classical’and’recurrentnovae’are’ … · 2014. 1. 29. · !lasts about 1 year and radiates...

29
Classical and Recurrent Novae are Planetary Nebulae in Fast Forward AND Their Ejecta are Neither Spherical Nor Uniformly Filled Sumner Starrfield ASU Steve Shore Pisa (no grad student or postdoc was harmed in this study yet)

Upload: others

Post on 01-Sep-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Classical  and  Recurrent  Novae  are  Planetary  Nebulae  in  Fast  Forward  

AND      Their  Ejecta  are  Neither  Spherical  

Nor  Uniformly  Filled  Sumner  Starrfield          ASU  Steve  Shore                Pisa  

 (no  grad  student  or  postdoc  was  harmed  in  this  study-­‐  yet)  

Page 2: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Conclusions  (just  in  case  I  get  cut  off  early)  1)  A  nova  outburst  occurs  in  a  binary  system  and  is  inherently  asymmetric  

2)  The  outburst  properKes  depend  on  the  viewing  angle  (pole  on  or  equatorial).      

3)  Most  studies  have  assumed  that  Classical  and  Recurrent  Novae  ejected  gases  are  spherical  and  expanding  in  a  Hubble  flow  (velocity  increasing  with  radius)  

4)  But  high  resoluKon  imaging  shows  that  the  material  is  far  from  spherical.  (HST,  Spitzer,  LBT,  VLT)  

5)  Spectroscopic  studies  show  that  the  material  is  probably  expanding  in  bi-­‐polar  jets  or  flows  

6)  The  Maximum  Magnitude  Rate  of  Decline  relaKonship  (MMRD)  is  commonly  used  to  obtain  distances  to  Classical  (or  Recurrent)  Novae  

7)  It  assumes  a  single  relaKonship  between  the  peak  brightness  and  rate  of  decline  

8)  This  cannot  be  true  because  there  are  5  parameters  that  affect  the  properKes  of  the  outburst.  

9)  Therefore,  using  it  to  get  the  distance  to  a  single  nova  is  wrong  

Page 3: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

M Lasts about 1 year and radiates ~1045 ergs M Peak Luminosity ~ LEdd exceeds LEdd in the fastest novae. M Ejects about 1028 to 1029 gm (QU Vul ejected about 1030 gm) M Ejects at speeds from ~300 km/sec to 7000 km/sec (QU Vul) M Abundances of ejected gases far from solar M Helium is always enriched M Two composition classes:

M Carbon-Oxygen Oxygen-Neon (Lots of Neon) M  A Class of novae that is not ejecting any hydrogen -mostly He and C

M V445 Pup M One recent CN occurred inside a Planetary Nebula Shell

THE CLASSICAL NOVA OUTBURST Degenerate Dwarfs Behaving Badly:

Page 4: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Where Does the Explosion Occur?

Page 5: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

We  Follow  the  Light  Curve:  

Days    

(Outburst  occurs  on  a  Grad  student  or  Post  Doc  Kme  scale  NOT    tenured  professors  {like  PNe})  

Log

Brig

htne

ss

Page 6: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Novae Do Not All Evolve in the Same Way:

Page 7: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Nova  Del  2013  the  4th  nova  detected  in  γ-­‐rays  by  FERMI/LAT  No  sign  of  dust  formaKon  as  of  November  1,  2013:    

The  first  CO  nova  to  be  seen  as  a  Super  Soh  Source  (Kim  Page  et  al.)    

Page 8: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Kim  Page  et  al.  (Nov  1,  2013)    [counts  below  0.5  keV]    

Page 9: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects
Page 10: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

The  Evolving  Radio  Remnant  of    RS  Oph  in  2006  

(O’Brien,  Bode  et  al.,  2006,  Nature)  VLBI  observaKons  –  O’Brien  et  al.  2006,  Nature    

Remember  1985?  

Day  77  

Page 11: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Three  epochs  of  VLBI  imaging  6  cm  

18  cm  

Day  13.8  

Day  13.8   Day  20.5   Day  28.7  

Day  28.7  Day  21.5  

Expanding  ring  

VLBA   EVN   VLBA  

O’Brien et al 2006

Page 12: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

A  model  

Early  

Late  

SyntheKc  images  

As  the  source  expands  the  overlying  free-­‐free    absorpKon  is  reduced  and  it  becomes  symmetrical.  O’Brien et al 2006

Page 13: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

V1280  Sco  –  a  deep  dust  forming    CO  Nova  Chesneau  et  al.    [not  seen  in  soh  X-­‐rays]  

!"#$%&'($)*+,-$./&$!"#$%&'(')* * %+* ,--.* /'0* 12345* 67"#* +%&8* 899'8(')* (89"):;* 6%* 0'* '<$'96"%+8:* =%(* #'&'(8:* ('8#%+#>* "6#*8998('+6*0("?76+'##* @('8$7"+?*ABC2.*86*D8<"DEDF5* 67'*&'(;* #:%G*'&%:E6"%+* @"+$('8#"+?* =:E<*)E("+?* 6'+*)8;#**67'+*('D8"+"+?*0("?76*86*8::*G8&':'+?67#*=%(*+%G*H*;'8(#F*8+)*67'*:8(?'*8D%E+6*%=*)E#6*$('86')2*

I+"JE'*AKLMNOPQRS*8+)*PM!M*%0#'(&86"%+#*9'(=%(D')*)E("+?*1*D%+67#*@T7'#+'8E*'6*8:2*,--3F*9(%&")')*8*G'8:67*%=*"D9%(68+6*"+=%(D86"%+*%+*67'*'&'+62*OD%+?*67'D*67'*)'6'(D"+86"%+*%=*67'*8998('+6*:"+'8(*'<98+#"%+* (86'* =%(* 67'* )E#6* #7'::5* 6786* :')* 6%* 8* )"#68+$'* '#6"D86'* @)* B* U24V-21* W9$F* 08#')* %+* 8*#9'$6(%#$%9"$*'&8:E86"%+*%=* 67'*'<98+#"%+* &':%$"6;*%=* 67'*+%&8*'X'$68* @H--VU--*WD2#YUF*8+)*8*D%+67:;*D%+"6%("+?*%=*67'*)E#6*=%(D86"%+*(86'*@)E#6*9(%)E$6"%+*(86'Z*,Y3<U-Y[*P#E+*)8;YU*G"67*8*9(%080:'*9'8W*"+*9(%)E$6"%+* 86* 6BC4Y14* )8;#F* 6%?'67'(* G"67* 67'* #6E);* %=* 67'* 97;#"$8:* $%+)"6"%+#* 6786* :')* 6%* 67'* )E#6*=%(D86"%+2*/%(*"+#68+$'5*#%D'*:"+'#*86*:%G*'<$"686"%+*G'('*$:'8(:;*%0#'(&')*8+)*8('*#6"::*9('#'+6*1*;'8(#*8=6'(*@!8#*'6*8:2*,--35*T7'#+'8E*'6*8:2*#E0D"66')F2*L7'*8D%E+6*%=*)E#6*$('86')*"+*67'*'X'$68*)E("+?*67'*="(#6* U1-* )8;#* %=* 67'* '&'+6* "#* 80%E6* ,2,<U-Y.*P#E+*G7"$75* 8##ED"+?* 8* )E#6Y6%Y?8#* (86"%* %=* U--* :')* 6%* 8*(%E?7* '#6"D86"%+* %=* 67'*D8##* 'X'$6')* %=* 86* :'8#6* #'&'(8:* ,<U-YH

*P#E+* )E("+?* 67"#* 9'("%)2* AU,3-* \$%* "#* 8*9(%)"?"%E#*)E#6*9(%)E$'(*%&'(*67'*H*;(*9'("%)*"=*D86'("8:*G8#*$%+6"+E8::;*'X'$6"+?*"+6%*67'*#7'::5*('#E:6"+?*"+*8+*"+6'?(86')*D8##*'<$'')"+?*#'&'(8:*U-Y1*P#E+2*L7"#*+%&8*"#*7"?7:;*E+E#E8:5*8#*G8#*)"#$E##')*"+*%E(*R\]*9('##* (':'8#'U2*L7'* %96"$8:* "+6'(='(%D'6(;* #6E)"'#* 9'(=%(D')* "+* ,--.* G'('* :8$W"+?* 67'* !"* $%&'(8?'*+'$'##8(;* 6%* '#6"D86'* 67'* #789'* %=* 67'* #%E($'5* 8+)* "+* 8::* 989'(#* 9E0:"#7')* 0'=%('* ,--[5* 8* #97'("$8:*'X'$6"%+*G8#*8##ED')2***

M+* ,--[5* ^OT]* 8+)* AM\MS* %0#'(&86"%+* G'('* %068"+')* 6786* ('&'8:')* 8* #6("W"+?* 0"9%:8(* +'0E:8* G7%#'*'<98+#"%+* G8#* 67'+* ('?E:8(:;* D%+"6%(')* 0'6G''+* ,--[* 8+)* ,-UU* @T7'#+'8E* '6* 8:2* #E0D"66')F2* L7'*'<98+#"%+* %=* 67'* +'0E:8* "+* 67'*D8X%(* 8<"#* )"('$6"%+* "#* -2C[V-2-CD8#* )8;YU5* 8* &8:E'* $:%#'* 67'* '#6"D86'*=(%D*AKLM*D'8#E('D'+6#2*Q;*$78+$'5*D%#6*%=*67'*08#':"+'#*E#')*=%(*67'*AKLM*%0#'(&86"%+#*G'('*$:%#':;*8:"?+')*G"67*67'*D8X%(*8<"#*)"('$6"%+2*L7'*)"D'+#"%+#*%=*67'*+'0E:8*G"::*0'*-2[C_*<*-24U_*"+*`E+2*,-UC*8+)*67'*"+$:"+86"%+*"#*9(%080:;*:8(?'2*P%#6*%=*67'*)E#6*#''D#*6%*('#")'*"+*67'*$89#*%=*67'*+'0E:85*8+)*6%*)86'*+%*$:'8(*'D"##"%+*"#*%0#'(&')*+'8(*67'*'JE86%("8:*9:8+'2*\"?+86E('#*%=*7;)(%?'+86')*$8(0%+*$%D9%E+)#*G'('*%0#'(&')*"+*67'*"+=(8(')*@\"6W%*'6*8:2*,--[F2**

*********** *

!"#$%&'()*&+&,-.-&/012345&6748&0/79"&36$704"8&04&:;4"&-<=<&,04>"2$"8&13?32@A&1"4$27?&@3;21"&@;6$271$"85.&B09C$%&DEFEB&0/79"&36$704"8&04&6;2@$&/38"&,@C32$&"GH3@;2"@5&7$&I.JK&/01234&04&:;4"&-<==.&L3$$3/%&27M&0/79".&NH%&8"134>3?>"8&,)C"@4"7;&"$&7?.&@;6/0$$"85.&

*************************************************************U*7669>NNGGG2'#%2%(?N9E0:"$N+'G#N'#%-3,,N**

Page 14: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

A nova ejects ~10 to 100 Earth masses (1028 gm to 1029 gm)

at speeds from 300 km/sec to 7000 km/sec

GK  Per  (1901)                                      V1974  Cyg  (1992)                                    DQ  Her  (1934)  

Page 15: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

V1974  Cyg  on  Day  464  (leh)  and  Day  723  (right)  Spectra  Modeled  on  the  Boqom    

Page 16: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

V1974  Cyg  taken  with  HST/NICMOS  on  10  Feb  1998  Long  axis  diameter  about  1”  

Krauqer  et  al.  2002  

Page 17: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

V1974  Cyg  (1992)  taken  with  MODS  on  the  LBT  Oct  31,  2013    

Long  axis  diameter  about  5”  

Wagner,  Starrfield,  et  al.  2014,  in  prep  

Page 18: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

V445 Pup (2000)

It may be a SN Ia progenitor: SN Ia provide a fraction of the iron group

elements in the Solar System; And are useful in Cosmology

SN Ia show neither H or He in their spectra At any time

Ejected only H and He

Page 19: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Wagner    and  Starrfield  

Page 20: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

V445  Puppis  -­‐  Discovered  in  2000  -­‐  imaged  with  AcKve  OpKcs  

No  Hydrogen  detected  in  the  ejected  gases  -­‐  mostly  helium  and  carbon  

White  Dwarf  accreKng  from  a  Hydrogen  Deficient  Carbon  star  

Page 21: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

FH  Ser    HST  WFPC2    imaging  Gill  and  O’Brien  MN  

Page 22: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Nova  Mon  2012:    Model  spectral  profile  on  the  leh:  Pseudo  image  taken  from  the  profile  on  the  right  

 (Shore  et  al.  2013)  

Page 23: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Why  should  you  worry  about  the  MMRD?      

It  is  used  to  determine  distances  to  single  novae  when  it  is  a  staKsKcal  relaKonship  

 In  fact,  an  important  parameter  is  the  

Viewing  angle.        

Page 24: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

1995ApJ...452..704D

Della  Valle  and  Livio  

ApJ  1995    

M31  and  LMC  Novae  

Page 25: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Kasliwal  et  al.  2011:    M31  and  M82  Novae  from  the  PTF    

Page 26: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

On  What  Do  the  Peak  Luminosity  and  Rate  of  Decline    (expansion  speed)  Depend?  

 1.  The  White  Dwarf  Mass:    The  higher  the  WD  mass  the  smaller  the  amount  of  accreted    

and  ejected  mass.      So  the  expanding  gases  go  opKcally  thin  more  rapidly  

2.  The   White   Dwarf   Luminosity:   The   more   luminous   the   WD   -­‐   the   more   rapidly   the  accreKng  material  reaches  the  TNR:  so  less  mass  is  accreted.  

3.  The  Rate  of  Mass  AccreKon:    The  higher  the  rate  of  mass  accreKon,  the  more  energy  is  liberated  in  the  accreted  layers  and  the  more  rapid  the  rise  to  the  TNR.  

4.  The  ComposiKon:    12C  is  the  most  reacKve  of  the  CNO  elements.    ONe  novae  have  less  carbon  and  can  accrete  more  material  than  CO  novae.  We  also  need  to  be  concerned  about   mixing   of   accreted   and   WD   core   material.     What   is   the   composiKon   of   the  material  being  transferred  by  the  secondary?        

5.  The  Viewing  angle:    Following  a  pole-­‐on  explosion  will  give  different  properKes  than  an  edge  on  explosion  and  any  inclinaKon  angle  in  between.        

Page 27: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

ABSTRACT  

HST RS Oph

Bode et al, 2007.

HST T Pyxidis

Shara et al, 1997.

(a) (c) simulation: i = 90

(b)

simulation: i = 0

10 AU

simulation: i = 0(d)

10 AU

-18

-20

log

<den

sity

gcm

-3>

This    figure  shows  us  esKmaKng  the  CO  emission  from  CNe  in  outburst  using  SPH  modeling  and  then  running  the  results  through  the  LIME  radiaKve  transfer  code  and  the  CASA  simulator.    These  results  show  that  the  ALMA  observaKons  will  allow  us  to  obtain  the  velocity  structure  and  improve  the  determinaKons  of  the  mass  of  the  ejected  gases.      Knowing  the  velocity  and  mass  we  can  then  esKmate  the    white  dwarf  mass  and  determine  if  the  white  dwarf  is  growing  or  losing  mass  as  a  result  of  the  outburst.        

From  Shazrene  Mohamed’s  Talk  –with  thanks  

Page 28: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Conclusions:    

1.  Classical  and  Recurrent  Novae  are  Binaries  2.  They  have  survived  Common  Envelope  EvoluKon  3.  There  are  two  composiKon  classes:  CO  and  ONe  4.  The  shaping  of  the  ejecta  occurs  almost  immediately  5.  The   ejecta   are   asymmetric   and   their   observed   shape  

may,   in   some   cases,   depend   on   how   we   are   viewing  the  ejecta  

6.  The   ejected   gases   start   off   as   hot,   adiabaKcally   cool  unKl  neutral,  and  then  are  slowly   ionized  again  by  the  hot   White   Dwarf   –on   Kme   scales   of   WEEKS   (not  centuries)  

Page 29: Classical’and’RecurrentNovae’are’ … · 2014. 1. 29. · !Lasts about 1 year and radiates ~1045 ergs !Peak Luminosity ~ L Edd exceeds L Edd in the fastest novae. !Ejects

Classical  and  Recurrent  Nova  ejecta  

are  neither  Spherical  

Nor  Uniformly  filled  

 Novae  Hate  Theorists