cladiri inalte model

Upload: bogdan-binga

Post on 03-Jun-2018

245 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/12/2019 Cladiri Inalte Model

    1/42

    Technical University Gh. Asachi from Iasi

    Faculty of Civil Engineering and Building Services

    Master of Structural Engineering

    REINFORCED CONCRETE

    STRUCTURES FOR TALL

    BUILDINGS

    Student: Coordinator:

    Irimia Cristian Radu Prof. dr. ing. Gosav Ionel

  • 8/12/2019 Cladiri Inalte Model

    2/42

    1.Project theme

    It is required that each student to design one floor (nth=1) from the reinforced concrete

    structure with the height of P+17E.

    The used number of floor designed is: n=1

    There are given the following data:

    - The building is placed in city of Bucharest- The structure is made of reinforced concrete frames, the infilling is made of B.C.A.

    blocks

    - The foundation system is realized by a general mat with foundation beams and piles.- The buildings destination: Block of flats- The 1stfloor height is 4.8 m, current floors height is 3.45 m, and the floors 16thand

    17thhave a height of 4.95 m.

    - In plan dimensions are: 32.45 by 29.6 mThe materials used are:

    Eb=30500 N/mm2(C25/30)

    Ebg=0.6Ebfor beams and floors

    Ebs=0.8Ebfor columns

  • 8/12/2019 Cladiri Inalte Model

    3/42

    2.Structure element pre-sizing and load computation

    2.1.Load computation

    2.1.1 Permanent loadsa. Thermo-insulation weight:

    b. Floor self weight and leveling screed: c. Infilling walls self weight:

    d. Plaster self-weight: 2.1.2 Variable loadsa. Snow load:

    Where:

    - form factor for flat roofs - exposure factor - thermal coefficient for roofs with usual thermo-insulation

    characteristic value for snow load from the soil level (CR 1-1-32005)b. Live load

  • 8/12/2019 Cladiri Inalte Model

    4/42

    2.1.3 Exceptional loads (Seismic action)According to P100/2006 we have the following coefficients:

    corner period

    behaviour factor factor depending on the importance class maximum dinamic amplify factor ground acceleration factor

    2.2.Element pre-sizing

    2.2.1. Determining the beam dimensions (modulated to plus 50 mm)(P-E5:)

    hg=max(L;T)/8=max(825; 819) mm 850 mm

    bg=(0,3 0,5)hg=0.5 hg=425 mm 450 mm(E6-E11)

    hg=max(L;T)/10=max(660; 655) mm 700 mm

    bg=(0,3-0,5)hg= 0.5 hg=350 mm

    (E12-E17)

    hg=max(L;T)/12=max(550; 546) mm =550 mm

    bg=(0,3-0,5)hg=0.5 hg=275mm300 mmL and T maximum opening on longitudinal and transversal direction

    L=6600 mm T=6550 mm

  • 8/12/2019 Cladiri Inalte Model

    5/42

    Eds

    cd

    Nh

    f

    2.2.2. Determining the floor height (modulated to plus 10 mm)hp=max(hp1; hp2)=max (156; 152.5) mm=156 mm 160 mm

    hp1

    =20mm + P/180=20+24500/180=156 mm

    P=2(L0+T0)=2(6100+6150)=24500 mm

    L0and T0 the maximum span on longitudinal and transversal direction

    hp2= min (L0;T0)/40=min (154;152.5) mm =152.5 mm

    L0=L- bg=6600-450=6150 mm

    T0=T- bg=6550-450=6100 mm

    2.2.3. Determining the secondary beam dimensions from the 16th and 17th floors (modulatedto plus 50 mm)

    hgs=max(L;T)/15=max(6600; 6550)/15=max (440; 437) mm=440mm 450mm

    bgs=(0,3-0,5)hgs=0.5 hgs=225mm 250 mm

    2.2.4.

    Column pre-sizing (modulated to plus 50 mm)

    The columns will have 3 steps in section variation (P-E5), (E6-E11) i (E12-E17)

    The maximum axial forces from the columns will be determined using the data from the

    combination: 1P+0.4U+0.4Z.

    In order to determine the final dimensions for the columns we first impose an initial section

    of 400X400 mm, after one run with a structural program we obtain the following axial forces

    and we determined the actual section for each column:

    Where:

    -the section area of the column- the column height- normalized axial force coefficient

    2 Edbs s s s

    cd

    NA b h h

    f

  • 8/12/2019 Cladiri Inalte Model

    6/42

    =25/1.5=16.66 N/mm2- design compressive strength for concrete C25/30- design axial forcea. P-E5

    - Marginal column N1m=3902.22 kN

    - Central column N1c=5947.13 kN

    b. E6-E11

    - Marginal column N2m=2449.59 kN

    - Central column N2c=3511.11 kN

    c. E12-E17

    - Marginal column N3m=1112.56 kN

    - Central column N3c=1768.28 kN

  • 8/12/2019 Cladiri Inalte Model

    7/42

    3.Static computationWith all element dimensions are determined we can now compute a final structural

    analysis in order to obtain the final efforts, displacements, period of vibration and diagrams.

    3.1.Static combinations

    We will use the following combinations:

    A. ULS:

    i.

    1.35P+1.5U+1.05Z

    ii. 1.35P+1.05U+1.5Ziii. P+0.4U+0.4Z+1.2Sx+iv. P+0.4U+0.4Z+1.2Sx-v. P+0.4U+0.4Z+1.2Sy+

    vi. P+0.4U+0.4Z+1.2Sy-B. SLS:

    i. P+0.4U+0.4Z+0.72Sx+ii. P+0.4U+0.4Z+0.72Sx-

    iii. P+0.4U+0.4Z+0.72Sy+iv. P+0.4U+0.4Z+0.72Sy-

  • 8/12/2019 Cladiri Inalte Model

    8/42

    3.2.Diagrams

    3.2.1. Vibration modesa. Mode 1 of vibration: T=1.410 s b. Mode 2 of vibrations: T=1.352 s

  • 8/12/2019 Cladiri Inalte Model

    9/42

    c. Mode 3 of vibration: T=1.132 s

    3.2.2. Effort diagrams for columns Fx, Fy, Fz, My, Mz (SLU1-4, envelope min-max)i. Fx:

    a. Marginal column

  • 8/12/2019 Cladiri Inalte Model

    10/42

    b. Central column

    ii. Fy:a. Marginal column

    b. Central column

  • 8/12/2019 Cladiri Inalte Model

    11/42

    iii. Fz:a. Marginal column

    b. Central column

    iv. My:a. Marginal column

  • 8/12/2019 Cladiri Inalte Model

    12/42

    b. Central column

    v. Mz:a. Marginal column

    b. Central column

  • 8/12/2019 Cladiri Inalte Model

    13/42

    3.2.3. Bending moment diagram for beamsMy (kNm) (SLU1-4, envelope min-max)a. Beam on x direction

    b. Beam on y direction

  • 8/12/2019 Cladiri Inalte Model

    14/42

    3.2.4. Bending moment diagram for floormxx (kNm/m) (SLU1 or SLU2-E3)

    3.2.5. Bending moment diagram for floormyy (kNm/m) (SLU1 or SLU2-E3)

  • 8/12/2019 Cladiri Inalte Model

    15/42

    4.F loor design

    Determining the reinforcement area for direction x

    PanelMxx (kNm) b d fcd

    Reinforcement

    area (mm2)

    Support Span mm mm N/mm2 Support Span Support Span Support Span

    p1 28.34 26.69 1000 130 16.66 0.1007 0.0948 0.1063 0.0998 767.46 720.29

    p2 13.27 17.39 1000 130 16.66 0.0471 0.0618 0.0483 0.0638 348.68 460.59

    p3 25.96 24.49 1000 130 16.66 0.0922 0.0870 0.0969 0.0911 699.53 657.93

    p4 27.49 23.93 1000 130 16.66 0.0976 0.0850 0.1029 0.0889 743.12 642.15

    p5 36.11 36.27 1000 130 16.66 0.1283 0.1288 0.1377 0.1384 994.38 999.14

    p6 31.74 27.95 1000 130 16.66 0.1127 0.0993 0.1199 0.1048 865.76 756.28

    p7 23.04 31.24 1000 130 16.66 0.0818 0.1110 0.0855 0.1179 617.15 851.21

  • 8/12/2019 Cladiri Inalte Model

    16/42

    p8 30.04 27.33 1000 130 16.66 0.1067 0.0971 0.1131 0.1023 816.42 738.55

    p9 33.68 31.18 1000 130 16.66 0.1196 0.1107 0.1278 0.1177 922.53 849.46

    p10 39.67 38.7 1000 130 16.66 0.1409 0.1375 0.1525 0.1485 1101.16 1071.88

    p11 30.06 27.71 1000 130 16.66 0.1068 0.0984 0.1132 0.1038 817.00 749.41

    p12 20.86 34.71 1000 130 16.66 0.0741 0.1233 0.0771 0.1320 556.31 952.89

    p13 11.57 5.64 1000 130 16.66 0.0411 0.0200 0.0420 0.0202 303.03 146.09

    p14 30.26 29.05 1000 130 16.66 0.1075 0.1032 0.1140 0.1091 822.78 787.86

    p15 39.35 38.45 1000 130 16.66 0.1398 0.1366 0.1512 0.1474 1091.48 1064.36

    p16 33.75 30.16 1000 130 16.66 0.1199 0.1071 0.1281 0.1136 924.59 819.89

    p17 25.58 35.54 1000 130 16.66 0.0909 0.1262 0.0954 0.1354 688.75 977.45

    p18 25.72 24.86 1000 130 16.66 0.0914 0.0883 0.0960 0.0926 692.72 668.38

    p19 29.14 24.15 1000 130 16.66 0.1035 0.0858 0.1095 0.0898 790.45 648.34

    p20 38.39 38.86 1000 130 16.66 0.1364 0.1380 0.1472 0.1491 1062.55 1076.70

    p21 31.52 28.88 1000 130 16.66 0.1120 0.1026 0.1190 0.1085 859.35 782.97

    p22 19.36 30.06 1000 130 16.66 0.0688 0.1068 0.0713 0.1132 514.76 817.00p23 32.37 26.81 1000 130 16.66 0.1150 0.0952 0.1225 0.1002 884.14 723.71

    p24 30.06 35.58 1000 130 16.66 0.1068 0.1264 0.1132 0.1356 817.00 978.64

    p25 37.67 37.31 1000 130 16.66 0.1338 0.1325 0.1442 0.1427 1040.94 1030.17

    Determining the effective reinforcement area on x direction

    Panel

    Effective

    reinforcement Number of bar/m

    area (mm2)

    Support Span Support Span

    p1 1017 904 9 8

    p2 565 565 5 5

    p3 904 904 8 8

    p4 904 791 8 7

    p5 1243 1243 11 11

    p6 1130 1017 10 9

    p7 791 1130 7 10

    p8 1017 904 9 8

    p9 1130 1130 10 10

    p10 1356 1356 12 12

    p11 1017 1017 9 9

    p12 678 1243 6 11

    p13 565 565 5 5

    p14 1017 1017 9 9

    p15 1356 1356 12 12

    p16 1130 1017 10 9

    p17 904 1243 8 11

    p18 904 904 8 8

    p19 1017 791 9 7

  • 8/12/2019 Cladiri Inalte Model

    17/42

    p20 1356 1356 12 12

    p21 1130 1017 10 9

    p22 678 1017 6 9

    p23 1130 904 10 8

    p24 1017 1017 9 9

    p25 1356 1356 12 12

    Determining the reinforcement on y direction

    PanelMyy (kNm) b d fcd

    Reinforcement

    area (mm2)

    Support Span mm mm N/mm2 Support Span Support Span Support Span

    p1 19.90 12.49 1000 118 16.66 0.0858 0.0538 0.0898 0.0554 588.58 362.87

    p2 13.49 7.87 1000 118 16.66 0.0582 0.0339 0.0600 0.0345 392.85 226.22

    p3 14.07 7.93 1000 118 16.66 0.0607 0.0342 0.0626 0.0348 410.30 227.98

    p4 17.36 7.77 1000 118 16.66 0.0748 0.0335 0.0779 0.0341 510.26 223.30

    p5 22.93 17.09 1000 118 16.66 0.0988 0.0737 0.1043 0.0766 683.37 502.00

    p6 32.94 31.48 1000 118 16.66 0.1420 0.1357 0.1538 0.1464 1008.04 959.51

    p7 31.96 31.37 1000 118 16.66 0.1378 0.1352 0.1489 0.1459 975.42 955.87

    p8 37.21 33.09 1000 118 16.66 0.1604 0.1426 0.1759 0.1546 1152.47 1013.05

    p9 42.14 35.52 1000 118 16.66 0.1817 0.1531 0.2021 0.1671 1324.19 1094.85

    p10 42.06 35.06 1000 118 16.66 0.1813 0.1511 0.2016 0.1647 1321.36 1079.27p11 22.83 17.46 1000 118 16.66 0.0984 0.0753 0.1038 0.0783 680.22 513.33

    p12 15.26 20.28 1000 118 16.66 0.0658 0.0874 0.0681 0.0916 446.27 600.39

    p13 11.23 14.97 1000 118 16.66 0.0484 0.0645 0.0496 0.0668 325.31 437.48

    p14 16.35 15.65 1000 118 16.66 0.0705 0.0675 0.0732 0.0699 479.40 458.10

    p15 28.38 19.81 1000 118 16.66 0.1223 0.0854 0.1309 0.0894 857.85 585.79

    p16 40.52 38.97 1000 118 16.66 0.1747 0.1680 0.1934 0.1851 1267.15 1213.14

    p17 39.49 38.48 1000 118 16.66 0.1702 0.1659 0.1879 0.1825 1231.20 1196.18

    p18 13.64 9.45 1000 118 16.66 0.0588 0.0407 0.0606 0.0416 397.36 272.62

    p19 36.18 33.31 1000 118 16.66 0.1560 0.1436 0.1705 0.1557 1117.28 1020.41

    p20 37.09 35.18 1000 118 16.66 0.1599 0.1517 0.1752 0.1653 1148.36 1083.33

    p21 20.07 20.80 1000 118 16.66 0.0865 0.0897 0.0906 0.0941 593.86 616.58

    p22 22.09 30.13 1000 118 16.66 0.0952 0.1299 0.1003 0.1396 656.94 915.01

    p23 38.98 40.28 1000 118 16.66 0.1680 0.1736 0.1852 0.1921 1213.49 1258.75

    p24 39.59 39.68 1000 118 16.66 0.1707 0.1711 0.1884 0.1889 1234.68 1237.81

    p25 22.43 19.88 1000 118 16.66 0.0967 0.0857 0.1019 0.0897 667.63 587.96

  • 8/12/2019 Cladiri Inalte Model

    18/42

    Determining the effective reinforcement area on y direction

    Panel

    Effective

    reinforcement Number of bar/m

    area (mm2)

    Support Span Support Span

    p1 1017 904 9.00 8.00

    p2 565 565 5.00 5.00

    p3 904 904 8.00 8.00

    p4 904 791 8.00 7.00

    p5 1243 1243 11.00 11.00

    p6 1130 1017 10.00 9.00

    p7 791 1130 7.00 10.00

    p8 1017 904 9.00 8.00

    p9 1130 1130 10.00 10.00

    p10 1356 1356 12.00 12.00

    p11 1017 1017 9.00 9.00

    p12 678 1243 6.00 11.00

    p13 565 565 5.00 5.00

    p14 1017 1017 9.00 9.00

    p15 1356 1356 12.00 12.00

    p16 1130 1017 10.00 9.00

    p17 904 1243 8.00 11.00

    p18 904 904 8.00 8.00

    p19 1017 791 9.00 7.00p20 1356 1356 12.00 12.00

    p21 1130 1017 10.00 9.00

    p22 678 1017 6.00 9.00

    p23 1130 904 10.00 8.00

    p24 1017 1017 9.00 9.00

    p25 1356 1356 12.00 12.00

  • 8/12/2019 Cladiri Inalte Model

    19/42

    5.Beam design5.1.Determining the design bending moment on x direction

    5.1.1. Determining the longitudinal reinforcement in the supports

    d= hw-a-

    /2 (mm)=850-30-20/2=810mm

    214 13 14 13 (0.5 )

    14 0.5 ( )2

    cEd MAX c

    q hM M R h kNm

    14 13 13 14

    14 ( )2

    MAX SLUM M qLR kNL

    2

    Ed

    w cd

    M

    b d f

    (1 1 2 )x d

    2

    2 2 ( )w cd

    w cd s yd s w

    yd

    x b fx b f A f A b d mm

    f

    0.5ctm

    yk

    f

    f

  • 8/12/2019 Cladiri Inalte Model

    20/42

    fcd= 16,66 (N/mm2) C25/30

    fyd= fyk/ s=345/1,15=300 (N/mm2) PC52

    fctm= 2,6 (N/mm2) C25/30

    Mrb2=As2rfyd(d-0,5xr) (kNm)

    Support A:

    ( ) ( )

    =520

    Support B:

    ( ) ( )

    =520

    2( )

    s r yd

    r

    w cd

    A fx mm

    b f

  • 8/12/2019 Cladiri Inalte Model

    21/42

    Support C:

    ( ) ( ) =420

    Support D:

    ( ) ( )

    =420

    Support E:

    ( ) ( )

    =420

  • 8/12/2019 Cladiri Inalte Model

    22/42

    Support F:

    ( ) ( )

    =420

    5.1.2. Determining the longitudinal reinforcement in mid span

    -if the beam connects with marginal column

    -if the beam connects with central column

    Span 1:

    2

    Ed

    eff cd

    M

    b d f

    2

    1 1 20.5 ( )

    eff cd

    eff cd s yd s w s r

    yd

    x b fx b f A f A b d A mm

    f

    1( )

    s r yd

    r

    f cd

    A fx mm

    b f

    eff sb h

    2eff s f b h h

  • 8/12/2019 Cladiri Inalte Model

    23/42

    ( ) ( )

    =522

    Span 2:

    ( ) ( )

    =420

    Span 3:

    ( ) ( )

    =420

  • 8/12/2019 Cladiri Inalte Model

    24/42

    Span 4:

    ( ) ( )

    =420

    Span 5:

    ( ) ( )

    =420

  • 8/12/2019 Cladiri Inalte Model

    25/42

    5.2.Determining the design bending moment on y direction

    5.2.1. Determining the longitudinal reinforcement in the supports

    d= hw-a-/2 (mm)=850-30-20/2=810mm

    fcd= 16,66 (N/mm2) C25/30

    fyd= fyk/ s=345/1,15=300 (N/mm2) PC52

    214 13 14 13 (0.5 )14 0.5 ( )

    2

    cEd MAX c

    q hM M R h kNm

    14 13 13 14

    14 ( )2

    MAX SLUM M qL

    R kNL

    2

    Ed

    w cd

    M

    b d f

    (1 1 2 )x d

    2

    2 2 ( )w cd

    w cd s yd s w

    yd

    x b fx b f A f A b d mm

    f

    0.5 ctm

    yk

    f

    f

  • 8/12/2019 Cladiri Inalte Model

    26/42

    fctm= 2,6 (N/mm2) C25/30

    Mrb2=As2rfyd(d-0,5xr) (kNm)

    Support A:

    ( ) ( )

    =420

    Support B:

    ( ) ( )

    =420

    Support C:

    ( ) ( )

    2( )

    s r yd

    r

    w cd

    A fx mm

    b f

  • 8/12/2019 Cladiri Inalte Model

    27/42

    =420

    Support D:

    ( ) ( )

    =420

    Support E:

    ( ) ( )

    =420

    Support F:

  • 8/12/2019 Cladiri Inalte Model

    28/42

    ( ) ( )

    =420

    5.2.2. Determining the longitudinal reinforcement in mid span

    -if the beam connects with marginal column

    -if the beam connects with central column

    Span 1:

    ( ) ( )

    =520

    2

    Ed

    eff cd

    M

    b d f

    2

    1 1 20.5 ( )

    eff cd

    eff cd s yd s w s r

    yd

    x b fx b f A f A b d A mm

    f

    1

    ( )

    s r yd

    rf cd

    A f

    x mmb f

    eff sb h

    2eff s f

    b h h

  • 8/12/2019 Cladiri Inalte Model

    29/42

    Span 2:

    ( ) ( )

    =4

    20

    Span 3:

    ( ) ( )

    =420

    Span 4:

    ( ) ( )

  • 8/12/2019 Cladiri Inalte Model

    30/42

    =420

    Span 5:

    ( ) ( )

    =420

    5.3. Determining the transversal reinforcement

    5.3.1. Determining the transversal reinforcement for beam on x direction

    1

    ,max ( )( )

    cw w cd

    Rd Ed

    b z v f

    V V kN ctg tg

    ctg

  • 8/12/2019 Cladiri Inalte Model

    31/42

    cw=1coefficient that takes into account the efforts from compressed fiber

    z=0.9d

    v1=0,6coefficient of strength reduction for cracked concrete due to shear force

    max (ctg1; ctg2)1 (if the condition is not satisfied, the section must be modified)

    ctg2.5 (if results a greater value, it is taken into account ctg=2.5)

    s=100 mm

    fywd=0.8fywk=0.8255=204 (N/mm2) OB37

    [ ]

    - it is required transversal reinforcement

    Propose for transversal reinforcement bar 10

    , ( )SW

    Rd s ywd Ed

    AV z f ctg V kN

    s

    2

    4

    bwSW r

    dA n

  • 8/12/2019 Cladiri Inalte Model

    32/42

    the transversal reinforcement will be placed by construction reasons5.3.2. Determining the transversal reinforcement for beam on y direction

    [ ]

  • 8/12/2019 Cladiri Inalte Model

    33/42

    - it is required transversal reinforcementPropose for transversal reinforcement bar 10

    the transversal reinforcement will be placed by construction reasons

    6.Column design6.1.Marginal columns

    6.1.1. Determining the design bending momentsEstablish of external bending moments is made on each direction (x and y) with the

    relation:

    , ,max

    Rb

    Ed y Rd y

    Eb

    MM M

    M

    Where:

    Idirection (x or y)

    - designing moment on I direction - over strength factor- maximum bending moment on column from structural analysis (seismiccombination)

    - actual resisting moment on girder disposed in I direction who intersect the node- bending moment on girder disposed in I direction who intersect the node resulted fromstructural analysis

  • 8/12/2019 Cladiri Inalte Model

    34/42

    Evaluation of slenderness is obtained according with relation:

    the slenderness can be ignored.

    6.1.2. Longitudinal reinforcement

    a. Direction x

  • 8/12/2019 Cladiri Inalte Model

    35/42

    the concrete doesnt crack and the column is reinforced by using the minimumreinforcement percent.

    b. Direction y

    the concrete doesnt crack and the column is reinforced by using the minimumreinforcement percent.

  • 8/12/2019 Cladiri Inalte Model

    36/42

    6.1.3.

    Checking the biaxial moment

    6.1.4. Determining the shear force design value,1 ,2db db

    Ed

    level

    M MV

    H

    , , min(1, )Rb

    db i Rd Rb i

    Rc

    MM M

    M

    Rdover strength factor with value 1.2;

    MRb,i actual bending moments of the girder that enter the node

    MRb,i actual bending moments of the column that enter the node

  • 8/12/2019 Cladiri Inalte Model

    37/42

    Maximum shear stress level

    Constructive reinforcement is needed.

    6.1.5. Checking of the relative displacementsULS checking:

    { {

    SLS checking:

  • 8/12/2019 Cladiri Inalte Model

    38/42

    6.2.Central columns

    6.2.1. Determining the design bending momentsEstablish of external bending moments is made on each direction( x and y) with the

    relation:

    , ,max

    Rb

    Ed y Rd y

    Eb

    MM M

    M

    slenderness can be ignored.

    6.2.2. Longitudinal reinforcementa. Direction x

  • 8/12/2019 Cladiri Inalte Model

    39/42

    the concrete doesnt crack and the column is reinforced by using the minimumreinforcement percent.

    b. Direction y

    6.2.3. Checking the biaxial moment

    6.2.4. Determining the shear force design value

  • 8/12/2019 Cladiri Inalte Model

    40/42

    ,1 ,2db db

    Ed

    level

    M MV

    H

    , , min(1, )

    Rb

    db i Rd Rb iRc

    M

    M M M

    Maximum shear stress level

    Constructive reinforcement is needed

    6.2.5. Checking of the relative displacementsULS checking:

    { {

    SLS checking:

  • 8/12/2019 Cladiri Inalte Model

    41/42

    7.Node checking7.1.Horizontal shear force design

    a. Central node

    Rd=1.2 over resisting factor

    As1, As2the reinforcement areas from supperior and inferior part of the beams

    VEdshear force from the column beneath the node

    b. Marginal node

    7.2. Checking the horizontal shear force

    a. Central node

    ( )

    b. Marginal node

  • 8/12/2019 Cladiri Inalte Model

    42/42

    7.3.Checking the transversal reinforcement

    a. Central node

    Ash - total area of horizontal stirrups in the node

    ne - the number of horizontal stirrups in the node

    b.

    Marginal node

    7.4.Checking the longitudinal reinforcement from the node

    Asv=8157+4928=6184mm2 - the vertical reinforcement that pass through the nodeAsh - the total stirrup area from the node

    hjc=d-a=890-20=870 mminter-ax distance between the column reinforcement

    hjw=d-a=740-20=720 mminter-ax distance between the beam reinforcement