climate variability and phytoplankton composition in the pacific ocean rousseaux c.s., gregg w.w

21
Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W. NASA Ocean Color Research Team Meeting, April 23- 25 2012, Seattle, WA Chlorophyll a, NASA Ocean Color El Niño La Niña

Upload: lyle

Post on 12-Jan-2016

22 views

Category:

Documents


0 download

DESCRIPTION

Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W. NASA Ocean Color Research Team Meeting, April 23-25 2012, Seattle, WA. El Niño. La Niña. Chlorophyll a, NASA Ocean Color. 1997-98 El Niño. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

Climate Variability and Phytoplankton Composition in the

Pacific OceanRousseaux C.S., Gregg W.W.

NASA Ocean Color Research Team Meeting, April 23-25 2012, Seattle, WA

Chlorophyll a, NASA Ocean Color

El Niño

La Niña

Page 2: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

1997-98 El Niño

Seabird abundance and anchoveta and sardine landings from Peru (Chavez et al. 2003)

Page 3: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

When it comes to feeding fishes,

all phytoplankton are not equal…

Cyanobacteria

Diatoms

Coccolithophores

Chlorophytes

Chlo

rophyll

a

Page 4: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

Are El Niño conditions unfavorable to all

phytoplankton groups or only some?

Page 5: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

pCO2

pCO2

Nutrients PhytoplanktonDiatom

sDiatom

sChloro, Cocco,

CyanoChloro, Cocco,

Cyano

DIC

Fe, NO3, NH4

Fe, NO3, NH4 SiSi

Herbivores

N/C DetritusIron

Detritus

Silica Detritus

• Clouds• Precipitation water• Relative humidity

• Ozone

Wind Stress Wind speed

Mixing

Advection

Page 6: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

Validation

Variable Global Difference % Correlation over Basins

Nitrate 18.9% 0.905 P<0.05Ammonia Not tested Not testedSilica 5.4% 0.952 P<0.05Dissolved Iron 45% 0.933 P<0.05Diatoms 15.5% 0.850 P<0.05Chlorophytes -16.2% 0.020 NSCyanobacteria 7.9% 0.970 P<0.05Coccolithophores -2.6% 0.700 P<0.05Total Chlorophyll vs In situ -17.1% 0.787 P<0.05 vs SeaWiFS -8.0% 0.618 P<0.05 vs Aqua 1.1% 0.469 NSHerbivores Not tested Not testedDetritus Not tested Not testedDiss. Inorganic Carbon 0.1% 0.972 P<0.05pCO2 0.0% 0.765 P<0.05Air-sea carbon flux 3.1% 0.741 P<0.05

Page 7: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

Figure 2| Comparison of chlorophyll (mg m-3) from the assimilation model, the free-run model, and SeaWiFS. The assimilation and free-run chlorophyll distributions represent simulations for April 1, 2001. SeaWiFS data for the same day are shown for comparison, along with the monthly mean. Grey indicates land and coast, black indicates missing data, and white indicates sea ice.Bias Uncertainty N

SeaWiFS -1.3% 32.7% 2086

Free-run Model -1.4% 61.8% 4465

Assimilation Model 0.1% 33.4% 4465In situ data from Seabass and nodc

Page 8: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

Data Assimilation

In ocean biology, Two Classes:Variational (e.g., adjoint, 4DVar)Sequential (e.g., Kalman Filter)

We use Sequential Methodologies,Conditional Relaxation Analysis MethodEnsemble Kalman Filter

Routinely assimilating SeaWiFS and Aqua Chlorophyll Data

Page 9: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

(a)

(b)

(c)

(d)

Figure 3| Comparison of the free run, the multivariate and the univariate approach for chlorophyll and nutrients in the South Pacific Ocean. Time series of annual averages of (a) Chlorophyll, (b) Nitrate, (c) Silicate and (d) Iron. [Rousseaux & Gregg 2012]

Page 10: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

(a)

(b)

(c)

MEI

Page 11: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W
Page 12: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W
Page 13: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W
Page 14: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

Global Phytoplankton Relative Abundance

469 observations taken from figures in peer-reviewed papers; Available at GMAO Web site

How well does the NOBM compare to in situ data?

Page 15: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

North Central Pacific

Equatorial Pacific South Pacific

Diatoms -3.50 (3) -0.87 (21) 25.58 (7)Chlorophytes -19.40 (2) -18.01 (17) -33.32 (7)Cyanobacteria 10.67 (24) -13.47 (20) 3.20 (2)Coccolithophores 1.99 (3) 36.77 (15) -2.11 (7)

Percentage difference between the NOBM and the in situ data. The number of observations used for the comparison is between parenthesis

Only >20% in 3 cases

How well does the NOBM compare to in situ data?

Page 16: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

Intercomparison of model- and satellite-derived phytoplankton community composition

Hirata et al. 2011

Page 17: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

Intercomparison of model- and satellite-derived phytoplankton community composition

North Central Pacific Equatorial Pacific South Pacific

Diatoms -3.06 (3) -8.00 (21) -7.00 (7)Chlorophytes -12.35 (2) -8.80 (17) -38.43 (7)Cyanobacteria -8.12 (24) 2.88 (20) 0.19 (2)Coccolithophores 8.31 (3) 17.68 (15) 2.53 (7)

Regions where the satellite-derived approach is closer to the in situ data than the NOBM

Percentage difference between Hirata’s method and the in situ data. The number of observations used for the comparison is between parenthesis

Percentage difference between Hirata’s method and the in situ data. The number of observations used for the comparison is between parenthesis

Only >20% in 1 cases

Page 18: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

(a) North Central PacificMEI Diatoms Chlorophytes Cyanobacteria Coccolithophores

MEI 1.00Diatom -0.14 1.00

Chlorophytes -0.04 0.63* 1.00Cyanobacteria -0.05 0.59* 0.84* 1.00

Coccolithophores -0.03 0.64* 0.87* 0.95* 1.00

(a) Equatorial PacificMEI Diatoms Chlorophytes Cyanobacteria Coccolithophores

MEI 1.00Diatom -0.40* 1.00

Chlorophytes -0.47* 0.53* 1.00

Cyanobacteria -0.46* 0.58* 0.67* 1.00Coccolithophores -0.64* 0.63* 0.79* 0.82* 1.00

(a) South Pacific

MEI Diatoms Chlorophytes Cyanobacteria CoccolithophoresMEI 1.00Diatom -0.06 1.00Chlorophytes -0.01 0.12 1.00Cyanobacteria -0.02 0.13 0.85* 1.00

Coccolithophores 0.01 0.18* 0.88* 0.89* 1.00

Page 19: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

1. Climate variability has most impact on the phytoplankton

community composition in the Equatorial Pacific

2. Large Shifts are observed both on temporal and spatial scale

3. These shifts have potential important consequences for the

carbon cycles and higher trophic levels

4. Different methods provide different views of the impact climate

variability has on the biology

Conclusion:

Page 20: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

P<0.05

P<0.05 P<0.05

Supporting data and publications: Google gmao, click Research, thenOcean Biology Modeling (http://gmao.gsfc.nasa.gov/research/oceanbiology)

NS

Page 21: Climate Variability and Phytoplankton Composition in the Pacific Ocean Rousseaux C.S., Gregg W.W

Chlorophytes

0

10

20

30

40

50

60

70

80

N Atl

N Pac

NC Atl

NC Pac

N Ind

Eq Atl

Eq Pac

Eq In

dS A

tl

S Pac

S Ind

Antar

c

Pe

rce

nt o

f To

tal

Global mean difference model-data = -16.2%Correlation coefficient ( r ) = -0.022

Diatoms

0

20

40

60

80

100

120

N Atl

N Pac

NC Atl

NC Pac

N Ind

Eq Atl

Eq Pac

Eq In

dS A

tl

S Pac

S Ind

Antar

c

Pe

rce

nt o

f To

tal

Global mean difference model-data = 15.5%Correlation coefficient ( r ) = 0.847*

Cyanobacteria

0

10

20

30

40

50

60

70

80

90

N Atl

N Pac

NC Atl

NC Pac

N India

n

Eq Atl

Eq Pac

Eq In

dian

S Atl

S Pac

S India

n

Antar

c

Pe

rce

nt o

f To

tal

Global mean difference model-data = 7.9%Correlation coefficient ( r ) = 0.972*

Coccolithophores

0

10

20

30

40

50

60

N Atl

N Pac

NC Atl

NC Pac

N India

n

Eq Atl

Eq Pac

Eq In

dian

S Atl

S Pac

S India

n

Antar

c

Pe

rce

nt o

t To

tal

Global mean difference model-data = -2.6%Correlation coefficient ( r ) = 0.704*

Blue = NOBM; Green = Data

Gregg and Casey, 2007, Deep-Sea Research II