classical control - lecture 1homes.et.aau.dk/yang/de5/cc/lecture1.beamer.pdf · economic...

30
Outline Classical Control Lecture 1 Lecture 1 Classical Control

Upload: others

Post on 19-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

Outline

Classical Control

Lecture 1

Lecture 1 Classical Control

Page 2: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

Outline

Outline

1 Introduction

2 Control Specifications

Lecture 1 Classical Control

Page 3: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Prerequisites

Block diagram for system modeling

Modeling

MechanicalElectrical

Lecture 1 Classical Control

Page 4: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

BackgroundBasic SystemsModels/Transfers functions

Outline

1 IntroductionBackgroundBasic SystemsModels/Transfers functions

2 Control SpecificationsClosed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Lecture 1 Classical Control

Page 5: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

BackgroundBasic SystemsModels/Transfers functions

Goal of Control Engineering

Graham C. Goodwin:

The fundamental goal of CE is to find technically, environmentally,and economically feasible ways of acting on systems to controltheir outputs to a desired level of performance in the face ofuncertainty of the process and in the presence of uncontrollableexternal disturbances acting on the process.

Lecture 1 Classical Control

Page 6: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

BackgroundBasic SystemsModels/Transfers functions

The Fly-Ball Governor

Historical Periods

The Industrial Revolution (1860s)

World War II (1940-1945)

The Space Race (1960s,1970s)

Economic Globalization (1980s)

Lecture 1 Classical Control

Page 7: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

BackgroundBasic SystemsModels/Transfers functions

Evolution of Control

1940 Classical ControlFrequency DomainMainly useful for SISO systemsA fundamental tool for many practicing engineers

1960 Modern ControlState-space approach to linear control theorySuitable for both SISO and MIMO systemsNo explicit definition of performance and robustness

1970 Optimal ControlMinimize a given objective function (fuel, time)Suitable for both open-loop and closed-loop control

1980 Robust ControlGeneralization of classical control ideas into MIMO contextBased on operator theory which can be interpreted intofrequency domain

Nonlinear control, Adaptive Control, Hybrid Control

Lecture 1 Classical Control

Page 8: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

BackgroundBasic SystemsModels/Transfers functions

Basic Continuous Control System

Ref. +

Feedforward Actuator Plant

Disturbances

Output

Sensor+

+

Measurement noise

Feedback

Lecture 1 Classical Control

Page 9: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

BackgroundBasic SystemsModels/Transfers functions

Basic Digital Control System

Ref. +

Feedforward D/A Act. Plant

Disturbances

Output

SensorA/DFeedback

Clock

Lecture 1 Classical Control

Page 10: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

BackgroundBasic SystemsModels/Transfers functions

Continuous System Models

Numerator and denominator

General formula

G (s) =Y (s)

U(s)=

b0sm + b1s

m−1 + · · · + bm

a0sn + a1sn−1 + · · · + an

Second order system (special case)

G (s) =K

s2 + 2ζωns + ω2n

Matlab

sys=tf(num,den)

Lecture 1 Classical Control

Page 11: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

BackgroundBasic SystemsModels/Transfers functions

Continuous System Models

Zeros and poles

General formula

G (s) =Y (s)

U(s)= K

∏mk=1

(s − zk)∏n

i=1(s − pi )

Second order system (special case)

G (s) =K

(s − p1)(s − p2)p1,2 = −ζωn ± jωn

1 − ζ2

Matlab

sys=zpk(z,p,k)

Lecture 1 Classical Control

Page 12: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Outline

1 IntroductionBackgroundBasic SystemsModels/Transfers functions

2 Control SpecificationsClosed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Lecture 1 Classical Control

Page 13: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Bounded Input Bounded Output

Impulse response

Roots of characteristic equation

Gain and phase margins

Nyquist stability criterion

Lecture 1 Classical Control

Page 14: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Stability - Impulse Response

Continuous systems

The system is BIBO stable if and only if the impulse response h(t)is absolutely integrable

Discrete systems

The system is BIBO stable if and only if the impulse response h[n]is absolutely summable

Lecture 1 Classical Control

Page 15: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Stability - Characteristic Roots

Asymptotic internal stability

Continuous systems

All poles of the system are strictly in the LHP of the s-plane

Discrete systems

All poles of the system are strictly inside the unit circle of thez-plane

Lecture 1 Classical Control

Page 16: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Analyzing System Performance

System types

Continuous system

Discrete system

Analysis domain

Time-domain specifications

Frequency-domain specifications

Different periods

Dynamic (transient) responses

Steady-state responses

Lecture 1 Classical Control

Page 17: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Continuous Time - Dynamic Response

0 2 4 6 8 10 12−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Impulse Response

Time (sec)

Am

plitu

de

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step Response

Time (sec)A

mpl

itude

num1=[1];

den1=[1 2 1];

num2=[1 2];

den2=[1 2 3];

impulse(tf(num1,den1),’b’,tf(num2,den2),’r’)

step(tf(num1,den1),’b’,tf(num2,den2),’r’)Lecture 1 Classical Control

Page 18: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Continuous Time - Dynamic Response

0 2 4 6 8 10 120

0.1

0.4

0.6

0.9

1

1.2

1.4

Step Response

Time (sec)

Am

plitu

de

tr

Mp

1%

ts

tp

Overshoot(Mp)

Rise time (tr )

Settling time(ts)

Peak time (tp)

Lecture 1 Classical Control

Page 19: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Natural Frequency and Damping

Lecture 1 Classical Control

Page 20: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Poles in the Continuous s-plane

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0.985

0.94

0.86

0.76

0.640.5

0.340.16

0.985

0.94

0.86

0.76

0.640.5

0.340.16

Lecture 1 Classical Control

Page 21: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Poles in the Continuous s-plane

Lecture 1 Classical Control

Page 22: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Systems with Different Poles

−25 −20 −15 −10 −5 0−6

−4

−2

0

2

4

60.870.9250.965

0.984

0.996

0.350.60.760.870.9250.965

0.984

0.996

510152025

0.350.60.76

Pole−Zero Map

Real Axis

Imag

inar

y A

xis

syslhp1syslhp2syslhp3sys

Lecture 1 Classical Control

Page 23: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Step Response of Different Systems

0 0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

1.2

Step Response

Time (sec)

Am

plitu

de

origsyslhp1syslhp2syslhp3

Lecture 1 Classical Control

Page 24: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Bode Plot of Different Systems

−150

−100

−50

0

50

Mag

nitu

de (

dB)

10−2

10−1

100

101

102

103

−270

−180

−90

0

Pha

se (

deg)

Bode Diagram

Frequency (rad/sec)

origsyslhp1syslhp2syslhp3

Lecture 1 Classical Control

Page 25: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Systems with Different Zeros

−9 −8 −7 −6 −5 −4 −3 −2 −1 0−6

−4

−2

0

2

4

60.8

0.9

0.97

0.120.260.40.520.660.8

0.9

0.97

123456789

0.120.260.40.520.66

Pole−Zero Map

Real Axis

Imag

inar

y A

xis

syslhz1syslhz2syslhz3sys

Lecture 1 Classical Control

Page 26: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Step Response of Different Systems

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6

7

8

Step Response

Time (sec)

Am

plitu

de

origsyslhz1syslhz2syslhz3

Lecture 1 Classical Control

Page 27: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Bode Plot of Different Systems

−60

−50

−40

−30

−20

−10

0

10

20

30

40

Mag

nitu

de (

dB)

10−2

10−1

100

101

102

−180

−90

0

90

Pha

se (

deg)

Bode Diagram

Frequency (rad/sec)

origsyslhp1syslhp2syslhz3

Lecture 1 Classical Control

Page 28: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

System with Zero in RHP

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1−6

−4

−2

0

2

4

60.060.120.190.270.36

0.5

0.66

0.88

0.060.120.190.270.36

0.5

0.66

0.88

1

2

3

4

5

6

1

2

3

4

5

6

Pole−Zero Map

Real Axis

Imag

inar

y A

xis

sysrhzsys

Lecture 1 Classical Control

Page 29: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Step Response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Step Response

Time (sec)

Am

plitu

de

origrhz

Lecture 1 Classical Control

Page 30: Classical Control - Lecture 1homes.et.aau.dk/yang/DE5/CC/lecture1.beamer.pdf · Economic Globalization (1980s) Lecture 1 Classical Control. Introduction Control Specifications Background

IntroductionControl Specifications

Closed Loop StabilitySystem PerformanceEffect of PolesEffect of Additional Poles/Zeros

Bode Plot of System with RHP

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

Mag

nitu

de (

dB)

10−2

10−1

100

101

102

103

−180

0

180

360

Pha

se (

deg)

Bode Diagram

Frequency (rad/sec)

origrhz

Lecture 1 Classical Control