class ab output stageese319/lecture_notes/... · basic class ab amplifier circuit bias q n and q p...

23
ESE319 Introduction to Microelectronics 1 2008 Kenneth R. Laker, updated 30Nov09 KRL Class AB Output Stage Class AB amplifier Operation Multisim Simulations - Operation Class AB amplifier biasing Multisim Simulations - Biasing

Upload: others

Post on 21-Oct-2020

6 views

Category:

Documents


1 download

TRANSCRIPT

  • ESE319 Introduction to Microelectronics

    12008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB Output Stage● Class AB amplifier Operation● Multisim Simulations - Operation● Class AB amplifier biasing● Multisim Simulations - Biasing

  • ESE319 Introduction to Microelectronics

    22008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB Operation

  • ESE319 Introduction to Microelectronics

    32008 Kenneth R. Laker, updated 30Nov09 KRL

    Basic Class AB Amplifier CircuitBias Q

    N and Q

    P into slight conduction

    when vI = 0.

    Ideally QN and Q

    P are:

    1. Matched (unlikely with discrete transistors and challenging in IC).

    2. Operate at same ambient temperature.

    NOTE. This is base-voltage biasing with all its stability problems!

    iL=iN−iP

  • ESE319 Introduction to Microelectronics

    42008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB Circuit Operation

    I N=I P=I Q= I S eV BB2V T

    Output voltage:

    for v i0 vo=v iV BB2

    −vBEN ⇒vo≈vi

    Base-to base voltage is constant!vBENvEBP=V BB

    Using:

    V T ln iNI S V T ln iPI S =2V T ln I QI S

    for v i0 vo=v i−V BB2

    vEBP⇒ vo≈v i

    Also: iN=I S evBENvT iP=I S e

    vEBPV T&

    Bias (QN & Q

    P matched):

    iN=I S evBENvT iP=I S e

    vEBPV T, I Q=I S e

    V BB2V T&

    iN=iPi L

    vBEN=V BB2

    −vO

    vEBP=vOV BB2

    for vi = 0

    There is a corresponding conservation relation between i

    N & i

    P , i.e.

  • ESE319 Introduction to Microelectronics

    52008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB Circuit Operation - cont.

    V T ln iNI S V T ln iPI S =2V T ln I QI S V T ln iN iPI S2 =2V T ln I QI S

    V T ln iN iP−V T ln I S2 =2V T ln I Q−2V T ln I S

    ln iN iP =ln I Q2

    iN iP=I Q2

    iN=iPiL

    Constant base voltage condition:

    from the previous slide

    vBENvEBP=V BB =>

    or iN iP=I Q2

  • ESE319 Introduction to Microelectronics

    62008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB Circuit Operation - cont.

    iN iP=I Q2

    Constant base voltage condition:

    Kirchhoff's Current Law condition:

    iN=iPiL⇒ iP=iN−iLCombining equations:

    iN i N−iL=I Q2

    Hence:i N2 −i N i L−I Q

    2=0

    iN=iPiL

    iP iPiL=I Q2or

    iP2i P i L−I Q

    2=0orfor v

    I > 0 V for v

    I < 0 V

    for vI > 0 V for v

    I < 0 ViL=

    vORL

  • ESE319 Introduction to Microelectronics

    72008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB Circuit Operation - cont.

    Observations:1. Since with constant base voltage V

    BB:

    , if iP increases by

    then iN decreases by , and vice-versa.

    2. For vO > 0, the load current i

    L is supplied by the complementary emitter

    followers QN and Q

    P. As v

    O increases, i

    P decreases and for large, positive

    vO i.e.

    iN iP=I Q2

    iP=iP 1 i iN=iN /1i

    iP=iN−iL=iN−vORL

    vOV CC−V CENsat⇒ iP0

    iN=iPiL=iPvORL

    hence

    3. For vO < 0, the load current i

    L supplied by the complementary emitter

    followers QN and Q

    P. As v

    O decreases, i

    N decreases and for large, negative

    vO i.e. hence −vO−V CCV ECPsat⇒ iN 0

    iN iP= I Q2iL=iN−iP

  • ESE319 Introduction to Microelectronics

    82008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB Circuit Operation - cont.iP iN=I Q

    2The constant base voltage condition

    For example let IQ = 1 mA and iN = 10 mA.

    iP=I Q2

    iN=1⋅10−6

    10⋅10−3=0.1mA= 1

    100iN

    The Class AB circuit, over most of its input signal range, operates as if either the Q

    N or Q

    P transistor is conducting and the Q

    P or Q

    N transistor is cut off.

    For small values of vI both Q

    N and Q

    P conduct, and as v

    I is increased or

    decreased, the conduction of QN or Q

    P dominates, respectively.

    Using this approximation we see that a class AB amplifier acts much like a class B amplifier; but without the dead zone.

    where IQ is typically small.

  • ESE319 Introduction to Microelectronics

    92008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB VTC Plot

    Requires the two DC base voltage sources to be matched and VBB/2 = 0.7 V.

  • ESE319 Introduction to Microelectronics

    102008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB VTC Simulation

    VBB/2

    VBB/2

    VCC

    -VCC

    RL

    RSig

    Amplitude: 20 Vp

    Frequency: 1 kHz

  • ESE319 Introduction to Microelectronics

    112008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB VTC Simulation - cont.

    V BB2

    =0.1V

    V BB2

    =0.5V

    V BB2

    =0.7V

    Amplitude: 2 Vp

    Frequency: 1 kHz

  • ESE319 Introduction to Microelectronics

    122008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB Small-Signal Output Resistance Instantaneous resistance for theQ

    N transistor - assume α 1 :

    diNdvBEN

    =I S e

    vBENV T

    V T=

    iNV T

    For the QP transistor:diP

    dvEBP=

    i PV T

    Hence:reN=

    V TiN

    reP=V TiP

    and

    vI

    ac ground

    ac ground

    BN

    BP

    EN

    EP

    CN

    CP

    Rout=reN∥rePfor v

    I > 0 V: Rout≈r eN

    for vI < 0 V: Rout≈r eP

    iN=I S evBENvT

    in

    ipvI

  • ESE319 Introduction to Microelectronics

    132008 Kenneth R. Laker, updated 30Nov09 KRL

    Small-Signal Output Resistance - cont.The two emitter resistors are in parallel:

    Rout=reN∣∣reP=

    V T2

    iN iPV TiN

    V TiP

    =V T

    iN iP 1iN 1iP =

    V TiNiP

    At iN = iP (the no-signal condition i.e. vO = 0 => iL = 0): iN=iP=I Q

    Rout=V T2 I Q

    So, for small signals, a small load current IQ flows => no dead-zone!

    iL=vORL

    =iN−iPand

  • ESE319 Introduction to Microelectronics

    142008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB Amplifier BiasingA straightforward biasing approach: D1 and D2 are diode-connectedtransistors identical to QN and QP, respectively.They form mirrors with the quiescentcurrents IQ set by matched R's:

    I Q=2V CC−1.42R

    =V CC−0.7

    R

    R=V CC−0.7

    I QRecall: With mirrors, the ambient temperature for all transistors needs to be matched!

    or:

    QN

    QP

    +

    -

    VBB

    IQ

    IQ

    IQ

    IQ

    D2

    D1

  • ESE319 Introduction to Microelectronics

    152008 Kenneth R. Laker, updated 30Nov09 KRL

    Widlar Current Source

    I REF=V CC−V BE1

    R=12V −0.7V

    11.3k =1mA

    V BE1=V T ln I REFI S

    I O Re=V T ln I REFI Q

    IREF

    VCC

    IO

    IQ

    VBE1

    + +- -VBE2

    R

    Re

    emitter degeneration

    Q2 = QNI

    Q = I

    N

    Note: Pages 653-656 in Sedra & Smith Text.

    IN = bias current for Class AB amplifier NPN

    Note Re > 0 iff IQ < IREF

    V BE2=V T ln I QI S

    V BE1=V BE2I Q Re

    V BE1−V BE2=V T ln I REFI S

    I SI Q

    =V T ln I REFI Q

  • ESE319 Introduction to Microelectronics

    162008 Kenneth R. Laker, updated 30Nov09 KRL

    Widlar Current Source - cont.

    I Q Re=V T ln I REFI Q I Q=

    V TRe

    ln I REF −ln I Q

    RI

    REF

    IQ

    IQ Re

    VCC

    Solve for IQ graphically.

    If IQ specified (and IREF chosen by

    designer): Re=V TI Q

    ln I REFI Q

    If Re specified and IREF given:

    Example Let IQ = 10 µA & choose IREF = 10 mA, determine R and Re:

    R=V CC−V BE1

    I REF=12V−0.7V

    10mA=1.13 k

    Re=V TI Q

    ln I REFI Q =0.025V10 A ln 10m A10A .=2500 ln 1000=17.27 k

    R=1.13k Re=17.27 k

  • ESE319 Introduction to Microelectronics

    172008 Kenneth R. Laker, updated 30Nov09 KRL

    Widlar Current Mirror Small-Signal Analysis

    r≫1/gm

    .≈.

    i x=g m viro=gm vv x−−v

    r ov=−r∥Re i x

    i x=−gm r∥Re i xvxro−

    r∥Re i xro

    gm ro≫1

    Rout is greatly enhanced by adding emitter degeneration.

    ⇒Rout=v xi x=Re∥r1gm ro

    .≈−g m r∥Re i xv xr o

    Rout

  • ESE319 Introduction to Microelectronics

    182008 Kenneth R. Laker, updated 30Nov09 KRL

    iL

    Class AB Current Biasing SimulationBias currents set at I

    REF and I

    Q by R and emitter resistor(s) R

    e.

    IREF IQN

    IQP

    IL

    PNP Widlar current mirror

    NPN Widlar current mirror

    RL=100 Ω

    Amplitude: 0 Vp

    Frequency: 1 kHz

    Re=10 Ω

    Re=10 Ω

    IREFR=2.8 kΩ

    R=2.8 kΩ

    iN

    iL

    I REF≈4mA

    R=V CC−V BE1

    I REF=

    V CC−V EB3I REF

    ≈2.8k

    Re=V TI QN

    ln I REFI QN ≈10

    I Q= I QN= I QP≈2mA

    iL=iN−iPQ1

    Q2

    Q3

    Q4

  • ESE319 Introduction to Microelectronics

    192008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB IREF = 4 mA Current Bias Simulation

    Quiescent Power Dissipation vI = 0 V:

    P Disp=P D−av=76.31mW75.53mW

    .=151.84mW

    NPN Widlar current mirror

    PNP Widlar current mirror

    Amplitude: 0 Vp

    Frequency: 1 kHz 4.031m

    2.329m

    4.025m2.270m

  • ESE319 Introduction to Microelectronics

    202008 Kenneth R. Laker, updated 30Nov09 KRL

    For linear operation: - 9 V < vO < +9 V

    VTC has no dead-zone.

    Amplitude: 12 Vp

    Frequency: 1 kHz

    Class AB 4 mA Current Bias Simulation - cont.

  • ESE319 Introduction to Microelectronics

    212008 Kenneth R. Laker, updated 30Nov09 KRL

    Class AB VTC Limits

    vCE2=V CC−iN Re−vO ≥V CE2satQ2 ≠ Saturation =>

    where

    2. Q1 ≠ Cutoff =>vBQ1≥ v I0.7V

    vO=−iN Rev IvCE2=V CC−v I ≥V CE2satv I ≤V CC−V CE2sat=v I−max1

    vBQ1=V CC−iREF Rv I ≤V CC−iREF R−0.7V=v I−max2v I−max=max v I−max1 , v I−max2

    iP

    Q2

    Q1

    Q4

    Q3vI

    iREF

    vO

    Linear VTC for vI-max ≤ vI ≥ 0 => 1. Q1, Q2 forward-active

    vO=−iN ReV EB1V BE2v I

    IQ

  • ESE319 Introduction to Microelectronics

    222008 Kenneth R. Laker, updated 30Nov09 KRL

    VI V

    O

    PD+av

    PD-av

    PL-av

    PD+av

    PLav

    PD-av

    I REFN I QN

    I QP

    NOTE:1. Linear operation up to V

    I = 9 V:

    PDav

    = 946mW, PLav

    = 510mW =>

    =PLavPDav

    =510mW946mW

    =0.540.785

    2. At VI = 10 V: V

    BEQ3 = V

    BQ3 – V

    I = -0.1V

    NPN Q1 is cutoff for VI ≥ 9.5 V.

    3. By symmetry PNP Q3 is cutoff for V

    I ≤ -9.5V .

    3.324m0.018m

    2.697m

    4.734m1.776u

    Class AB 4 mA Current Bias Simulation - cont.

    309 mW

    V BQ1

    V BQ3

    9 9.7VQ2

    Q1

    Q3Q4

    IQN

    IQP V BQ1

  • ESE319 Introduction to Microelectronics

    232008 Kenneth R. Laker, updated 30Nov09 KRL

    ConclusionsADVANTAGE:

    Class AB operation improves on Class B linearity.

    DISADVANTAGES:1. Emitter resistors absorb output power.2. Power Conversion Efficiency is less than Class B.3. Temperature matching will be needed – more so. if emitter resistors are not used.

    TRADEOFFS:Tradeoffs - involving bias current - between powerefficiency, power dissipation and output signal swingneed to be addressed.