after spatial coarse-graining

quasiparticle mass:

Tem

Ew π2

23Λ=

±

effective gauge coupling

Yang-Mills scale

Page 12: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

12

one-loop evolution of with temperature e

magnetic charge of isolated monopole after screening: e

gπ4=

mass of isolated monopole after screening: e

TM 22π=

Tem

Ew π2

23Λ=

±quasiparticle mass:

SU(2)

SU(3)

monopole condensation,

decoupling of ±W

magnetic-charge conserving atrractor

)log()( ,EcEEe λλλ −−∝

14.5≡e

⇒monopoles mobile close to

phase transition

CMB gets polarized at large angles !

Page 13: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

13

pressure at one-loop

3

26675.0

..−≈−=

condmontoday

CMBtoday

P

P

Page 14: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

14

energy density at one-loop

Eλ65.11, =Ecλ

today ⇒ 3)2(,

105.4 −

Λ×=

ρρ CMBSUgs

⇒eVE4102.1 −×=Λ

⇒small correction to dark-energy content of the Universe

(Planck-scale axion)

Page 15: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

15

electric-magnetic coincidence

at : Ec,λ electric coupling , magnetic coupling

(dynamically stabilized)

∞=e

0=g

1. free photon gas (no screening, decoupled )

2. (i) not yet a coupling of the photon to the monopole condensate:

(ii) photon massless,

(iii) rest-frame of heat bath not visible in single photon propagation (invisible ether),

(iv) superconductivity of ground state (intergalactic magnetic fields ?) barely visible

±W

⇒DUSU

USU

)1()2(

)1()2(

→→

coincide!

(neither dynamical magnetic charges (screening) nor condensed electric charges (photon mass) measureable)

Page 16: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

16

CMB fluctuations at large angles as radiative corrections

subject to compositeness constraints

(plane-wave quantum fluctuations softer than , harder fluctuations integrated out into )

[Herbst, RH, Rohrer 2004]

||φbgaµ

⇒ radiative corrections to pressure at most 0.2%

+W

−W

γ γ,+W−W

,+W−W

,−W+W

dominant diagram

=∆P

Page 17: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

17

dominant correction

T

T∆≈4

3for EcE ,λλ >>

(computed with

upper bound for modulus when ! )

14.5≡e⇒ EcE ,λλ →

Ec,λ

dipole contribution

in temperature map of CMB:

31

1 10)006.0239.1(|| −−−

= ×±=∆WMAPyear

CMB

l

T

T

Page 18: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

18

Summary and Outlook

Universe today possibly dynamically stabilized at boundary

between deconfining and preconfining phase of

SU(2) Yang-Mills theory of scale

eVE4102.1 −×=Λ

invisible ether: structureless condensate of electric

monopoles (electric-magnetic concidence)

after jump to preconfing phase: Universe‘s ground state

visibly superconducting

monopole condensate: small correction to Universe‘s dark-

energy content

large-angle part of CMB power spectra: radiative corrections in

deconfining phase of

(mobile monopoles)CMBSU )2(

Page 19: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

19

future work:

Summary and Outlook

• computation of two-loop correction to pressure in an FRW background

at low

• computation of various thermal two-point correlators in Minkowski

space and FRW background with or without axion background

polarization power spectra and CP violation

• rate of axion rolling necessary for jump to preconfining phase

(violation of thermal equilibrium)

)(lT

T∆l⇒

Page 20: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

20

Page 21: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

21

Typical situation in thermal perturbation theory

taken from Kajantie et al. 2002

Page 22: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

22

taken from van Baal & Kraan 1998

SU(2)

Page 23: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

23

Does fluctuate?φ

quantum mechanically:

)2

( 13 332

2

EEE

l

E Tl

Vl

Λ≡> >=∂ πλλ

φφ

⇒ No !

thermodynamically:

compositeness scale

112 222

2

> >=∂l

T

VEl πφ

⇒ No !

Page 24: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

24

.

pressure (one-loop):

however:

Higgs-induced masses and ground-state pressure both

- dependentT

PdT

dPT −≠ρ

⇒ relations between thermod.quantities violated:

Thermodynamical self-consistency:

⇒ - derivatives involve also implicit dependencesT

Page 25: CMB Y nature of light - thphys.uni-heidelberg.dehofmann/jhw2005.pdf · Λ3 = ± quasiparticle mass: SU(2) SU(3) monopole condensation, decoupling of W± magnetic-charge conserving

25

Relaxation to the minima