cloud microphysics modeling: the state of the art wojciech w. grabowski mesoscale and microscale...

52
Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Upload: naomi-randall

Post on 15-Jan-2016

226 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Cloud microphysics modeling: the state of the art

Wojciech W. Grabowski

Mesoscale and Microscale Meteorology Laboratory

NCAR, Boulder, Colorado, USA

Page 2: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

An introduction to cloud microphysics modeling

Wojciech W. Grabowski

Mesoscale and Microscale Meteorology Laboratory

NCAR, Boulder, Colorado, USA

Page 3: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 4: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

parameterization2 problem:parameterized microphysics in

parameterized clouds

parameterization problem:parameterized microphysics in

(under)resolved clouds

microphysics at its native scale

Cloud microphysics across scales

Page 5: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

cloud base(activation of

cloud droplets)

airflow

interfacial instabilities

calm (low-turbulence)

environment

turbulent cloud

Page 6: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Bjorn Stevens, RICO

Page 7: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 8: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Eulerian versus Lagrangian methodology (continuous medium versus particle-

based)

Explicit treatment of aerosol effectsversus mimicking impacts of aerosols

Warm (no-ice) versus ice-bearing clouds

Precise and complex versus approximate and easy to apply

Understanding the physics versus numerical implementation

Page 9: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 10: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Explicit treatment of aerosol effects (particle-based)

versus mimicking impacts of aerosols (continuous medium)

Page 11: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 12: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Water vapor is a minor constituent:

mass loading is typically smaller than 1%; thermodynamic properties (e.g., specific heats etc.) only slightly modified;

Suspended small particles (cloud droplets, cloud ice):

mass loading is typically smaller than a few tenths of 1%, particles are much smaller than the smallest scale of the flow; multiphase approach is not required, but sometimes used with simplifications (e.g., DNS with suspended droplets, Lagrangian Cloud Model);

Precipitation (raindrops, snowflakes, graupel, hail):

mass loading can reach a few %, particles are larger than the smallest scale the flow; simplified multiphase approach needed only for very-small-scale modeling.

Page 13: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 14: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Droplet size exaggerated compared to the mean distance!

Page 15: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

water vapor

temperature

gradients of the temperature and water vapor near the droplet (established on a time scale of ~millisecond) go to

~10 droplet radii…

Page 16: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

T, qv

Page 17: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Vaillancourt et al. JAS 2001

M for macroscopic…

Page 18: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Vaillancourt et al. JAS 2001

Page 19: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Vaillancourt et al. JAS 2001Δr~1μm, Δt~10-8s

Page 20: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Vaillancourt et al. JAS 2001

Page 21: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Vaillancourt et al. JAS 2001

…perhaps expected considering that the volume affected by the gradients is small compared to the entire volume,

about 0.1%...

Page 22: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Lagrangian:

Eulerian:

compressible

anelastic

Ψ(x,y,z,t)

Ψ(x, y, z, t)

Ψ(x+uΔt, y+vΔt, z+wΔt, t+Δt)

Ψ(x, y, z, t+Δt)

Lagrangian versus Eulerian governing equations

Page 23: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

EULERIAN MODELING OF THE CONDENSED PHASE

Page 24: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Continuous medium approach: apply density as the main field variable (density of water vapor,

density of cloud water, density of rainwater, etc…)

In practice, mixing ratios are typically used. Mixing ratio is the ratio between the density (of water vapor, cloud water…) and the dry air density.

Page 25: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Mixing ratio versus specific

humidity…

Page 26: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

And we also need equation for the temperature. If only phase changes are included, then potential temperature

equation is:

Page 27: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Modeling of cloud microphysics:

solving a system of PDEs

(advection/diffusion type) coupled

through source terms…

Page 28: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 29: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

A very simple (but useful) model: rising adiabatic parcel…

Take a parcel from the surface and

move it up…

… by solving these equations.

Page 30: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

qv

qc

Look not only on the patterns (i.e., processes), but also on specific numbers (e.g., temperature change, mixing ratios, etc).

Page 31: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Invariant variables:

total water,

liquid water potential temperature,

equivalent potential temperature.

Note: equivalent potential temperature is closely related to moist static energy, cpT + gz + Lqv…

Page 32: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Adding rain or drizzle:

Page 33: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

What determines the concentration of cloud droplets?

To answer this, one needs to understand formation of cloud droplets, that is, the activation of cloud

condensation nuclei (CCN).

This typically happens near the cloud base, when the rising air parcel approaches saturation.

Page 34: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 35: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 36: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 37: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Computational example:

Nucleation and growth of cloud droplets in a parcel of air rising with vertical velocity of 1 m/s;

60 bins used;

1D flux-form advection applied in the radius space;

Difference between continental/polluted and maritime/pristine aerosols

f=f(r,z) or f=f(r,t)

Page 38: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

maritime

a=100 cm-3

continental

a=1000 cm-3 N = a Sb

b=0.50.

0.

0.

1. 1.

0.

0.

0.

600. 600.

20. 20.

0. 500. 500.0.

Page 39: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

maritime continental

0. 0.

150. 150.

0. 0.

2. 2.

500. 500.0.0.

Page 40: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

maritime continental

0. 0.

150. 150.

0. 0.

2. 2.

!

Page 41: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 42: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 43: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 44: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA
Page 45: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Grazing trajectory

Growth of water droplets by gravitational collision-coalescence:

Droplet inertia is the key; without it, there will be no collisions. This is why collision efficiency for droplets smaller than 10 μm is very small.

Collision efficiency:

Page 46: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

-

cloud water: qc , Nc

drizzle/rain water: qr , Nr

Nucleation of cloud droplets: link to CCN characteristics

Drizzle/rain development: link to mean droplet size

e.g., Morrison and Grabowski JAS 2007, 2008

Double-moment warm-rain microphysics:

a compromise between bulk and bin microphysics

Page 47: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

LAGRANGIAN MODELING OF THE CONDENSED PHASE

Page 48: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Lagrangian treatment of the condensed phase:

Page 49: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Eulerian dynamics, energy and water vapor transport:

Lagrangian physics of “super-particles”

a single “super-particle” represents a number of the same airborne

particles (aerosol, droplet, ice crystal, etc.) with given attributes

Coupling

mid – mass of the super-particle

Mid – concentration of super-particles

ΔV – volume of the gridbox

Andrejczuk et al. 2008, 2010

Page 50: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Andrejczuk et al. 2010

CCN of 190 cm-3

CCN of 1295 cm-3

9 hr

3 hr

Page 51: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Andrejczuk et al. 2010

CCN of 190 cm-3

CCN of 1295 cm-3

9 hr

3 hr

Page 52: Cloud microphysics modeling: the state of the art Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory NCAR, Boulder, Colorado, USA

Summary:

A wide range of modeling approaches exists that one can use in modeling various aspects of cloud microphysics. Most of them are within the framework of Eulerian modeling, but use of Lagrangian microphysics is rapidly expanding.

The approach selected needs to be tailored to the specific problem at hand. If multiscale dynamics (e.g., convectively coupled waves in the tropics) is the focus, application of as simple microphysics as possible makes sense to use computer time to widen the range of spatial scales. If small-scale dynamics-microphysics interaction is the focus (e.g., entrainment), more emphasis on microphysics is needed.

The multiscale nature of clouds (the range of spatial scales), difficulties of cloud observations (in-situ and remote sensing), and increasing appreciation of the role of clouds in weather and climate make the cloud physics an appealing area of research.