classical electromagnetism and optics

Upload: rodrigo-paludo

Post on 14-Apr-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Classical Electromagnetism and Optics

    1/159

    Chapter 2Classical ElectromagnetismandOpticsTheclassicalelectromagneticphenomenaarecompletelydescribedbyMaxwellsEquations. Thesimplestcasewemayconsideristhatofelectrodynamicsofisotropicmedia2.1 Maxwells Equations of Isotropic MediaMaxwellsEquationsare

    DH =t + J, (2.1a)

    BE = t , (2.1b)

    D = , (2.1c)B = 0. (2.1d)

    ThematerialequationsaccompanyingMaxwellsequationsare: D = 0E+ P , (2.2a) B = 0H+ M. (2.2b)

    Here, E andH aretheelectricandmagneticfield, D thedielectricflux, Bthemagneticflux,Jthecurrentdensityoffreechareges,is the free charge density,P isthepolarization,andM themagnetization.

    13

  • 7/30/2019 Classical Electromagnetism and Optics

    2/159

    14 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSNote, it isEqs.(2.2a)and(2.2b)whichmakeelectromagnetisman inter

    estingand

    always

    ahot

    topic

    with

    never

    ending

    possibilities.

    All

    advances

    in

    engineeringofartificalmaterialsorfindingofnewmaterialproperties,suchassuperconductivity,bringnewlife,meaningandpossibilitiesintothisfield.

    BytakingthecurlofEq. (2.1b)andconsidering E = E E,

    whereistheNablaoperatorandtheLaplaceoperator,weobtain

    !

    E P

    E 0t j+ 0 t + t =t M+ E (2.3)andhence ! 1 2 j 2

    c20t2

    E = 0 t +t2P +t M+ E . (2.4)withthevacuumvelocityoflight s

    1c0 = . (2.5)

    00Fordielectricnonmagneticmedia,whichweoftenencounterinoptics,withno free charges and currents due to free charges, there is M = 0, J = 0,= 0,whichgreatlysimplifiesthewaveequationto 1 2 2

    c2t2 E

    = 0t2P + E . (2.6)

    0

    2.1.1 Helmholtz EquationIn general, the polarization in dielectric media may have a nonlinear andnonlocaldependenceonthefield. Forlinearmediathepolarizabilityofthemediumisdescribedbyadielectricsusceptibility (r, t)Z Z

    P(r,t) = 0 dr0dt0 (rr0, t t0) E (r0, t0) . (2.7)

  • 7/30/2019 Classical Electromagnetism and Optics

    3/159

    152.1. MAXWELLSEQUATIONSOFISOTROPICMEDIAThe polarization in media with a local dielectric suszeptibility can be described

    by

    ZP(r,t) = 0 dt0 (r,tt0) E (r,t0) . (2.8)

    This relationship further simplifies for homogeneous media, where the susceptibilitydoesnotdependonlocationZ

    P(r,t) = 0 dt0 (tt0) E (r,t0) . (2.9)whichleadstoadielectricresponsefunctionorpermittivity

    (t) = 0((t) + (t)) (2.10)and with it to Z

    D(r,t) = dt0 (tt0) E(r,t0) . (2.11)Insucha linearhomogeneousmediumfollows fromeq.(2.1c) forthecaseofnofreecharges Z

    dt0 (tt0) (E(r,t0)) = 0. (2.12)This iscertainly fulfilled for E = 0, which simplifiesthe wave equation

    (2.4)further 1 2 2

    E= 0 P . (2.13)2c0t2 t2 This isthewaveequationdrivenbythepolarizationofthemedium. Ifthemediumislinearandhasonlyaninducedpolarization,completelydescribedinthetimedomain(t) orinthefrequencydomainbyitsFouriertransform,the complex susceptibility () = r() 1 with the relative permittivityr() = ()/0,weobtain inthefrequencydomainwiththeFouriertransformrelationship

    Z+eE(z, ) = E(z, t)ejtdt, (2.14)

    eP() = 0()eE(), (2.15)

  • 7/30/2019 Classical Electromagnetism and Optics

    4/159

    16 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    where,the

    tildes

    denote

    the

    Fourier

    transforms

    in

    the

    following.

    Substituted

    into(2.13)

    +2 Ee () = 200()Ee(), (2.16)2c0weobtain

    +2

    2(1 + () E

    e() = 0, (2.17)

    c0withtherefractiveindexn() and1 + () = n()2 resultsintheHelmholtzequation

    2 e+ E() = 0, (2.18)c2wherec() = c0/n() isthevelocityof light inthemedium. ThisequationisthestartingpointforfindingmonochromaticwavesolutionstoMaxwellsequationsinlinearmedia,aswewillstudyfordifferentcasesinthefollowing.Also,sofarwehavetreatedthesusceptibility() asarealquantity,whichmaynotalwaysbethecaseaswewillseelaterindetail.2.1.2 Plane-Wave Solutions (TEM-Waves) and Com-

    plex NotationTherealwaveequation(2.13) fora linearmediumhasrealmonochromaticplane wave solutions Ek(r,t), which can be be written most efficiently intermsofthecomplexplane-wavesolutionsEk(r,t) accordingtoh i n o1

    Ek(r,t) = Ek(r,t) + Ek(r,t) =

  • 7/30/2019 Classical Electromagnetism and Optics

    5/159

    172.1. MAXWELLSEQUATIONSOFISOTROPICMEDIArelationshipbetweenwavevectorandfrequencynecessarytosatisfythewaveequation

    2

    |k|2 =c()

    = k()2. (2.21)2

    Thus,thedispersionrelationisgivenby

    k() = n(). (2.22)c0

    withthewavenumberk= 2/, (2.23)

    where isthewavelengthofthewave inthemediumwithrefractive indexn, theangular frequency,k thewavevector. Note,thenatural frequencyf = /2. From E = 0, foralltime,weseethatke. Substitutionoftheelectricfield2.19intoMaxwellsEqs. (2.1b)resultsinthemagneticfieldh i1

    Hk(r,t) = Hk(r,t) + Hk(r,t) (2.24)2with

    Hk(r,t) = Hk ej(tkr) h(k). (2.25)Thiscomplexcomponentofthe magneticfieldcanbedetermined fromthecorrespondingcomplexelectricfieldcomponentusingFaradayslaw

    jk Ek ej(tkr) e(k) = j0Hk(r,t), (2.26)or

    Hk(r,t) = Ek ej(tkr)ke= Hkej(tkr)h (2.27)0with

    kh(k) = e(k) (2.28)|k|

    andHk =

    |k

    0

    |Ek = Z

    1FEk. (2.29)

    ThecharacteristicimpedanceoftheTEM-waveistheratiobetweenelectricandmagneticfieldstrength r

    ZF = 0c= 0 = 1ZF0 (2.30)0r n

  • 7/30/2019 Classical Electromagnetism and Optics

    6/159

    18 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    c

    y

    x

    z

    E

    H

    Figure2.1: Transverseelectromagneticwave(TEM)[6]

    withtherefractiveindexn=r andthefreespaceimpedancerZF0 = 0 377. (2.31)0

    Notethatthevectorse,handk formanorthogonaltrihedral,eh, ke, kh. (2.32)

    That is why we call these waves transverse electromagnetic (TEM) waves.Weconsidertheelectricfieldofamonochromaticelectromagneticwavewithfrequency and electric field amplitude E0, which propagates in vacuumalongthez-axis, and ispolarizedalong thex-axis, (Fig. 2.1), i.e. |kk| =ez,ande(k) = ex. Then we obtain from Eqs.(2.19) and (2.20)

    E(r,t) = E0cos(tkz)ex, (2.33)andsimiliarforthemagneticfield

    H(r,t) = E0 cos(tkz)ey, (2.34)ZF0

    see Figure 2.1.Note, that for a backward propagating wave with E(r,t) = E ejt+j

    kr ex, and H(r,t) = H ej(t+kr) ey, there is a sign change for the magneticfield

    H= |k| E, (2.35)0

    sothatthe(k, H)alwaysformarighthandedorthogonalsystem.E,

  • 7/30/2019 Classical Electromagnetism and Optics

    7/159

    192.1. MAXWELLSEQUATIONSOFISOTROPICMEDIA2.1.3 Poynting Vectors, Energy Density and IntensityThe table below summarizes the instantaneous and time averaged energycontentandenergytransportrelatedtoanelectromagneticfield

    Quantity Realfields Complexfields Electricandmagneticenergydensity

    we = 12E D= 120rE2wm = 12 H B= 120rH2w= we+ wm

    we = 140rE 2wm = 140r

    H 2w= we+ wm

    Poyntingvector S= EH T = 1EH2

    Poyntingtheorem divS+ Ej+ w t

    = 0 divT+ 12Ej+

    +2j( wmwe) = 0 Intensity I=S = cw I= Re{ T}= cw

    Table2.1: PoyntingvectorandenergydensityinEM-fieldsFor a plane wave with an electric field E(r,t) = Eej(tkz) ex we obtain

    fortheenergydensityinunitsof[J/m3]w= 1

    2r0|E|2, (2.36)the

    complex

    Poynting

    vector

    T = 1

    2ZF|E|2 ez, (2.37)

    andtheintensityinunitsof[W/m2]I= 1

    2ZF|E|2 =1

    2ZF|H|2. (2.38)2.1.4 Classical PermittivityInthissectionwewanttogetinsightintopropagationofanelectromagneticwavepacketinanisotropicandhomogeneousmedium,suchasaglassopticalfiberduetothe interactionofradiationwiththemedium. Theelectromagneticpropertiesofadielectricmedium is largelydeterminedbytheelectricpolarization inducedbyanelectricfield inthemedium. Thepolarization is

  • 7/30/2019 Classical Electromagnetism and Optics

    8/159

    20 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    Figure2.2: Classicalharmonicoscillatormodelforradiationmatterinteraction

    definedasthetotal induceddipolemomentperunitvolume. Weformulatethisdirectlyinthefrequencydomaine dipolemoment e eP() =

    volume = N hp()i = 0e()E(), (2.39)where N is density of elementary units and hpi is the average dipole moment of the unit (atom, molecule, ...). In an isotropic and homogeneousmediumtheinducedpolarizationisproportionaltotheelectricfieldandtheproportionalityconstant,

    e(),iscalledthesusceptibilityofthemedium.

    As it turns out (justification later), an electron elastically bound to apositivelychargedrestatomisnotabadmodelforunderstandingtheinteraction of light with matter at very low electricfields, i.e. thefields do notchangetheelectrondistributionintheatomconsiderablyorevenionizetheatom, seeFigure 2.2. This model is called Lorentz model after the famousphysicist A. H. Lorentz (Dutchman) studying electromagnetic phenomenaattheturnofthe19thcentury. Healso foundtheLorentzTransformationandInvarianceofMaxwellsEquationswithrespecttothesetransformation,whichshowedthepathtoSpecialRelativity.

    Theequationofmotionforsuchaunitisthedampedharmonicoscillatordriven by an electricfield in one dimension, x. At optical frequencies, thedistanceofelongation,x,ismuchsmallerthananopticalwavelength(atomshave dimensions on the order of a tenth of a nanometer, whereas opticalfieldshavewavelengthontheorderofmicrons)andtherefore,wecanneglectthe spatial variation of the electricfield during the motion of the chargeswithin an atom (dipole approximation, i.e. E(r,t) = E(rA, t) = E(t)ex).

  • 7/30/2019 Classical Electromagnetism and Optics

    9/159

    2.1. MAXWELLSEQUATIONSOFISOTROPICMEDIA 21Theequationofmotionis

    md2xdt2 + 2

    0Qm

    dxdt + m20x= e0E(t), (2.40)

    whereE(t) = Eejt.Here, m isthemassof theelectronassumingthethatthe rest atom has infinite mass, e0 the charge of the electron, 0 is theresonancefrequencyoftheundampedoscillatorandQthequalityfactoroftheresonance,whichdeterminesthedampingoftheoscillator. Byusingthetrialsolutionx(t) = xejt,weobtainforthecomplexamplitudeofthedipolemomentp withthetimedependentresponsep(t) = e0x(t) = pejt

    0e

    p = m2002) + 2j E. (2.41)(2 Q

    Note, that we included ad hoc a damping term in the harmonic oscillatorequation. Atthispointitisnotclearwhatthephysicaloriginofthisdamping term is and we will discuss this at length later in chapter 4. For themoment, we can view this term simply as a consequence of irreversible interactionsoftheatomwithitsenvironment. Wethenobtainfrom(2.39)forthesusceptibility

    20Ne

    m 01

    () = (2.42)0(202) + 2jQor

    2pe() = (2.43),

    (202) + 2jQ0withp calledtheplasmafrequency,whichisdefinedas2p = Ne20/m0. Figure2.3showsthenormalizedrealandimaginarypart,e() = er() + jei()of the classical susceptibility (2.43). Note, that there is a small resonanceshift(almostinvisible)duetotheloss. Offresonance,theimaginarypartapproacheszeroveryquickly. Notsotherealpart,whichapproachesaconstantvalue 2p/20 belowresonancefor 0,andapproacheszerofaraboveresonance,butmuchslowerthantheimaginarypart. Aswewillsee later,thisisthereasonwhythereare low loss, i.e. transparent,mediawithrefractiveindex very much differentfrom1.

  • 7/30/2019 Classical Electromagnetism and Optics

    10/159

    22 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    Figure 2.3: Real part (dashed line) and imaginary part (solid line) of thesusceptibilityoftheclassicaloscillatormodelforthedielectricpolarizability.2.1.5 Optical PulsesOptical pulses are wave packets constructed by a continuous superpositionof monochromatic plane waves. Consider a TEM-wavepacket, i.e. a superpositionofwaveswithdifferent frequencies, polarized along the x-axis andpropagatingalongthez-axis

    Z dE(r,t) = Ee()ej(tK()z) ex. (2.44)20Correspondingly,themagneticfieldisgivenbyZ

    H(r,t) = d Ee()ej(tK()z) ey (2.45)2ZF()0

    Again, the physical electric and magneticfields are real and related to thecomplexfieldsby

    1

    E(r,t) = E(r,t) + E(r,t) (2.46)2 1H(r,t) = H(r,t) + H(r,t) . (2.47)

    2Here,|E()|ej() isthecomplexwaveamplitudeoftheelectromagneticwaveat frequency and K() = /c() = n()/c0 the wavenumber, where,

  • 7/30/2019 Classical Electromagnetism and Optics

    11/159

    232.1. MAXWELLSEQUATIONSOFISOTROPICMEDIA

    0

    |E( )|

    |A( )|

    0

    Figure 2.4: Spectrum of an optical wave packet described in absolute andrelativefrequenciesn()isagaintherefractive indexofthemedium

    n2() = 1 + (), (2.48)candc0 arethevelocityoflightinthemediumandinvacuum,respectively.Theplanesofconstantphasepropagatewiththephasevelocityc ofthewave.

    ThewavepacketconsistsofasuperpositionofmanyfrequencieswiththespectrumshowninFig. 2.4.At a given point in space, for simplicity z = 0, the complexfield of apulseisgivenby(Fig. 2.4) Z

    E(z= 0, t) = 1 E()ejtd. (2.49)2 0

    Optical pulses often have relatively small spectral width compared tothe center frequency of the pulse 0, as it is illustrated in the upper partof Figure 2.4. For example typical pulses used in optical communicationsystems for 10Gb/s transmission speed are on the order of 20ps long andhaveacenterwavelengthof= 1550nm. Thusthespectralwithisonlyonthe order of 50GHz, whereas the center frequency of the pulse is 200THz,i.e. thebandwidth is4000smallerthanthecenter frequency. Insuchcasesit isusefultoseparatethecomplexelectricfield in Eq. (2.49) into a carrier frequency0 and an envelope A(t)andrepresenttheabsolute frequencyas

  • 7/30/2019 Classical Electromagnetism and Optics

    12/159

    24 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS= 0+ .We can then rewrite Eq.(2.49) as

    Z1 E(0+ )ej(0+)td (2.50)E(z = 0, t) = 2 0

    = A(t)ej0t.Theenvelope,seeFigure2.8,isgivenbyZ

    Z1

    A()ejtd (2.51)A(t) = 2 0

    1A()ejtd, (2.52)=

    2 where A() is the spectrum of the envelope with, A() = 0 for 0.Tobephysicallymeaningful, thespectralamplitudeA() must be zero fornegative frequencies less than or equal to the carrier frequency, see Figure2.8. Note, that waves with zero frequency can not propagate, since thecorrespondingwavevector iszero. Thepulseand itsenvelopeareshown inFigure2.5.

    Figure2.5: Electricfieldandenvelopeofanopticalpulse.Table2.2showspulseshapeandspectraofsomeoftenusedpulsesaswell

    asthepulsewidthandtimebandwidthproducts. ThepulsewidthandbandwidthareusuallyspecifiedastheFullWidthatHalfMaximum(FWHM)of2the intensity in the time domain, , and the spectral densityA(t) A()| |inthe frequencydomain, respectively. ThepulseshapesandcorrespondingspectratothepulseslistedinTable2.2areshowninFigs2.6and2.7.

    2

  • 7/30/2019 Classical Electromagnetism and Optics

    13/159

    2.1. MAXWELLSEQUATIONSOFISOTROPICMEDIA 25PulseShape FourierTransformR

    PulseWidth Time-BandwidthProduct

    A(t) A() = a(t)ejtdt t tfGaussian: e t222 2e1222 2ln2 0.441

    HyperbolicSecant:sech(t

    ) 2 sech

    2 1.7627 0.315

    Rect-function:=

    1, |t| /20, |t|> /2

    sin(/2)/2 0.886

    Lorentzian: 11+(t/)2 2e

    | | 1.287 0.142Double-Exp.: e|t|

    1+()2 ln2 0.142Table 2.2: Pulse shapes, corresponding spectra and time bandwidth products.

    Image removed for copyright purposes.

    Figure2.6: Fouriertransformstopulseshapeslistedintable2.2[6].

  • 7/30/2019 Classical Electromagnetism and Optics

    14/159

    26 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    Image removed for copyright purposes.

    Figure2.7: Fouriertransformstopulseshapes listed intable2.2continued[6].

    2.1.6 Pulse PropagationHaving a basic model for the interaction of light and matter at hand, viasection 2.1.4, we can investigate what happens if an electromagnetic wavepacket, i.e. an optical pulse propagates through such a medium. We startfrom Eqs.(2.44) to evaluate the wave packet propagation for an arbitrary

  • 7/30/2019 Classical Electromagnetism and Optics

    15/159

    272.1. MAXWELLSEQUATIONSOFISOTROPICMEDIApropagationdistancez

    ZE(z,t) = 1 E()ej(tK()z)d. (2.53)

    2 0AnalogoustoEq.(2.50) forapulseatagivenposition,wecanseparateanoptical pulse into a carrier wave at frequency 0 and a complex envelopeA(z, t),

    E(z, t) = A(z,t)ej(0tK(0)z). (2.54)Byintroducingtheoffsetfrequency, the offsetwavenumberk() andspectrumoftheenvelopeA()

    = 0, (2.55)k() = K(0+ ) K(0), (2.56)A() = E(= 0+ ). (2.57)

    theenvelopeatpropagationdistancez,seeFig.2.8,isexpressedasZA(z, t) = 1 A()ej(tk()z)d, (2.58)

    2 with the same constraints on the spectrum of the envelope as before, i.e.the

    spectrum

    of

    the

    envelope

    must

    be

    zero

    for

    negative

    frequencies

    beyond

    the carrier frequency. Depending on the dispersion relation k(), (see Fig.2.9),.the pulse will be reshaped during propagation as discussed in the followingsection.2.1.7 DispersionThedispersionrelationindicateshowmuchphaseshifteachfrequencycomponentexperiencesduringpropagation. Thesephaseshifts,ifnotlinearwithrespecttofrequency,willleadtodistortionsofthepulse. Ifthepropagationconstantk() isonlyslowlyvaryingoverthepulsespectrum, it isusefultorepresentthepropagationconstant,k(),ordispersionrelationK() by itsTaylorexpansion,seeFig. 2.9,

    k00 k(3)k() = k0+ 2+ 3+ O(4). (2.59)

    2 6

  • 7/30/2019 Classical Electromagnetism and Optics

    16/159

    28 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    Figure2.8: Electricfield and pulse envelope in time domain.

    Figure 2.9: Taylor expansion of dispersion relation at the center frequencyofthewavepacket.

    Iftherefractiveindexdependsonfrequency,thedispersionrelationisnolongerlinearwithrespecttofrequency,seeFig. 2.9andthepulsepropagationaccordingto(2.58)canbeunderstoodmosteasilyinthefrequencydomain

    A(z,)=

    jk()A(z, ). (2.60)

    z TransformationofEq.()intothetimedomaingives

    nXk(n)A(z, t) =j j A(z,t). (2.61)

    z n! tn=1

  • 7/30/2019 Classical Electromagnetism and Optics

    17/159

    292.1. MAXWELLSEQUATIONSOFISOTROPICMEDIAIfwekeeponlythefirstterm,thelinearterm,inEq.(2.59),thenweobtainforthe

    pulse

    envelope

    from

    (2.58)

    by

    defi

    nitionof

    the

    group

    velocity

    at

    frequency

    0

    g0 = 1/k0 =

    dk() d =01

    (2.62)A(z,t) = A(0, t z/g0). (2.63)

    Thusthederivativeofthedispersionrelationatthecarrierfrequencydeterminesthepropagationvelocityoftheenvelopeofthewavepacketorgroupvelocity,whereastheratiobetweenpropagationconstantandfrequencydeterminesthephasevelocityofthecarrier

    1Togetridofthetrivialmotionofthepulseenvelopewiththegroupvelocity,weintroducetheretardedtimet0 = tz/vg0. Withrespecttothisretardedtimethepulseshapeis invariantduringpropagation, ifweapproximatethedispersionrelationbytheslopeatthecarrierfrequency

    A(z, t) = A(0, t0). (2.65)Note, if we approximate the dispersion relation by its slope at the carrierfrequency,

    i.e.

    we

    retain

    only

    the

    first

    term

    in

    Eq.(2.61),

    we

    obtain

    K(0)p0 = 0/K(0) = (2.64).0

    A(z, t) 1 A(z,t)+ = 0, (2.66)

    z g0 t and(2.63)isitssolution. If,wetransformthisequationtothenewcoordinatesystem

    z0 = z, (2.67)t0 = tz/g0, (2.68)

    with 1

    z = z 0 g0t0, (2.69)

    = (2.70)t t0

  • 7/30/2019 Classical Electromagnetism and Optics

    18/159

    30 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSthetransformedequationis

    A(z0, t0) = 0. (2.71)z 0

    Sincez isequaltoz0 wekeepz inthefollowing.If the spectrum of the pulse is broad enough, so that the second order

    term in (2.59) becomes important, the pulse will no longer keep its shape.Whenkeepinginthedispersionrelationtermsuptosecondorder itfollowsfrom(2.58)and(2.69,2.70)

    A(z,t0) k002A(z, t0)= j . (2.72)

    z 2 t02This is the first non trivial term in the wave equation for the envelope.Because of the superposition principle, the pulse can be thought of to bedecomposed intowavepackets(sub-pulses)withdifferentcenterfrequencies.Now,thegroupvelocitydependsonthespectralcomponentofthepulse,seeFigure2.10,whichwillleadtobroadeningordispersionofthepulse.

    A( )

    0 11

    2

    S

    pectrum

    12

    3

    k21

    vg1 vg3

    vg2

    DispersionRelation

    Figure2.10: Decompositionofapulseintowavepacketswithdifferentcenterfrequency. Ina medium with dispersion the wavepackets move at differentrelativegroupvelocity.

    Fortunately, for a Gaussian pulse, the pulse propagation equation 2.72canbesolvedanalytically. Theinitialpulseisthenoftheform

    E(z = 0, t) = A(z= 0, t)ej0t (2.73) 1 t02

    A(z = 0, t = t0) = A0exp (2.74)2 2

  • 7/30/2019 Classical Electromagnetism and Optics

    19/159

    2.1. MAXWELLSEQUATIONSOFISOTROPICMEDIA 31Eq.(2.72) is most easily solved in the frequencydomain since it transformsto

    A(z,)

    = jk002A(z,), (2.75)z 2

    withthesolutionk002

    A(z, ) = A(z= 0, )exp j

    2 z

    . (2.76)The pulse spectrum aquires a parabolic phase. Note, that here is theFourierTransformvariableconjugatetot0 ratherthant. TheGaussianpulsehastheadvantagethatitsFouriertransformisalsoaGaussian

    A(z= 0, ) = A02exp

    2

    122 (2.77)and,therefore,inthespectraldomainthesolutionatanarbitraypropagationdistancez is

    2A(z, ) = A02exp1

    2

    2+ jk00z . (2.78)

    TheinverseFouriertransformisanalogously2 1 t02A(z,t0) = A0

    (2+ jk00z)1/2

    exp

    2 (2 + jk00z)

    (2.79)Theexponentcanbewrittenasrealandimaginarypartandwefinallyobtain

    2 1 2t02 1 t02A(z, t0) = A0

    1/2exp

    " + j k00z #2 2(2+ jk00z) 2 4+ (k00z) 2 4+ (k00z)(2.80)

    As we see from Eq.(2.80) during propagation the FWHM of the Gaussiandeterminedby

    " #(0 /2)2exp FWHM = 0.5 (2.81)2 4+ (k00z)changesfrom

    F W H M = 2

    ln 2 (2.82)

  • 7/30/2019 Classical Electromagnetism and Optics

    20/159

    Amptu

    32 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSatthestartto

    s 22

    1 + = 2ln 2 k00L0FWHM (2.83)2s k00L2= FWHM 1 +

    atz= L.Forlargestretchingthisresultsimplifiesto0FWHM = 2

    ln 2

    for

    k

    00L k00L.1 (2.84)

    2The strongly dispersed pulse has a width equal to the difference in groupdelayoverthespectralwidthofthepulse.

    Figure 2.11showsthe evolutionof themagnitudeof the Gaussianwavepacketduringpropagationinamediumwhichhasnohigherorderdispersioninnormalizedunits. Thepulsespreadscontinuously.

    1

    0.8

    0.6

    0.4

    0.2

    0

    0.5

    Distance z 1

    1.5 -6-4

    -20

    Time

    24

    6

    Figure 2.11: Magnitude of the complex envelope of a Gaussian pulse,|A(z,t0)|,inadispersivemedium.

  • 7/30/2019 Classical Electromagnetism and Optics

    21/159

    332.1. MAXWELLSEQUATIONSOFISOTROPICMEDIAAs discussed before, the origin of this spreading is the group velocity

    dispersion(GVD),

    k

    00= 0.

    The

    group

    velocity

    varies

    over

    the

    pulse

    spectrum

    6significantly leadingtoagroupdelaydispersion(GDD)afterapropagation

    distancez= Lofk00L= 0,forthedifferentfrequencycomponents. Thisleads6tothebuild-upofchirpinthepulseduringpropagation. Wecanunderstandthischirpby lookingattheparabolicphasethatdevelopsoverthepulse intimeatafixedpropagationdistance. Thephaseis,seeEq.(2.80)

    1 k00L 1 t02(z= L,t0) = arctan

    + k00L . (2.85)

    2 2 2 4+ (k00L)2

    (a) Phase

    Time t

    k'' < 0

    k'' > 0

    Front Back

    Instantaneous

    Frequency

    Time t

    k'' < 0

    k'' > 0

    (b)

    Figure2.12:

    (a)

    Phase

    and

    (b)

    instantaneous

    frequency

    of

    aGaussian

    pulse

    duringpropagationthroughamediumwithpositiveornegativedispersion.

    This parabolic phase, see Fig. 2.12 (a), can be understood as a localyvarying frequency in the pulse, i.e. the derivative of the phase gives the

  • 7/30/2019 Classical Electromagnetism and Optics

    22/159

    34 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSinstantaneousfrequencyshiftinthepulsewithrespecttothecenterfrequency

    k00L(z= L, t0) = (L,t0) = t0 (2.86)t0 4+ (k00L)2

    see Fig.2.12 (b). The instantaneous frequency indicates that for a mediumwith positive GVD, ie. k00 > 0, the low frequencies are in the front of thepulse, whereas the high frequencies are in the back of the pulse, since thesub-pulses with lower frequencies travel faster than sub-pulses with higherfrequencies. Theoppositeisthecasefornegativedispersivematerials.

    Itisinstructiveforlaterpurposes,thatthisbehaviourcanbecompletelyunderstoodfromthecenterofmassmotionofthesub-pulses,seeFigure2.10.Note,wecanchooseasetofsub-pulses, withsuchnarrowbandwidth, thatdispersiondoes not matter. Inthe time domain, these pulses are of coursevery long, because of the time bandwidth relationship. Nevertheless, sincethey all have different carrier frequencies, they interfere with each other insuchawaythatthesuperpositionisaverynarrowpulse. Thisinterference,becomes destroyed during propagation, since the sub-pulses propagate atdifferentspeed, i.e. theircenterofmasspropagatesatdifferentspeed.

    5

    k">0k" 1 inamediumwithnegativedispersion.

    Time,t

  • 7/30/2019 Classical Electromagnetism and Optics

    23/159

    352.1. MAXWELLSEQUATIONSOFISOTROPICMEDIAThedifferentialgroupdelayTg() = k00Lofasub-pulsewithitscen

    ter

    frequency

    diff

    erent

    from

    0,

    is

    due

    to

    its

    diff

    erential

    group

    velocity

    vg() = vg0Tg()/Tg0 = vg20k00.Note,thatTg0 = L/vg0.Thisisillustrated inFigure2.13byplotingthetrajectoryoftherelativemotionofthecenterofmassofeachsub-pulseasafunctionofpropagationdistance,whichasymptoticallyapproachestheformulaforthepulsewidthofthehighlydispersed pulse Eq.(2.84). If we assume that the pulse propagates through a negative dispersive medium following the positive dispersive medium, thegroup velocity of each sub-pulse is reversed. The sub-pulses propagate towards each otheruntil they all meet at one point (focus) to produce againashortandunchirpedinitialpulse,seeFigure2.13. Thisisaverypowerfultechnique to understand dispersive wave motion and as we will see in thenextsectionistheconnectionbetweenrayopticsandphysicaloptics.2.1.8 Loss and GainIf the medium considered has loss, described by the imaginary part of thedielectricsusceptibility,see(2.43)andFig. 2.3,wecanincorporatethislossintoacomplexrefractiveindex

    n() = nr() + jni() (2.87)via

    qn() = 1 + e(). (2.88)

    Foranopticallythinmedium,i.e. e 1 thefollowingapproximationisveryuseful

    e()n() 1 + . (2.89)

    2As one can show (in Recitations) the complex susceptibility (2.43) can beapproximated close to resonance, i.e. 0, by the complex Lorentzianlineshape

    e() = j0 , (2.90)1 + jQ00

    pwhere 0 =Q222 will turn out to be related to the peak absorption of the 0

    line,whichisproportionaltothedensityofatoms,0 isthecenterfrequency

  • 7/30/2019 Classical Electromagnetism and Optics

    24/159

    36 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSand = Q0 is the half width half maximum (HWHM) linewidth of thetransition.

    The

    real

    and

    imaginary

    part

    of

    the

    complex

    Lorentzian

    are

    (0)0 e () = 2, (2.91)r

    1 + 0

    ei() = 0 2, . (2.92)01 +

    In the derivation of the wave equation for the pulse envelope (2.61) insection2.1.7, therewas norestrictiontoareal refractive index. Therefore,thewaveequation(2.61)alsotreatsthecaseofacomplexrefractive index.If we assume a medium with the complex refractive index (2.89), then thewavenumber isgivenby

    1K() = 1 + (er() + jei()) . (2.93)c0 2

    Sincewe introducedacomplexwavenumber, wehavetoredefine thegroupvelocity as the inverse derivative of the real part of the wavenumber withrespecttofrequency. Atlinecenter,weobtain

    g1 = Kr()

    =

    11 0 0. (2.94)

    0 c0 2Thus, foranarrowabsorption line,0 >0and 0 1,theabsolutevalueof the group velocity can become much larger than the velocity of light invacuum. The opposite is true for anamplifying medium, 0

  • 7/30/2019 Classical Electromagnetism and Optics

    25/159

    372.1. MAXWELLSEQUATIONSOFISOTROPICMEDIAIn the envelope equation (2.60) for a wavepacket with carrier frequency 0 =

    0and

    K0

    =

    0the loss leads

    to

    a term

    of the

    form

    c0A(z, ) 0K02

    Inthetimedomain,weobtainuptosecondorderintheinverselinewidth= (0+ )A(z,) = A(z, ). (2.96)

    z 1 + (loss)

    A(z,t0) z (loss) = 0K0

    1 + 1 22t2

    A(z,t0), (2.97)

    which corresponds to a parabolic approximation of the line shape at linecenter, (Fig. 2.3). Aswewillsee later, foranamplifyingopticaltransitionweobtainasimilarequation. Weonlyhavetoreplacethelossbygain

    1 + whereg =0K0 isthepeakgainat linecenterperunit lengthandg istheHWHMlinewidthofatransitionprovidinggain.2.1.9 Sellmeier Equation and Kramers-Kroenig Rela-

    tionsThe linearsusceptibility isthe frequencyresponseor impulseresponse ofalinearsystemtoanapplied electricfield, see Eq.(2.41). For areal physicalsystemthisresponse iscausal,andthereforerealand imaginarypartsobeyKramers-KroenigRelations Z

    r() = 2 i(

    )2d= nr2() 1, (2.99) 2

    0

    Z

    i() =

    2

    2

    r(

    )2d. (2.100)

    0For optical media these relations have the consequence that the refractiveindex and absorption of a medium are not independent, which can oftenbe exploited to compute the index from absorption data or the other way

    2A(z, t0) 1 0), (2.98)A(z,t= g2t2gz (gain)

  • 7/30/2019 Classical Electromagnetism and Optics

    26/159

    38 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSaround. TheKramers-KroenigRelationsalsogiveusagoodunderstandingof

    the

    index

    variations

    in

    transparent

    media,

    which

    means

    the

    media

    are

    used

    inafrequencyrange farawayfromresonances. Thenthe imaginarypartofthesusceptibilityrelatedtoabsorptioncanbeapproximatedbyX

    i() = Ai(i) (2.101)i

    and theKramers-Kroenig relation results intheSellmeier Equation fortherefractiveindex

    X i

    X

    n2() = 1 + Ai2i

    2 = 1 + ai2

    i2. (2.102)i i

    This formula is very useful infitting the refractive index of various mediaover a large frequency range with relatively few coefficients. For exampleTable2.3showsthesellmeiercoefficientsforfusedquartzandsapphire.

    FusedQuartz Sapphirea1 0.6961663 1.023798a2 0.4079426 1.058364a3 0.8974794 5.28079221 4.679148103 3.775881032

    2 1.3512063102 1.22544102

    23 0.9793400102 3.213616102Table2.3: TablewithSellmeiercoefficientsforfusedquartzandsapphire.

    Ingeneral,eachabsorptionlinecontributesacorrespondingindexchangeto the overall optical characteristics of amaterial, see Fig. 2.14. Atypicalsituation foramaterialhavingresonances intheUVandIR,suchasglass,isshowninFig. 2.15. AsFig. 2.15shows,duetotheLorentzianlineshape,that outside of an absorption line the refractive index is always decreasingas a function of wavelength. This behavior is called normal dispersion andtheoppositebehaviorabnormaldispersion.

    dn 0 : abnormaldispersiond

  • 7/30/2019 Classical Electromagnetism and Optics

    27/159

    392.1. MAXWELLSEQUATIONSOFISOTROPICMEDIAThisbehaviorisalsoresponsibleforthemostlypositivegroupdelaydispersion

    over

    the

    transparency

    range

    of

    amaterial,

    as

    the

    group

    velocity

    or

    group

    dndelay dispersion is closely related to d. Fig.2.16 shows the transparency

    rangeofsomeoftenusedmedia.

    Figure 2.14: Each absorption line must contribute to an index change viatheKramers-Kroenigrelations.

    Figure2.15: Typcialdistributionofabsorptionlinesinamediumtransparentinthevisible.

  • 7/30/2019 Classical Electromagnetism and Optics

    28/159

    DispersionCharacteristic Definition Comp. fromn()mediumwavelength: n n n()wavenumber: k 2

    n2 n()

    phasevelocity: p k c0n()groupvelocity: g ddk;d= 22c0d c0n 1ndnd1groupvelocitydispersion: GVD d2k

    d23

    2c20

    d2nd2

    groupdelay: Tg = Lg = dd dd = d(kL)d nc0 1ndndLgroupdelaydispersion: GDD dTg

    d = d2(kL)d2 32c20

    d2nd2L

    40 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    Figure2.16: Transparencyrangeofsomematerialsaccordingto[6],p. 175.Often the dispersion GVD and GDD needs to be calculated from the

    Sellmeierequation,i.e. n().ThecorrespondingquantitiesarelistedinTable2.4. The computations are done by substituting the frequency with thewavelength.

    Table2.4: Tablewithimportantdispersioncharacteristicsandhowtocomputethemfromthewavelengthdependentrefractiveindexn().

  • 7/30/2019 Classical Electromagnetism and Optics

    29/159

    2.2. ELECTROMAGNETICWAVESANDINTERFACES 412.2 Electromagnetic Waves and InterfacesManymicrowaveandopticaldevicesarebasedonthecharacteristicsofelectromagnetic waves undergoing reflection or transmission at interfaces betweenmediawith different electric or magnetic propertiescharacterizedbyand,seeFig. 2.17. Withoutrestrictionwecanassumethattheinterfaceisthe(x-y-plane)andtheplaneofincidenceisthe(x-z-plane). Anarbitraryincident plane wave can always be decomposed into two components. Onecomponenthas itselectricfieldparalleltothe interfacebetweenthemedia,i.e. itispolarizedparalleltotheinterfaceanditiscalledthetransverseelectric(TE)-wave oralsos-polarized wave. Theothercomponent is polarizedintheplaneofincidenceanditsmagneticfield is in the plane ofthe interface between the media. This wave is called the TM-wave or also p-polarizedwave. Themostgeneralcaseofan incidentmonochromaticTEM-wave isalinearsuperpositionofaTEandaTM-wave.

    a) Reflection of TE-Wave b) Reflection of TM-Wav

    , 1 1 1, 1

    x

    ErEiH

    krHi ki i r

    t

    zEt

    kt 2 2,

    x

    Er

    Ei

    kr

    H

    i ki i r

    t

    z Etkt

    H

    r

    2 2,

    r

    Ht Ht

    Figure 2.17: a) Reflection of a TE-wave at an interface, b) Reflection ofaTM-waveataninterface

    Thefieldsforbothcasesaresummarizedintable2.5

  • 7/30/2019 Classical Electromagnetism and Optics

    30/159

    42 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSTE-wave TM-waveEi =Ei e

    j(t

    kir)

    ey Ei =Ei ej(tk

    ir)

    eiHi =Hi ej(tkir)hi Hi =Hi ej(tkir)eyEr =Er ej(tkrr)ey Er =Er ej(t

    krr)r er

    Hr =Hr ej(tkrr)hr Hr =Er ej(tkrr)eyEt =Et ej(tktr)ey Et =Et ej(tktr)etHt =Ht ej(tktr)ht Ht =Ht ej(tktr)ey

    Table2.5: ElectricandmagneticfieldsforTE- andTM-waves.withwavevectorsofthewavesgivenby

    ki = kr =k011,kt = k022,

    ki,t = ki,t(sini,t ex+ cos i,t ez),kr = ki(sinr excosr ez),

    andunitvectorsgivenbyhi,t = cosi,t ex+ sin i,t ez,hr = cos r ex+ sin r ez,

    ei,t = hi,t = cos i,t exsin i,t ez,er = hr =cosr exsinr ez.

    2.2.1 Boundary Conditions and Snells lawFrom6.013,weknowthatStokesandGaussLawfortheelectricandmagnetic fields require constraints on some of the field components at mediaboundaries. In the absence of surface currents and charges, the tangentialelectric and magnetic fields as well as the normal dielectric and magneticfluxeshavetobecontinuouswhengoingfrommedium1 intomedium2forall

    times

    at

    each

    point

    along

    the

    surface,

    i.e.

    z= 0

    E/Hi,x/ye

    j(tki,xx)+E/Hr,x/yej(tkr,xx) =E/Hi,x/yej(tkt,xx). (2.103)Thisequationcanonlybefulfilledatalltimesifandonlyifthex-componentofthek-vectorsforthereflectedandtransmittedwaveareequalto(match)

  • 7/30/2019 Classical Electromagnetism and Optics

    31/159

    432.2. ELECTROMAGNETICWAVESANDINTERFACESthecorrespondingcomponentoftheincidentwave

    ki,x =kr,x =kt,x (2.104)This phase matching condition is shown in Fig. 2.18 for the case22 >

    11 orkt > ki.1,1

    xkr

    ki i r

    t

    z

    kt

    2 2,

    Figure2.18: PhasematchingconditionforreflectedandtransmittedwaveThe phase matching condition Eq(2.104) results in r = i = 1 and

    Snellslawfortheanglet =2 ofthetransmittedwave

    11sint = sini (2.105)22

    orforthecaseofnonmagneticmediawith1 =2 =0sint = n1 sini (2.106)

    n2

  • 7/30/2019 Classical Electromagnetism and Optics

    32/159

    44 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS2.2.2 Measuring Refractive Index with Minimum De-

    viationSnellslawcanbeusedformeasuringtherefractiveindexofmaterials. Consideraprismpreparedfromamaterialwithunknownrefractiveindexn(),seeFig. 2.19(a).

    Image removed for copyright purposes.

    Figure 2.19: (a) Beam propagating through a prism. (b) For the case ofminimumdeviation[3]p. 65.

    The prism is mounted on a rotation stage as shown in Fig. 2.20. Theangle of incidence is then varied with a fixed incident beam path andthe transmitted light is observed on a screen. If one starts of with normalincidenceonthefirstprismsurfaceonenoticesthatafterturningtheprismone goes through a minium for the deflectionangleofthebeam. ThisbecomesobviousfromFig. 2.19(b). Thereisanangleofincidencewherethebeampaththroughtheprismissymmetric. Iftheinputangleisvariedaroundthispoint, itwouldbe identicaltoexchangethe inputandoutputbeams. Fromthatweconcludethatthedeviationmust go through an extremum at the symmetry point, see Figure 2.21. It can be shown (Recitations), that therefractiveindexisthendeterminedby

    sin(min)+minn= 2 . (2.107)

    sin(min)2If themeasurement isrepeated forvariouswavelengthof the incidentradiation the complete wavelength dependent refractive index is characterized,seeforexample,Fig. 2.22.

  • 7/30/2019 Classical Electromagnetism and Optics

    33/159

    452.2. ELECTROMAGNETICWAVESANDINTERFACES

    Figure 2.20: Refraction of a Prism with n=1.731 for different angles of incidence alpha. Theangle of incidence is stepwise increasedbyrotatingtheprismclockwise. Theangle of transmissionfirst increases. After the angleforminimumdeviation is reachedthetransmissionangle startsto decrease[3]p67.

    Image removed for copyright purposes.

  • 7/30/2019 Classical Electromagnetism and Optics

    34/159

    46 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    Image removed for copyright purposes.

    Figure2.21: Deviationversusincidentangel[1]

    Figure2.22: Refractive indexasafunctionofwavelengthforvariousmediatransmissiveinthevisible[1],p42.

    Image removed for copyright purposes.

  • 7/30/2019 Classical Electromagnetism and Optics

    35/159

    472.2. ELECTROMAGNETICWAVESANDINTERFACES2.2.3 Fresnel ReflectionAfterunderstandingthedirectionofthereflectedandtransmittedlight,formulas for how much light is reflected and transmitted are derived by evaluating the boundary conditions for the TE and TM-wave. According toEqs.(2.103)and(2.104)weobtainforthecontinuityofthetangentialEandHfields:

    TE-wave(s-pol.) TM-wave(p-pol.)Ei+Er =Et EicosiErcosr =EtcostHi cosiHr cosr =Ht cost Hi+Hr =Ht

    (2.108)

    qIntroducingthecharacteristicimpedancesinbothhalfspacesZ1/2 = 01/2,01/2and the impedances that relate the tangential electric and magnetic fieldcomponents ZTE/TM in both half spaces the boundary conditions can be1/2rewrittenintermsoftheelectricormagneticfieldcomponents.

    TE-wave(s-pol.) TM-wave(p-pol.)ZT E1/2 = Ei/tHi/t cosi/t = Z1/2cos1/2 ZT M1/2 = Ei/tcosi/tHi/t =Z1/2cos1/2Ei+Er =Et HiHr = ZT M2ZT M

    1 HtEi

    Er = ZT E 1ZT E

    2 Et Hi+Hr =Ht(2.109)

    AmplitudeReflection and Transmission coefficientsFrom these equations we can easily solve for the reflected and transmittedwave amplitudes in terms of the incident wave amplitudes. By dividingbothequationsbytheincidentwaveamplitudesweobtainfortheamplitudereflectionandtransmissioncoeffcients. Note,thatreflectionandtransmissioncoefficientsaredefinedintermsoftheelectricfieldsfortheTE-waveandintermsofthemagneticfieldsfortheTM-wave.

    TE-wave(s-pol.)

    TM-wave

    (p-pol.)

    rT E= Er

    Ei;tT E= EtEi rT M = HrHi;tT M = HtHi1 + rT E =tT E 1rT M = ZT M2

    ZT M1 t

    T M1 rT E = ZT E 1

    ZT E 2 t

    T E 1 + rT M =tT M(2.110)

  • 7/30/2019 Classical Electromagnetism and Optics

    36/159

    48 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSorinbothcasestheamplitudetransmissionandreflectioncoefficientsare

    2 2ZTE/TMtTE/TM =

    ZTE/TM = TE/TM2/1 TE/TM (2.111)1/2 Z1 +Z21 + TE/TM

    Z2/1

    TE/TM TE/TMrTE/TM = Z2/1 Z1/2 (2.112)

    TE/TM TE/TMZ1 +Z2

    Despitethesimplicityoftheseformulas,theydescribealreadyanenormouswealth of phenomena. To get some insight, consider the case of purely dielectricandlosslessmediacharacterizedbyitsrealrefractiveindicesn1 andn2.

    Then

    Eqs.(2.111)

    and

    (2.112)

    simplify

    for

    the

    TE

    and

    TM

    case

    to

    TE-wave(s-pol.) TM-wave(p-pol.)ZT E1/2 = Z1/2cos1/2 = Z0n1/2cos1/2rT E= n1cos1n2cos2n1cos1+n2cos2

    ZT M1/2 =Z1/2cos1/2rT M = n2cos2 n1cos1n2

    cos2+ n1cos1

    = Z0n1/2 cos1/2

    tT E= 2n1cos1n1cos1+n2cos2 tT M = 2

    n2cos2

    n2cos2+ n1cos1

    (2.113)

    Figure2.23showstheevaluationofEqs.(2.113)forthecaseofareflectionattheinterfaceofairandglasswithn2 > n1 and(n1 = 1, n2 = 1.5).

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    56.3

    B

    tTM

    tTE

    rTM

    rTE

    Amplituderefl.andtransm.coefficients

    0 15 30 45 60 75 90Incident angle (deg.)

    Figure 2.23: The amplitude coefficients of reflection and transmission as afunctionof incident angle. Thesecorrespondtoexternal reflectionn2 > n1atanair-glasinterface(n1 = 1, n2 = 1.5).

  • 7/30/2019 Classical Electromagnetism and Optics

    37/159

    492.2. ELECTROMAGNETICWAVESANDINTERFACESForTE-polarizedlightthereflectedlightchangessignwithrespecttothe

    incidentlight

    (re

    fl

    ectionat

    the

    optically

    more

    dense

    medium).

    This

    is

    not

    so for TM-polarized light under close to normal incidence. It occurs onlyfor angles larger than B, which is called the Brewster angle. So for TM-polarized light the amplitude reflection coefficient is zero at the Brewsterangle. Thisphenomenawillbediscussedinmoredetail later.

    This behavior changes drastically if we consider the opposite arrangement of media, i.e. we consider the glass-air interface with n1 > n2, seeFigure2.24. ThentheTM-polarized lightexperiencesa-phaseshiftuponreflection close to normal incidence. For increasing angle of incidence thisreflection coefficient goes through zero at the Brewster angle B0 differentfrombefore. However,forlargeenoughangleofincidencethereflectioncoefficientreachesmagnitude1andstaysthere. Thisphenomenoniscalledtotalinternal reflectionandthe angle where this occursfirst is the critical anglefortotalinternalreflection,tot. Totalinternalreflectionwillbediscussedinmoredetaillater.

    -0.2

    0.0

    0.2

    0.40.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    B

    tot

    rTE

    rTM

    tTE

    tTM

    Amplituderefl.

    andtransm.coefficients

    0 15 3033.7 41.8 45

    Incident angle (deg.)

    Figure 2.24: The amplitude coefficients of reflection and transmission as afunction of incident angle. These correspond to internal reflection n1 > n2ataglas-airinterface(n1 = 1.5, n2 = 1).

    Power reflection and transmissioncoefficientsOftenwearenotinterestedintheamplitudebutratherintheopticalpowerreflectedortransmittedinabeamoffinitesize,seeFigure2.25.

  • 7/30/2019 Classical Electromagnetism and Optics

    38/159

    50 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    Figure 2.25: Reflection and transmission of an incident beam offinite size[1].

    Note,thattogetthepowerinabeamoffinitesize,weneedtointegratedthecorrespondingPoyntingvectoroverthebeamarea,whichmeansmultiplicationbythebeamcrosssectionalareaforahomogenousbeam. Sincetheangleof incidenceandreflectionareequal,i =r =1 thisbeamcrosssectionalareadropsoutinreflection

    2TE/TM TE/TM TE/TM

    )

    2However, due to the different angles for the incident and the transmitted beamt =2 =1,wearriveat6

    TE/TMTTE/TM = ItTE/TMAcost (2.115)Ii Acosr

    1

    Ir Acosi ZZ2 1RTE/TM TE/TM (2.114)= = r =TE/TM TE/TM TE/TM

    I Acosr Z1 +Z2i

    ) (( cos2 1 1 2tTE/TMRe Re= .cos1 Z2/1 Z1/2

    Image removed for copyright purposes.

  • 7/30/2019 Classical Electromagnetism and Optics

    39/159

    512.2. ELECTROMAGNETICWAVESANDINTERFACESUsinginthecaseofTE-polarization Z1/2 =ZT E andanalogouslyforTM-

    cos1/2 1/2=ZT MpolarizationZ1/2cos1/2 1/2,weobtain

    1 ) ( 4ZTE/TM1 2/1

    TTE/TM = Re (2.116)Re 2TE/TM Z TE/TM TE/TMZ1 +Z1/2 2Note,forthecasewherethecharacteristicimpedancesarecomplexthiscannot be further simplified. Ifthecharacteristic impedancesarereal, i.e. themediaarelossless,thetransmissioncoefficientsimplifiesto

    4ZTE/TM

    ZTE/TM

    1/2 2/1T

    TE/TM 2 (2.117)= Z1TE/TM+Z2TE/TM .Tosummarizeforlosslessmediathepowerreflectionandtransmissioncoefficientsare

    TE-wave(s-pol.) TM-wave(p-pol.)ZT E1/2 = Z1/2cos1/2 = Z0n1/2cos1/2 ZT M1/2 =Z1/2cos1/2 = Z0n1/2 cos1/2 RT E=

    n2cos2n1cos1n1cos1+n2cos2

    2 RT M =

    n2cos2 n1cos1

    n2cos2+ n1cos1

    2

    TT E=4n1cos1n2cos2

    |n1cos1+n2cos2|2 TT M =4 n2

    cos2n1

    cos1 n2cos2+ n1cos12

    TT E+RT E = 1 TT M+RT M = 1

    (2.118)

    A few phenomena that occur upon reflection at surfaces between differentmediaareespeciallynoteworthyandneedamoreindepthdiscussionbecausethey enhance or enable the construction of many optical components anddevices.2.2.4 Brewsters AngleAs Figures 2.23 and 2.24 already show, for light polarized parallel to theplane of incidence, p-polarized light, the reflection coefficient vanishes at a givenangleB,calledtheBrewsterangle. UsingSnellsLawEq.(2.106),

    n2 sin1= , (2.119)

    n1 sin2

  • 7/30/2019 Classical Electromagnetism and Optics

    40/159

    52 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSwecanrewritethereflectionandtransmissioncoefficientsinEq.(2.118)onlyin

    terms

    of

    the

    angles.

    For

    example,

    we

    find

    for

    the

    refl

    ectioncoe

    ffi

    cient2 2

    sin cos2 1 =

    =

    cos2 sin1 cos2n2n1 cos1

    +cos2cos1

    RT M (2.120)=sin1 +cos2sin2 cos1

    n2n1

    2sin21sin22(2.121)

    sin21+ sin 22where we used in the last step in addition the relation sin2= 2 sin cos.ThusbyforcingRT M = 0,theBrewsterangleisreachedfor

    sin21,Bsin22,B = 0 (2.122)

    or

    21,B =22,B or1,B +2,B = (2.123)2

    This relation is illustrated in Figure 2.26. The reflected and transmittedbeams are orthogonal to each other, so that the dipoles induced in themedium by the transmitted beam, shown as arrows in Fig. 2.26, can notradiate into the direction of the reflectedbeam. This isthephysical originof the zero in the reflection coefficient, only possible for a p-polarized orTM-wave.

    Therelation(2.123)canbeusedtoexpresstheBrewsterangleasafunctionoftherefractiveindices,becauseifwesubstitute(2.123)intoSnellslawweobtain

    sin1 n2=

    sin2 n1sin1,B2 1,B cos1,B

    sin1,B= = tan 1,B,

    sin

    ortan1,B = n2. (2.124)

    n1

    UsingtheBrewsterangleconditiononecaninsertanopticalcomponentwitha refractive index n = 1 into a TM-polarized beam in air without having6reflections, see Figure 2.27. Note, this is not possible for a TE-polarizedbeam.

  • 7/30/2019 Classical Electromagnetism and Optics

    41/159

    532.2. ELECTROMAGNETICWAVESANDINTERFACESReflection of TM-Wave at Brewsters Angle

    x

    Ei E

    r

    krki

    z Etkt

    1,

    2,

    1,

    Figure 2.26: Conditions for reflection of a TM-Wave at Brewsters angle. The reflected and transmitted beams are orthogonal to eachother, so thatthedipolesexcited inthemediumbythetransmittedbeamcannotradiateintothedirectionofthereflectedbeam.

    Image removed for copyright purposes.

    Figure2.27: AplateunderBrewstersangledoesnotreflectTM-light. Theplatecanbeusedasawindowtointroducegasfilledtubesintoalaserbeamwithoutinsertionloss(ideally),[6]p. 209.

  • 7/30/2019 Classical Electromagnetism and Optics

    42/159

    54 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS2.2.5 Total Internal ReflectionAnother striking phenomenon, see Figure 2.24, occurs for the case wherethebeamhitsthesurfacefromthesideoftheopticallydensermedium, i.e.n1 > n2. There is obviously a critical angle of incidence, beyond which alllightisreflected. Howcanthatoccur? This iseasytounderstandfromthephasematchingdiagramatthesurface,seeFigure2.18,whichisredrawnforthiscaseinFigure2.28.

    n n2> 1

    xkrki i r

    tot

    z

    k2

    k1

    Figure2.28: Phasematchingdiagramfortotal internalreflection.Thereisnorealwavenumberinmedium2possibleassoonastheangleof

    incidencebecomeslargerthanthecriticalanglefortotalinternalreflectioni > tot (2.125)

    withsintot =

    n2. (2.126)n1

    Figure2.29showstheangleofrefractionand incidence forthetwocasesofexternalandinternalreflection,whentheangleof incidenceapproachesthecriticalangle.

  • 7/30/2019 Classical Electromagnetism and Optics

    43/159

    552.2. ELECTROMAGNETICWAVESANDINTERFACES

    Image removed for copyright purposes.

    Figure2.29: Relationbetweenangleofrefractionandincidenceforexternalrefractionandinternalrefraction([6],p. 11).

    Image removed for copyright purposes.

    Figure2.30: Relationbetweenangleofrefractionandincidenceforexternalrefractionandinternalrefraction([1],p. 81).

    Total internal reflectionenablesbroadbandreflectors. Figure2.30shows

  • 7/30/2019 Classical Electromagnetism and Optics

    44/159

    56 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSagain what happens when the critical angle of reflection is surpassed. Figure

    2.31

    shows

    how

    total

    internal

    refl

    ectioncan

    be

    used

    to

    guide

    light

    via

    reflectionataprismorbymultiplereflectionsinawaveguide.

    Image removed for copyright purposes.

    Figure2.31: (a) Total internal reflection, (b) internal reflection in aprism,(c) Raysare guided bytotal internal reflection fromthe internal surface ofanopticalfiber([6]p. 11).

    Figure2.32showstherealizationofaretroreflector,whichalwaysreturnsaparallelbeamindependentoftheorientationoftheprism(infacttheprismcan be a real 3D-corner so that the beam is reflected parallel independentfromthepreciseorientationofthecornercube). Asurfacepatternedbylittlecornercubesconstitutea"catseye"usedontraffic signs.

    Image removed for copyright purposes.

    Figure2.32: Totalinternalreflectioninaretroreflector.Moreonreflectingprismsanditsusecanbefoundin[1],pages131-136.

  • 7/30/2019 Classical Electromagnetism and Optics

    45/159

    572.2. ELECTROMAGNETICWAVESANDINTERFACESEvanescent WavesWhat is thefield in medium 2 when total internal reflection occurs? Is itidenticaltozero? Itturnsoutphasematchingcanstilloccurifthepropagationconstantinz-directionbecomesimaginary,k2z =j2z,becausethenwecanfulfillthewaveequationinmedium2. Thisisequivalenttothedispersionrelation

    k2 +k2 =k22x 2z 2,orwithk2x =k1x =k1sin1,weobtainfortheimaginarywavenumber

    q2z = k12sin21k22, (2.127)p

    = k1 sin21sin2tot. (2.128)

    Theelectricfieldinmedium2isthen,fortheexampleforaTE-wave,givenby

    Et = Et ey ej(tktr)

    , (2.129)Et ey ej(tk2,xx)e2zz. (2.130)

    Thusthewavepenetrates intomedium2exponentiallywitha1/e-depth,givenby

    1 1= = p (2.131)

    2z k1 sin21sin2tot

    Figure2.33showsthepenetrationdepthasa functionofangleof incidenceforasilica/airinterfaceandasilicon/airinterface. Thefiguredemonstratesthatlightfrominsideasemiconductormaterialwitharelativelyhighindexaroundn=3.5ismostlycapturedinthesemiconductormaterial(Problemoflightextractionfromlightemittingdiodes(LEDs)),seeproblemset2.

  • 7/30/2019 Classical Electromagnetism and Optics

    46/159

    58 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    0.4

    0.2

    0.0Penetrationdepth,m

    806040200

    n1=3.5n2=1n1=1.45n2=1

    Angle of incidence,o

    Figure2.33: Penetrationdepthfortotalinternalreflectionatasilica/airandasilicon/airinterfacefor= 0.633nm.

    As the magnitude of the reflection coefficient is 1 for total internal reflection,thepowerflowingintomedium2mustvanish,i.e. thetransmissioniszero. Note,thatthetransmissionandreflectioncoefficients inEq.(2.113)canbe used beyond the critical angle for total internal reflection. We onlyhavetobeawarethattheelectricfield in medium 2 has an imaginary dependence intheexponentforthez-direction, i.e. k2z =k2cos2 =j2z.Thuscos2 inallformulasforthereflectionandtransmissioncoefficientshastobereplacedbytheimaginarynumber

    k2z k1

    pcos2 = =j sin21sin2tot (2.132)

    k2 k2n1p= jn2 sin

    21sin2tots 2sin1

    = jsintot 1.

  • 7/30/2019 Classical Electromagnetism and Optics

    47/159

    592.2. ELECTROMAGNETICWAVESANDINTERFACESThenthereflectioncoefficientsinEq.(2.113)changetoall-passfunctions

    TE-wave(s-pol.) TM-wave(p-pol.)rT E = n1cos1n2cos2

    n1cos1+n2cos2r rT M = n2cos2 n1cos1n2

    cos2+ n1cos1rrT E = cos1+jn2n1 sin1sintot

    21

    cos1jn2n1r

    sin1sintot

    21r

    rT M = cos1+jn1n2 sin1sintot21

    cos1jn1n2r

    sin1sintot

    21r

    tanT E 2 = 1cos1 n2n1 sin1sintot

    21 tanT M

    2 = 1cos1 n1n2 sin1sintot2

    1(2.133)

    Thus the magnitude of the reflection coefficient is 1. However, there is anon-vanishingphaseshift forthe lightfieldupontotal internal reflection,denotedasT E andT M inthetableabove. Figure2.34showsthesephaseshiftsfortheglass/airinterfaceandforbothpolarizations.

    200

    100

    0PhaseinReflection,

    o

    806040200

    n1=1.45

    n2=1

    TE-Wave(s-polarized)

    TM-Wave(p-polarized)

    Brewsterangle

    Angle of incidence,o

    Figure 2.34: Phase shifts for TE- and TM- wave upon reflection from asilica/airinterface,withn1 = 1.45andn2 = 1.Goos-Haenchen-ShiftSofar,welookedonlyatplanewavesundergoingreflectionatsurfaceduetototal internalreflection. Ifabeamoffinitetransversesize isreflected from

  • 7/30/2019 Classical Electromagnetism and Optics

    48/159

    60 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSsuchasurfaceitturnsoutthatitgetsdisplacedbyadistancez,seeFigure2.35

    (a),

    called

    Goos-Haenchen-Shift.

    Image removed for copyright purposes.

    Figure2.35: (a)Goos-HaenchenShiftandrelatedbeamdisplacementuponreflectionofabeamwithfinitesize; (b)Accumulation ofphaseshifts inawaveguide.

    Detailedcalculationsshow(problemset2),thatthedisplacementisgivenby

    z= 2TE/TMtan1, (2.134)asifthebeamwasreflectedatavirtuallayerwithdepthTE/TMintomedium2. Itturnsout,thatforTE-waves

    T E=, (2.135)where

    is

    the

    penetration

    depth

    according

    to

    Eq.(2.131)

    for

    evanescent

    waves. ButforTM-wavesT M = 2 (2.136)

    n11 + sin211n2

  • 7/30/2019 Classical Electromagnetism and Optics

    49/159

    612.2. ELECTROMAGNETICWAVESANDINTERFACESThese shiftsaccumulate whenthebeam is propagating in awaveguide, seeFigure

    2.35

    (b)

    and

    is

    important

    to

    understand

    the

    dispersion

    relations

    of

    waveguidemodes. TheGoos-Haenchenshiftcanbeobservedbyreflectionataprismpartiallycoatedwithasilverfilm,seeFigure2.36. Thepartreflectedfromthesilverfilmisshiftedwithrespecttothebeamreflectedduetototalinternalreflection,asshowninthefigure.

    Image removed for copyright purposes.

    Figure 2.36: Experimental proof of the Goos-Haenchen shift by total internal

    refl

    ection

    at

    aprism,

    that

    is

    partially

    coated

    with

    silver,

    where

    the

    penetrationoflightcanbeneglected. [3]p. 486.

    Frustratedtotal internal reflectionAnother proof for the penetration of light into medium 2 in the case oftotal internalreflectioncanbeachievedbyputtingtwoprisms,wheretotalinternal reflection occurs back to back, see Figure 2.37. Then part of thelight, depending on the distance between the two interfaces, is convertedbackintoapropagatingwavethatcanleavethesecondprism. Thiseffectiscalledfrustratedinternalreflectionand itcanbeusedasabeamsplitterasshowninFigure2.37.

  • 7/30/2019 Classical Electromagnetism and Optics

    50/159

    62 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    Image removed for copyright purposes.

    Figure2.37:

    Frustrated

    total

    internal

    refl

    ection.

    Partof

    the

    light

    is

    picked

    upbythesecondsurfaceandconvertedintoapropagatingwave.

    2.3 Mirrors, Interferometers and Thin-FilmStructures

    Oneofthemoststrikingwavephenomenais interference. Manyopticaldevicesarebasedontheconceptofinterferingwaves,suchaslowlossdielectricmirrorsandinterferometersandotherthin-filmopticalcoatings. Afterhavingaquicklookintothephenomenonofinterference,wewilldevelopeapowerfulmatrix formalism that enables us to evaluate efficiently many optical (alsomicrowave)systemsbasedoninterference.2.3.1 Interference and CoherenceInterferenceInterferenceofwaves isaconsequenceofthe linearityofthewaveequation(2.13). Ifwehavetwoindividualsolutionsofthewaveequation

    E1(r,t) = E1cos(1tk1 r+1)e1, (2.137)E2(r,t) = E2cos(2tk1 r+2)e2, (2.138)

    with arbitrary amplitudes, wave vectors and polarizations, the sum of thetwofields(superposition)isagainasolutionofthewaveequation

    E(r,t) = E1(r,t) + E2(r,t). (2.139)

  • 7/30/2019 Classical Electromagnetism and Optics

    51/159

    2.3. MIRRORS,INTERFEROMETERSANDTHIN-FILMSTRUCTURES63If we lookat the intensity, wich is proportional to theamplitude square ofthe

    total

    field

    2E(r,t)2 = E1(r,t) + E2(r,t) , (2.140)wefind

    E(r,t)2 = E1(r,t)2+ E2(r,t)2+ 2E1(r,t) E2(r,t) (2.141)with E2

    E1(r,t)2 = 1 1 + cos 2(1tk1 r+ 1) , (2.142)2

    E2

    E2(r,t)2 = 2 1 + cos 2(2t r+ 2) , (2.143)k2 2E1(r,t) E2(r,t) = (e1 e2) E1E2cos(1tk1 r+ 1) (2.144)

    cos(2tk2 r+ 2)1

    E1(r,t) E2(r,t) =2

    (e1 e2) E1E2 (2.145) cos

    (12) t

    k1k2 r+ (12) (2.146)

    +cos (1+ 2) t k1+ k2 r+ (1+ 2)Since at optical frequencies neither our eyes nor photo detectors, can everfollowtheopticalfrequencyitselfandcertainlynottwiceaslargefrequencies,wedroptherapidlyoscillatingterms. Orinotherwordswelookonlyonthecycle-averagedintensity,whichwedenotebyabar

    E2 E2E(r,t)2 = 1 + 2 + (e1 e2) E1E2

    2 2 cos (12) t k1k2 r+ (12) (2.147)

    Dependingonthefrequencies1 and2 andthedeterministicandstochasticproperties ofthe phases 1 and2, wecandetect thisperiodicallyvaryingintensity pattern called interference pattern. Interference of waves can bebestvisuallizedwithwaterwaves,seeFigure2.38. Note,however,thatwaterwavesareascalarfield,whereastheEM-wavesarevectorwaves. Therefore,the interference phenomena of EM-waves are much richer in nature than

  • 7/30/2019 Classical Electromagnetism and Optics

    52/159

    64 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSfor water waves. Notice, from Eq.(2.147), it follows immedicatly that theinterference

    vanishes

    in

    the

    case

    of

    orthogonally

    polarized

    EM-waves,

    because

    ofthescalarproduct involved. Also, ifthe frequenciesofthewavesarenotidentical,theinterferencepatternwillnotbestationaryintime.

    Image removed for copyright purposes.

    Figure2.38: Interferenceof water waves fromtwopointsources inarippletank[1]p. 276.

    If the frequencies are identical, the interference pattern depends on thewave vectors, see Figure 2.39. The interference pattern which has itself awavevectorgivenby

    k1k2 (2.148)showsaperiodof

    2 . (2.149)= k1k2

  • 7/30/2019 Classical Electromagnetism and Optics

    53/159

    2.3. MIRRORS,INTERFEROMETERSANDTHIN-FILMSTRUCTURES65

    k1

    k2

    Wavefronts

    Lines of constantdifferentialphase

    Figure 2.39: Interference pattern generated by two monochromatic planewaves.

    CoherenceTheabilityofwavestogenerateaninterferencepattern iscalledcoherence.Coherencecanbequantifiedbothtemporallyorspatially. Forexample,ifweareatacertainpositionrintheinterferencepatterndescribedbyEq.(2.147),wewillonlyhavestationaryconditionsoveratimeinterval

    2Tcoh

  • 7/30/2019 Classical Electromagnetism and Optics

    54/159

    66 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSIt is by no means trivial to arrive at a light source and an experimen

    talsetup

    that

    enables

    good

    coherence

    and

    strong

    interference

    of

    the

    beams

    involved.

    Interferenceofbeamscanbeusedtomeasurerelativephaseshiftsbetweenthem which may be proportional to a physical quantity that needs to bemeasured. Suchphaseshiftsbetweentwobeamscanalsobeusedtomodulatethe light output at a given position in space via interference. In 6.013, wehavealreadyencounteredinterferenceeffectsbetweenforwardandbackwardtravelingwavesontransmissionlines. Thisisverycloselyrelatedtowhatweuseinoptics,therefore,wequicklyrelatetheTEM-waveprogagationtothetransmissionlineformalismdevelopedinChapter5of6.013.2.3.2 TEM-Waves and TEM-Transmission LinesThemotionofvoltageV andcurrentI alongaTEMtransmissionlinewithaninductanceL0 andacapacitanceC perunitlengthissatisfies0

    V(t,z) I(t, z)= L0 (2.150)

    z t I(t,z) V(t,z)

    = C0 (2.151)z t

    Substitutionoftheseequationsintoeachotherresultsinwaveequationsforeitherthevoltageorthecurrent

    2V(t,z) 1 2V(t, z)z 2 c2 t2 = 0, (2.152)

    2I(t, z) 1 2I(t, z)z 2 c2 t2 = 0, (2.153)

    where c = 1/L0C0 is the speed of wave propagation on the transmissionline. Theratiobetweenvoltageandcurrent formonochomaticwaves isthepcharacteristicimpedanceZ= L0/C0.

    Theequationsofmotionfortheelectricandmagneticfieldofax-polarizedTEM wave according to Figure 2.1, with Efield along the x-axis and H-fi

    eldsalong

    the

    y- axis

    follow

    directly

    from

    Faradays

    and

    Amperes

    law

    E(t, z) H(t, z)

    = , (2.154)z t

    H(t, z) E(t, z)= , (2.155)

    z t

  • 7/30/2019 Classical Electromagnetism and Optics

    55/159

    2.3. MIRRORS,INTERFEROMETERSANDTHIN-FILMSTRUCTURES67which are identical to the transmission line equations (2.150) and (2.151).Substitution

    of

    these

    equations

    into

    each

    other

    results

    again

    in

    wave

    equations

    forelectricandmagneticfieldspropagatingatthespeedoflightc= 1/pandwithcharacteristicimpedanceZF = /.

    The solutions of the wave equationare forward andbackward travelingwaves,whichcanbedecoupledbytransformingthefieldstotheforwardandbackwardtravelingwaves r

    Aeffa(t,z) = (E(t,z) + ZF oH(t,z)) , (2.156)

    2ZF

    rAeff

    b(t,z) = 2ZF (E(t,z) ZF oH(t,z)) , (2.157)

    whichfulfilltheequations 1

    + a(t,z) = 0, (2.158)z c t 1

    z c t b(t,z) = 0. (2.159)Note,weintroducedthatcrosssectionAeff suchthat|a|2 isproportionaltothetotalpowercarriedbythewave. Clearly,thesolutionsare

    a(t,z) = f(t

    z/c0), (2.160)b(t,z) = g(t+ z/c0), (2.161)

    whichresemblestheDAlembertsolutionsofthewaveequationsfortheelectricandmagneticfield s

    ZF oE(t,z) = (a(t,z) + b(t,z)) , (2.162)

    2Aeffs1

    H(t,z) = (a(t,z) b(t,z)) . (2.163)2ZF oAeff

    Here, the forward and backward propagatingfields are already normalizedsuchthatthePoyntingvectormultipliedwiththeeffectiveareagivesalreadythetotalpowertransportedbythefieldsintheeffectivecrosssectionAeff

    P = S(Aeff ez) = AeffE(t,z)H(t,z) = |a(t,z)|2|b(t,z)|2. (2.164)

  • 7/30/2019 Classical Electromagnetism and Optics

    56/159

    68 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSIn 6.013, itwas shown that the relationbetweensinusoidal current and

    voltagewaves

    V(t,z) = Re V(z)ejt andI(t, z) = Re I(z)ejt (2.165)

    along the transmission line orcorrespondingelectric andmagneticfields inone dimensional wave propagation is described by a generalized compleximpedance Z(z) that obeys certain transformation rules, see Figure 2.40(a).

    Figure2.40: (a)Transformationofgeneralizedimpedancealongtransmissionlines,(b)Transformationofgeneralizedimpedanceaccrossfreespacesectionswithdifferentcharacterisitcwaveimpedancesineachsection.

    Alongthefirsttransmissionline,whichisterminatedbyaloadimpedance,thegeneralizedimpedancetransformsaccordingto

    Z1(z) = Z1 Z0jZ1tan(k1z) (2.166)Z1

    jZ0

    tan(k1z)withk1 =k0n1 andalongthesecondtransmissionlinethesameruleappliesasanexample

    Z2(z) = Z2 Z1(L1) jZ2tan(k2z) (2.167)Z2jZ1(L1)tan(k2z)

  • 7/30/2019 Classical Electromagnetism and Optics

    57/159

    2.3. MIRRORS,INTERFEROMETERSANDTHIN-FILMSTRUCTURES69withk2 =k0n2.Note,thatthemediacanalsobe lossy,thenthecharacteristic

    impedances

    of

    the

    transmission

    lines

    and

    the

    propagation

    constants

    are

    already themselves complex numbers. The same formalism can be used tosolvecorrespondingonedimensionalEM-wavepropagationproblems.Antireflection CoatingThe task of an antireflection (AR-)coating, analogous to load matching intransmission linetheory, istoavoidreflectionsbetweenthe interfaceoftwomedia with different optical properties. One method of course could be toplace the interface at Brewsters angle. However, this is not always possible. Lets assume we want to put a medium with index n into a beam under normal

    incidence,

    without

    having

    refl

    ections

    on

    the

    air/medium

    interface.

    Themediumcanbeforexamplealens. This isexactlythesituationshownin Figure 2.40 (b). Z2 describes the refractive index of the lense material,e.g. n2 = 3.5 for a silicon lense, we can deposit on the lens a thin layerof material with indexn1 corresponding to Z1 andthis layershouldmatchto the free space index n0 = 1 or impedance Z0 = 377. Using (2.166) weobtain

    Z2 =Z1(L1) = Z1Z0jZ1tan(k1L1) (2.168)Z1jZ0tan(k1L1)Ifwechooseaquarterwavethickmatchinglayerk1L1 =/2,thissimplifiestothefamousresult

    Z2Z2 = 1, (2.169)Z0

    orn1 = n2n0 andL1 = . (2.170)4n1

    Thus a quarter wave AR-coating needs a material which has an indexcorrespondingtothegeometricmeanof thetwomediatobematched. Inthecurrentexamplethiswouldben2 =3.51.872.3.3 Scattering and Transfer MatrixAnother formalism to analyze optical systems (or microwave circuits) canbe formulated using the forward and backward propagating waves, whichtransformmuchsimpleralongahomogenoustransmissionlinethanthetotalfields, i.e. the sumof forward adnbackward waves. However, at interfaces

  • 7/30/2019 Classical Electromagnetism and Optics

    58/159

    70 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSscatteringofthesewavesoccurswhereasthetotalfieldsarecontinuous. Formonochromatic

    forward

    and

    backward

    propagating

    waves

    a(t,z) = a(z)ejt andb(t,z) = b(z)ejt (2.171)

    propagating inz-directionoveradistancez withapropagationconstantk,wefindfromEqs.(2.158)and(2.159)

    a(z) ejkz 0 a(0)

    = jkz . (2.172)b(z) 0 e b(0)A piece of transmission line is a two port. The matrix transforming theamplitudesofthewavesattheinputport(1)tothoseoftheoutputport(2)iscalledthetransfermatrix,seeFigure2.41

    T

    Figure2.41: DefinitionofthewaveamplitudesforthetransfermatrixT.

    For example, from Eq.(2.172) follows that the transfer matrix for freespacepropagationis

    ejkz 0T=

    0 ejkz . (2.173)This formalism can be expanded to arbitrary multiports. Because of itsmathematical properties the scattering matrix that describes the transformationbetweenthe incomingandoutgoingwaveamplitudesofamultiportisoftenused,seeFigure2.42.

  • 7/30/2019 Classical Electromagnetism and Optics

    59/159

    2.3. MIRRORS,INTERFEROMETERSANDTHIN-FILMSTRUCTURES71

    S

    Figure2.42: Scatteringmatrixanditsportdefinition.Thescatteringmatrixdefinesalineartransformationfromtheincoming

    totheoutgoingwavesb= Sa, witha= (a1,a2,...)T ,b= (b1,b2,...)T . (2.174)

    Note,thatthemeaningbetweenforwardandbackwardwavesno longercoincides with a and b, a connection, which is difficult to maintain if severalports come in from many differentdirections.

    ThetransfermatrixT hasadvantages, ifmanytwoportsareconnectedin series with each other. Then the total transfer matrix is the product oftheindividualtransfermatrices.2.3.4 Properties of the Scattering MatrixPhysialpropertiesofthesystemreflectitselfinthemathematicalpropertiesofthescatteringmatrix.ReciprocityAsystemwithconstantscalardielectricandmagneticpropertiesmusthaveasymmetricscatteringmatrix(withoutproof)

    S= ST. (2.175)

  • 7/30/2019 Classical Electromagnetism and Optics

    60/159

    72 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSLosslessnessInalosslesssystemthetotalpowerflowingintothesystemmustbeequaltothepowerflowingoutofthesysteminsteadystate

    2b 2 (2.176)|a| = ,

    i.e.S

    +S= 1 orS1=S+. (2.177)

    Thescatteringmatrixofalosslesssystemmustbeunitary.Time ReversalTo find the scattering matrix of the time reversed system, we realize thatincoming waves become outgoing waves under time reversal and the otherway around, i.e. the meaning of aandb is exchanged and on top of it thewavesbecomenegativefrequencywaves.

    aej(tkz) timereversal aej(tkz). (2.178)To obtain the complex amplitude of the corresponding positive frequencywave,weneedtotakethecomplexconjugatevalue. Sotoobtaintheequations forthetimereversedsystemwehavetoperformthe followingsubstitutions

    Originalsystem Timereversedsystem= Sb S1 . (2.179)ab= Sa a b=

    2.3.5 BeamsplitterAsanexample,welookatthescatteringmatrixforapartiallytransmittingmirror, which could be simply formed by the interface between two mediawith different refractive index, which we analyzed in the previous section,seeFigure 2.43. (Note, for brevityweneglect thereflections at the normalsurfaceinputtothemedia,orweputanAR-coatingonthem.) Inprinciple,thisdevicehasfourportsandshouldbedescribedbya4x4matrix. However,most often only one of the waves is used at each port, as shown in Figure2.43.

  • 7/30/2019 Classical Electromagnetism and Optics

    61/159

    2.3. MIRRORS,INTERFEROMETERSANDTHIN-FILMSTRUCTURES73

    Figure2.43: Portdefinitionsforthebeamsplitter

    Thescatteringmatrixisdeterminedbyb= Sa, witha = (a1,a2)T , b = (b3, b4)T (2.180)

    and S=

    jtr jt

    r , withr2+ t2 = 1. (2.181)

    Thematrix

    Swas

    obtained

    using

    using

    the

    S-matrix

    properties

    described

    above. From Eqs.(2.113) we could immediately identify r as a function ofthe refractive indices, angle of incidence and the polarization used. Note,that theoff-diagonal elements ofSare identical, which is a consequence ofreciprocity. Thatthemaindiagonalelementsare identical isaconsequenceof unitarity for a lossless beamsplitter and furthermore t= 1 r2. For agivenfrequencyrandt canalwaysbemaderealbychoosingproperreferenceplanesatthe inputandtheoutputofthebeamsplitter. Beamsplitterscanbemadeinmanyways,seeforexampleFigure2.37.

    2.3.6 InterferometersHavingavaliddescriptionofabeamsplitterathand,wecanbuildandanalyzevarioustypesofinterferometers,seeFigure2.44.

  • 7/30/2019 Classical Electromagnetism and Optics

    62/159

    74 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    Image removed for copyright purposes.

    Figure 2.44: Different types of interferometers: (a) Mach-Zehnder Interferometer;(b)MichelsonInterferometer;(c)SagnacInterferometer[6]p. 66.

    Each of these structures has advantages and disadvantages dependingon the technology they are realized. The interferometer in Figure 2.44 (a)is called Mach-Zehnder interferometer, the one in Figure 2.44 (b) is calledMichelsonInterferometer. IntheSagnacinterferometer,Figure2.44(c)bothbeamsseeidenticalbeampathandthereforeerrorsinthebeampathcanbebalance outandonlydifferentialchanges due toexternal influences leadtoan

    output

    signal,

    for

    example

    rotation,

    see

    problem

    set

    3.

    Tounderstandthe lighttransmissionthroughaninterferometerweana

    lyzeas anexampletheMach-Zehnder interferometer shown inFigure2.45.If we excite input port 1 with a wave with complex amplitude a0 and no

    inputatport2andassume50/50beamsplitters,thefirstbeamsplitterwill

  • 7/30/2019 Classical Electromagnetism and Optics

    63/159

    2.3. MIRRORS,INTERFEROMETERSANDTHIN-FILMSTRUCTURES75

    3

    4

    Figure2.45: Mach-ZehnderInterferometerproducetwowaveswithcomplexamplitudes

    b3 =12a0 (2.182)b4 =j12a0

    Duringpropagationthroughthe interferometerarms, bothwavespickupaphasedelay3 =kL3 and4 =kL4,respectively

    a5 =12a0ej3,a6 =j12a0ej4. (2.183)

    Afterthesecondbeamsplitterwiththesamescatteringmatrixasthefirstej3 ,

    a0 ej3

    Thetransmittedpowertotheoutputportsis2

    one,weobtain1 ej4

    +ej4b7 = a0 (2.184)2=j12

    b8 .2 22

    4| = |a0| |a0|

    21ej(34)1 + ej(34)

    |b7 [1cos(34)],= (2.185)

    2| |

    Thetotaloutputpowerisequaltotheinputpower,asitmustbeforalosslesssystem. However,dependingonthephasedifference=34 betweenboth arms, the power is split differently betweenthe twooutput ports, seeFigure2.46.Withproperbiasing, i.e. 34 =/2 + ,thedifference in

    2 22 = |a0|4 |a0|2b8 [1+cos(3

    4)].=

  • 7/30/2019 Classical Electromagnetism and Optics

    64/159

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Outputpower

    |b7|2

    |b8|

    2

    76 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    -3 -2 -1 0 1 2 3

    Figure 2.46: Output power from the two arms of an interfereometer as afunctionofphasedifference.output power between the two arms can be made directly proportional tothephasedifference.

    Opening up the beamsize in the interferometer and placing optics intothebeamenablestovisualizebeamdistortionsduetoimperfectopticalcomponents,seeFigures2.47and2.48.

    Image removed for copyright purposes.

    Figure2.47: Twyman-GreenInterferometertotestopticsquality[1]p. 324.

  • 7/30/2019 Classical Electromagnetism and Optics

    65/159

    2.3. MIRRORS,INTERFEROMETERSANDTHIN-FILMSTRUCTURES77

    Image removed for copyright purposes.

    Figure 2.48: Interference pattern with a hot iron placed in one arm of theinterferometer([1],p. 395).

    2.3.7 Fabry-Perot ResonatorInterferometerscanactasfilters. Thephasedifferencebetweentheinterferometerarmsdependsonfrequency,therefore,thetransmissionfrominputtooutputdependsonfrequency,seeFigure2.46.However,thefilterfunctionisnotverysharp. Thereason forthis is that onlyatwobeam interference isused. Muchmorenarrowbandfilterscanbeconstructedbymultipass interferencessuchas inaFabry-PerotResonator, seeFigure2.49. ThesimplestFabryPerotisdescribedbyasequenceofthreelayerswhereatleastthemiddlelayerhasanindexdifferentfromtheothertwolayers,suchthatreflectionsoccurontheseinterfaces.

  • 7/30/2019 Classical Electromagnetism and Optics

    66/159

    78 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICS

    n2n1 n3

    1 2S S21

    Figure2.49: Multipleintereferences inaFabryPerotresonator. InthesimplestimplementationaFabryPerotonlyconsistsofasequenceofthreelayerswithdifferentrefractiveindexsothattworeflectionsoccurwithmultipleinterferences. Each of this discontinuites can be described by a scatteringmatrix.

    Any kind of device that has reflections at two parallel interfaces mayact as a Fabry Perot such as two semitransparent mirrors. A thin layerof material against air can act as a Fabry-Perot and is often called etalon.Given the reflectionand transmissioncoefficientsat the interfaces 1 and2,we can write down the scattering matrices for both interfaces according toEqs.(2.180)and(2.181).

    b1 r1 jt1 a1 b3 r2 jt2 a3b2

    =jt1 r1 a2 and b4 = jt2 r2 a4 .

    (2.186)If we excite the Fabry-Perot with a wave from the right with amplitude.a1 = 0,thenafractionofthatwavewillbetransmittedtotheinterfaceinto6theFabry-Perotaswave b2 and part will be already reflectedinto b1,

    (0)

    b1 = r1a1. (2.187)Thetransmittedwavewillthenpropagateandpickupaphasefactorej/2,with= 2k2Landk2 = 2n2,

    a3=jta1ej/2. (2.188)

  • 7/30/2019 Classical Electromagnetism and Optics

    67/159

    2.3. MIRRORS,INTERFEROMETERSANDTHIN-FILMSTRUCTURES79Afterpropagationitwillbereflectedofffromthesecondinterfacewhichhasa re

    fl

    ectioncoe

    ffi

    cient b3

    2 = = r2. (2.189)a3

    a4

    =0Thenthereflectedwaveb3 propagatesbacktointerface1,pickingupanother

    (1)phasefactorej/2 resultinginanincomingwaveafteroneroundtripofa2 =jt1r2e

    ja1. Upon reflectionon interface1,partofthiswave istransmittedleadingtoanoutput

    (1)b1 =jt1jt1r2eja1. (2.190)

    Thepartialwavea(1)2 isreflectedagainandafteranotherroundtripitarrives(2)

    at interface 1 as a2 = (r1r2) ej jt1r2eja1. Part of this wave is transmittedandpartof itisreflectedbacktogothroughanothercycle. Thusintotal ifwesumupallpartialwavesthatcontributetotheoutputatport1oftheFabry-Perotfilter,weobtain

    X (n)b1 = b1

    n=0 !X= r1t21r2ej r1r2ej a1

    n=0

    ej

    = r1t21r21 r1r2ej a1

    = r1r2ej a1 (2.191)1 r1r2ej Note, that the coefficient in front of Eq.(2.191) is the coefficient S11 of thescatteringmatrixoftheFabry-Perot. Inasimilarmanner,weobtain

    b

    b3

    4

    = S

    aa

    1

    2

    (2.192)1 r1r2ej t1t2ej/2and

    S=1 r1r2ej

    t1t2ej/2 r2r1ej

    (2.193)In the following, we want to analyze the properties of the Fabry-Perot for thecaseofsymmetricreflectors,i.e. r1 = r2 andt1 = t2.Thenweobtainfor

  • 7/30/2019 Classical Electromagnetism and Optics

    68/159

    80 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSthepowertransmissioncoefficientoftheFabry-Perot, S21 2 intermsofthe

    2 | |power

    refl

    ectivityof

    the

    interfaces

    R

    =

    r

    |S21 2| = 1R1Rej 2 2(1R)

    2+ 4Rsin2(/2) (2.194)= (1R)2Figure2.50showsthetransmission |S21|

    =R. oftheFabry-Perot interferometerforequalreflectivities r1 2 = r2 2| | | |1.0

    0.8

    0.6

    0.4

    0.2

    0.0Fabry-PerotTransmissio

    n,

    |S21|2

    R=0.1

    R=0.5

    R=0.7

    R=0.9

    FSR

    fFWHM

    0.0 0.5 1.0 1.5 2.0 2.5 3.0(f -fm)/ FSR

    Figure 2.50: Transmission of a lossless Fabry-Perot interferometer with2 2|r1| =|r2| =RAtvery lowreflectivityRofthemirrorthetransmissionisalmostevery

    where 1, there is only a slight sinusoidal modulation due to thefirst orderinterferences which are periodically in phase and out of phase, leading to100% transmission or small reflection. For large reflectivity R, due to thethenmultipleinterferenceoperationoftheFabry-PerotInterferometer,verynarrowtransmissionresonances emerge at frequencies, where the roundtrip phaseintheresonatorisequaltoamultipleof2

    2f= n22L= 2m, (2.195)

    c0

  • 7/30/2019 Classical Electromagnetism and Optics

    69/159

    21 3 4

    2.3. MIRRORS,INTERFEROMETERSANDTHIN-FILMSTRUCTURES81whichoccursatacomboffrequencies,seeFigure2.51

    fm =m c0 . (2.196)2n2L

    Figure 2.51: Developement of a set of discrete resonances in a onedimensionsalresonator.

    On a large frequency scale, a set of discrete frequencies, resonances ormodesarise. Thefrequencyrangebetweenresonances iscalledfreespectralrange(FSR)oftheFabry-PerotInterferometer

    c0 1F SR = = , (2.197)2n2L TR

    which is the inverse roundtrip time TR of the light in the one-dimensonalcavityor resonator formed by the mirrors. Thefiltercharacteristic of eachresonancecanbeapproximatelydescribedbyaLorentzianlinederivedfromEq.(2.194)bysubstitutingf =fm+f withf FSR,

    2 (1R)22|S21| = (1R) + 4R sin2

    m2+ 2f

    /2

    F SR

    1 2R f 2, (2.198)1 +

    1R F SR 1 f 2, (2.199)1 +

    fF W H M /2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0Fabry

    -PerotTransmission,

    |S21

    |2

    5mf

    am

    fmfm-1 fm+1 fm+2

    am-1 am+1 am+2

    frequency

  • 7/30/2019 Classical Electromagnetism and Optics

    70/159

    82 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSwhereweintroducedtheFWHMofthetransmissionfilter

    F SR fF W H M = , (2.200)F

    withthefinesseoftheinterferometerdefinedas

    R F =

    1R . (2.201)TThe last simplificationisvalidforahighlyreflectingmirrorR1andT isthemirrortransmission. Fromthisrelation it is immediatelyclearthatthefinessehastheadditionalphysicalmeaningoftheopticalpowerenhancementinside

    the

    Fabry-Perot

    at

    resonance

    besides

    the

    factor

    of

    ,

    since

    the

    power

    inside the cavity must be larger by 1/T, if the transmission through theFabry-Perotisunity.2.3.8 Quality Factor of Fabry-Perot ResonancesAnother quantity often used to characterize a resonator or a resonance isits quality factor Q, which is defined as the ratio between the resonancefrequencyandthedecayratefortheenergystoredintheresonator,whichisalsooftencalledinversephotonlifetime,1ph

    Q=phfm. (2.202)Letsassume,energyisstoredinoneoftheresonatormodeswhichoccupiesarangeoffrequencies[fmFSR/2, fm+FSR/2]asindicatedinFigure2.52.Thenthefourierintegral Z +FSR/2

    am(t) = b2(f)ej2(ffm)t df, (2.203)FSR/2

    2

    b2(f)

    oftheforwardtravelingwaveintheresonatorgivesthemodeamplitudeofthem-thmodeanditsmagnitudesquareistheenergystoredinthemode. Note,thatwecouldhavetakenanyoftheinternalwavesa2,b2, a3, andb3. The time dependentfieldwecreatecorrespondstothefieldoftheforwardorbackwardtravelingwaveatthecorrespondingreferenceplaneintheresonator.

    where isnormalizedsuchthatitdescribesthepowerspectraldensity

  • 7/30/2019 Classical Electromagnetism and Optics

    71/159

    2.3. MIRRORS,INTERFEROMETERSANDTHIN-FILMSTRUCTURES831.0

    0.8

    0.6

    0.4

    0.2

    0.0Transmission,|S21|2

    am(t) am+1(t)am-1(t)

    0.0 0.5 1.0 1.5 2.0 2.5 3.0(f -fm)/ FSR

    Figure2.52: Integrationoverallfrequencycomponentswithinthefrequencyrange[fmFSR/2, fm+FSR/2]definesamodeamplitudea(t)withaslowtimedependence

    We now make a "Gedanken-Experiment". We switch on the incomingwaves a1() and a4() to load the cavity with energy and evaluate the internal wave b2(). Instead of summing up all the multiple reflections likewe did in constructing the scattering matrix (2.192), we exploit our skillsin analyzing feedback systems, which the Fabry-Perot filter is. The scatteringequationsset forcebythetwo scattering matrices characterizingtheresonator mirrors in the Fabry-Perot can be visuallized by the signalflowdiagraminFigure2.53

    ~

    j t+

    r

    +

    a2

    _~

    a1_

    ~ b2_

    b1

    _~

    j t

    r

    j t+

    r

    +

    a4_

    ~

    a3_

    ~b4

    _~

    b3

    _~

    j t

    r

    e-j/2

    e-j/2

    S1 S2

    Figure 2.53: Representation of Fabry-Perot resonator by a signalflow diagram

  • 7/30/2019 Classical Electromagnetism and Optics

    72/159

    84 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSForthetasktofindtherelationshipbetweenthe internalwaves feedby

    theincoming

    wave

    only

    the

    dashed

    part

    of

    the

    signal

    flow

    is

    important.

    The

    internal feedback loopcanbeclearlyrecognizedwithaclosed looptransferfunction

    r2ej,whichleadstotheresonancedenominator

    1 r2ej ineveryelementoftheFabry-Perotscatteringmatrix(2.192). UsingBlacksformulafrom6.003andthesuperpositionprinciplewe immediatelyfind fortheinternalwave

    b2 = 1 rjt

    2ej

    a1+ rej/2a4

    . (2.204)Closetooneoftheresonance frequencies,= 2fm + ,usingt= 1 r2,(2.204)canbeapproximatedby

    mejTR/2b2() 1 +j1

    jR TR

    a1() + r(1) a4(), (2.205)R

    j

    1 +jTR/T a1() + r(1)mejTR/2a4() (2.206)

    forhighreflectivityR.Multiplicationofthisequationwiththeresonantdenominator

    (1 +jTR/T) b2() ja1() + r(1)mejTR/2a4() (2.207)and inverse Fourier-Transform in the time domain, while recognizing thattheinternalfieldsvanishfaroffresonance,i.e.Z + FSR Z

    am(t) = b2()ejt d= +b2()ejt d, (2.208)F SR

    weobtainthe followingdifferentialequation forthemodeamplitudeslowlyvarying in time

    dTR a (t) = T(am(t) +ja1(t) +j(1)ma4(tTR/2)) (2.209)dt m

  • 7/30/2019 Classical Electromagnetism and Optics

    73/159

    2.3. MIRRORS,INTERFEROMETERSANDTHIN-FILMSTRUCTURES85withtheinputfields

    Z + FSR a1/4(t) = a1/4()ejt d. (2.210) FSR

    Despitethepaintoderivethisequationthephysicalinterpretationisremarkablysimpleandfarreachingaswewillseewhenweapplythisequationlateron to many different situations. Lets assume, we switch off the loading ofthecavityatsomepoint,i.e. a1/4(t) = 0,thenEq.(2.209)resultsin

    am(t) = am(0)et/(TR/T) (2.211)And

    the

    power

    decays

    accordingly

    |a (t)|2 =|a (0)|2et/(TR/2T) (2.212)m m

    twice as fast as the amplitude. The energy decay time of the cavity is often calledthecavityenergydecaytime,orphotonlifetime,ph,whichishere

    TRph = .

    2TNote, the factor of twocomes fromthe fact that eachmirror of the Fabry-PerothasatransmissionT perroundtriptime.For exampl a L= 1.5mlongcavitywithmirrorsof0.5%transmission,i.e. TR = 10nsand2T = 0.01hasaphotonlifetimeof1s. Itneedshundredbouncesonthemirrorforaphotontobeessentiallylostfromthecavity.

    Highestqualitydielectricmirrorsmayhaveareflectionlossofonly105...6,thisisnotreallytransmissionbutratherscatteringlossinthemirror. Suchhighreflectivitymirrorsmayleadtotheconstructionofcavitieswithphotonlifetimesontheorderofmilliseconds.

    Now,thatwehaveanexpressionfortheenergydecaytimeinthecavity,wecanevaluatethequalityfactoroftheresonator

    mQ

    =

    fmph = . (2.213)2T

    Again for a resonator with the same parameters as before and at opticalfrequencies of 300THz corresponding to 1m wavelength, we obtain Q =2 108.

  • 7/30/2019 Classical Electromagnetism and Optics

    74/159

    86 CHAPTER2. CLASSICALELECTROMAGNETISMANDOPTICSThin-FilmFilters

    Transfermatrixformlismisanefficientmethodtoanalyzethereflectionandtransmission properties of layered dielectric media, such as the one shown

    Using the transfer matrix method, it is an easy task tocomputethetransmissionandreflectioncoefficientsofastructurecomposedof layerswitharbitrary indices andthicknesses. Aprominent example ofathin-filmfilterareBraggmirrors. Thesearemadeofaperiodicarrangement

    re

    efl

    ct

    t

    i

    iv

    y

    oftwo layers with low and high index n1 andn2,respectively. Formaximumreflectionbandwidth,thelayerthicknessesarechosentobequarterwaveforthewavelengthmaximumreflectionoccures,n1d1

    Figure 2.54: Thin-Film dielectric mirror composed of alternating high and

    AsanexampleFigure2.55showsthereflectionfromaBraggmirrorwith4 for a center wavelength of 0

    Figure2.55: Reflectivityofan8pairquarterwaveBraggmirrorwithn14designedforacenterwavelengthof800nm. Themirroris

    embeddedinthesamelowindexmaterial.

    2.3.9

    in Figure 2.54.

    =0/4andn2d2 =0/4~~

    n1 n1 n1n2n2 n2

    d1 d1 d1d2 d2 d2

    _b2_a1

    ....

    ~ ~_b1 _a2

    lowindexlayers.

    The layer= 1.45, n2 = 2. = 800nm.n1thicknessesarethend1 =134nmandd2 =83nm.

    1

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    0500 600 700 800 900 1000 1100 1200 1300

    lambda

    =45andn2 = 2.1.

  • 7/30/2019 Classical Electromagnetism and Optics

    75/159

    872.4. PARAXIALWAVEEQUATIONANDGAUSSIANBEAMS2.4 ParaxialWaveEquationandGaussianBeamsSo far, we have only treated optical systems operating with plane waves,which is an idealization. In reality plane waves are impossible to generatebecause of there infiniteamount of energy requiredto do so. The simplest(approximate)solutionofMaxwellsequationsdescribingabeamoffinitesizeistheGaussianbeam. InfactmanyopticalsystemsarebasedonGaussianbeams. Most lasers are designed to generate a Gaussian beam as output.GaussianbeamsstayGaussianbeamswhenpropagatinginfreespace. However,duetoitsfinitesize,diffractionchangesthesizeofthebeamandlensesareimployedtoreimageandchangethecrosssectionofthebeam. Inthissection,wewanttostudythepropertiesofGaussianbeamsanditspropagationandmodificationinopticalsystems.2.4.1 Paraxial Wave EquationWestartfromtheHelm