civilefinalmadalin

50
“GH ASACHI” TECHNICAL UNIVERSITY OF IASI FACULTY OF CIVIL ENGINEERING AND BUILDING SERVICES Profile: CIVIL ENGINEERING Specialization: CIVIL ENGINEERING-TRAINING Qualification: Bachelor Engineer Year of study: 3nd year Education Form: Day Courses Academic year: 2013-2014 Civil constructions II Project

Upload: vennus-ovidiu

Post on 28-Sep-2015

216 views

Category:

Documents


3 download

DESCRIPTION

415

TRANSCRIPT

GH ASACHI TECHNICAL UNIVERSITY OF IASI FACULTY OF CIVIL ENGINEERING AND BUILDING SERVICES Profile: CIVIL ENGINEERING Specialization: CIVIL ENGINEERING-TRAINING Qualification: Bachelor Engineer Year of study: 3nd year Education Form: Day Courses Academic year: 2013-2014

Civil constructions IIProject

Student: Mirodone MadalinGroup: 3308

Project theme The project consists in the design of a multy-storey building, having one of the following destinations: 1. Block of flats2. Students acomodation hostel3. Hotel The building has UG+G+ 4Fl, meaning that has an underground floor, ground floor and 4 floors.The envelope of the building consists of:- load-bearing walls of reinforced concrete or non load-bearing walls of hollow brick or cellular concrete block masonry protected on the external face with al layer of efficient thermo insulating materials (fireproofed expanded polystyrene for face wall, mineral wool rigid plates, extruded polystyrene etc.);- ventilated or un-ventilated could (insulated) terrace roof;- the ground floor plate over unheated basement will be insulated on the ceiling of the basement;- the doors and windows can be of multi-layer wood or PVC profiles with thermal insulating double or triple glassed window panels with Low CTE float glass. The windows will be provided with ventilating systems or with three opening positions in order to provide an adequate thermal protection and natural ventilation of the indoor space.The structure will have:1. Pedestrian or non-pedestrian reinforced concrete flat roof;2. Monolithic or precast reinforced concrete shear walls mixed with lamellar frames;3. Reinforced concrete stairs;4. Elastic cross beams.

It is situated in the urban area, Brasov, having acces to all the city facilities: water supply, electricity, internet connection, connection to the sewerage infrastructure, acces roads and other public services.The project must contain information and details about:- the type and the composition of structural and for envelope elements ( walls, columns, floors, foundations, and roof);- the joints of the main structural and for envelope elements;- the heat conservation capacity of the building;- the structural performance under the load combination that contain dead, snow, live loads and seismic action.The thermal and structural design and the constructive details of the elements already mentioned.

The slope of the terrain is about 2%.The project content : A. Written part: Project theme; Project content; Technical report; The design of the walls and roof for the hygrothermal conditions; The assesment of loads and design load combination; The computation of the shear walls sectional characteristics; Stress and strains analysis for the cross shear walls;B. Drawings: Current floor plan scale: 1/50; Groundfloor plan scale: 1/50; Cross section through the staircase scale: 1/50; Roof plan scale: 1/100; Consructive details scale: 1/10;

Thermal insulation design In order to obtain the thickness of the insulation layer a series of operations and computation are needed. The unidirectional specific thermal rezistance of a building element is calculated by the formula: [].Where: d-thickness of the layer- the thermal conductivity of the material The thermal rezistance of each element of the building envelope will be compared with the minimum thermal rezistance (). The following condition has to be imposed: and Exterior wallsFor reinforced concrete wall:OUTER WALL

No.Material layerLayer thickness [m]Thermal conductivity ()[W/mK]d/

11/i--0,125

2Lime plaster0,030,870,0344828

3R.C. Wall0,21,620,1234568

4Rigid mineral woolX0,050

5Cement plaster0,0150,930,016129

61/2--0,042

Total thermal rezistance of the element R=0,3410686

R.M.W insulation board with basalt fibers type PB 160

For exterior walls the is 1,80. It results that 2,16[]. if , it results that ...... X>0,09 m 10cm thick of insulated layer.The thickness of the insulation layer for the outer wall made of reinforced concrete will be equal to 10 cm.No.Material layerLayer thickness [m]Thermal conductivity ()[W/mK]d/

1/i--0,125

1Lime plaster0,030,870,0344828

2R.C. Wall0,21,620,1234568

3Rigid mineral wool0,10,052

4Cement plaster0,0150,930,016129

1/2--0,042

Total thermal rezistance of the element R=2,3410686

For masonry wall:No.Material layerLayer thickness [m]Thermal conductivity ()[W/mK]d/

11/i--0,125

2Lime plaster0,030,870,0344828

3Masonry brick wall0,20,300,6666667

4Rigid mineral woolX0,050

5Cement plaster0,0150,930,016129

61/2--0,042

Total thermal rezistance of the element R=0,8842785

if , it results that []. X>0,06m.The thickness of the insulation layer for the outer wall made of masonry will be equal to 10 cm.

No.Material layerLayer thickness [m]Thermal conductivity ()[W/mK]d/

11/i--0,125

2Lime plaster0,030,870,0344828

3Masonry wall(BCA)0,20,300,6666667

4Rigid mineral wool0,10,052

5Cement plaster0,0150,930,016129

61/2--0,042

Total thermal rezistance of the element R=2,8842785

Plate over the unheated basementcold flooring

No.Material layerLayer thickness [m]Thermal conductivity ()[W/mK]d/

11/i--0,167

2Ceramic tiles0,0152,030,0073892

3Mortar bead0,030,930,0322581

4R.C. Slab0,151,620,0925926

5Rigid mineral woolX0,050

6Ceiling plaster0,0150,180,0833333

71/2--0,084

Total thermal rezistance of the element R=0,4665732

For plate over the basement the is 2,90. It results that 3,48 [].if , it results that []. X>0,1506 m.The thickness of the insulation layer for the floor over the unheated basement will be equal to 18 cm.No.Material layerLayer thickness [m]Thermal conductivity ()[W/mK]d/

11/i--0,167

2Ceramic tiles0,0152,030,0073892

3Mortar bead0,030,930,0322581

4R.C. Slab0,151,620,0925926

5Rigid mineral wool0,180,053,6

6Ceiling plaster0,0150,180,0833333

71/2--0,084

Total thermal rezistance of the element R=4,0665732

Terrace roofFor terrace roof the is 5,00 . It results that 6 [].No.Material layerLayer thickness [m]Thermal conductivity ()[W/mK]d/

11/i--0,167

2Ceiling plaster0,0150,180,0833333

3R.C. Slab0,151,620,0925926

4Sloping layer0,050,930,0537634

5Water vapour barrier0,0020,380,0052632

6Extruded polystyreneX0,0330

7Waterproof layer0,0030,380,0078947

8Protecting layer(bitumen)0,050,170,2941176

91/2--0,084

Total thermal rezistance of the element R=0,4400838

W.V.B and W.L. Are -- PVC carpet with =1800 kg/ m3

if , it results that []. X>0,18 m.The thickness of the insulation layer for the terrace roof will be equal to 20 cm.No.Material layerLayer thickness [m]Thermal conductivity ()[W/mK]d/

11/i--0,167

2Ceiling plaster0,0150,180,083333

3R.C. Slab0,151,620,092593

4Sloping layer0,050,930,053763

5Water vapour barrier0,0020,380,005263

6Extruded polystyrene0,20,0336,060606

7Waterproof layer0,0030,380,007895

8Protecting layer(bitumen)0,050,170,294118

91/2--0,084

Total thermal rezistance of the element R=6,848571

Thermal bridges identification The computations and the analysis of the thermal bridges are done in a tabular form. A tabel where the envelope elements and there area is presented below:

Envelope's elements nameEnvelope's elements surface [sqm]Total [sqm]

NSEV

Exterior wallsMasonryground floor55,4655,4636,2236,22737,8

1-4 floors221,84221,84146,88146,88

Windowsground floor4,644,34,324,3270,64

1-4 floors18,7617,3217,2817,28

Doorsground floor7,141,680026,6

1-4 floors17.228,400

Inferior plate [A1]241,4241,4

Superior plate [A2]241,4241,4

Envelope's surface1317,24

Facade surface [sqm]257.8247.5164.16164.16

A tabel with necessary information about the volume of the building is shown:

Heated volume

V=A(Hstorey*nost-hslab)

Groundfloor1..4 Floors

A [sqm]241.4241.4

H [m]2,811,20

hslab [m]0,150,15

V [cm3]675.9

Vtotal [m3]2703.68

No.Building elementBridge detailHeat loss ()Thermal bridge length (l) x l

W/mKmW/K

123456

1.North faade

Outer corner0,06281,68

Walls intersection0,04562,24

0,06563,36

Attic0,1419,42,716

Current floor0,0973,66,624

0,173,67,36

Basement0,1519,42,96

1.South faade

Outer corner0,06281,68

Walls intersection0,04562,24

0,06563,36

Attic0,1419,42,576

Current floor0,0943,23,888

0,1143,24,752

Current floor & balcony0,2130,46,384

0,1530,44,56

Basement0,1519,42,76

1.East faade

Outer corner0,1282,8

Walls intersection0,14283,92

Attic0,1511,41,71

Current floor0,1145,65,016

0,1345,65,928

Basement0,1811,22,016

1.West faade

Outer corner0,1282,8

Walls intersection0,14283,92

Attic0,1511,41,71

Current floor0,1145,65,016

0,1345,65,928

Basement0,1811,22,016

2.Floor over the basementBasement0,2536,89,2

0,1181,68,976

0,2722,46,048

3.Terrace roofAttic0,1836,86,624

0,1922,44,256

4.OpeningsCarpentry S0,27193,452,218

Carpentry E0,276016,2

Carpentry N0,2711631,32

Carpentry V0,276016,2

Area (A)Thermal resistance (R)(xl)Corrected thermal resistance (R'j)Temp. corr. Factor ()R'mA x / R'm

m^2m^2k/wW/Km^2k/w-m2/WW/K

78910111213

221,842,8827,3362,1688455711,9395669123,7905

221,842,8832,22,000511071108,7562

146,882,3421,391,75307162177,07906

146,882,3421,391,75307162177,07906

206,084,0624,2242,74837020,5382,748370240,34065

206,086,8410,885,0252806415,025280641,00865

115,9380,710,7165,6257

633,6799

The general factor of thermal insulation G

This factor of thermal insulation reflects the sum of all thermal loss trough all the building envelope elements for a thermal difference of 1 Kelvin () plus the losses because of ventilation and air infiltration.

GGN [W/m3K];

n=0,5

V=2668,2923[m^3]

G=0,4074852[W/m^3K]

A=1162,24[m^2}

V=2668,2923[m^3]

A/V0,4355745m^2/m^3

GN=0,42

Evaluation of the condensation risk

Datas for Brasov, climatic zone IV: - Ti=+20 C; - Te= -21 C; - Te, med= +7.5 C; - i= 60% ; e= 70%

1. Establishing of the temperature variation in the structure of the element:

a) reinforced concrete wallNo.Material layerLayer thickness [m]Thermal conductivity ()[W/mK]d/

11/i--0,125

2Lime plaster0,030,870,0344828

3R.C. Wall0,21,620,1234568

4Rigid mineral wool0,10,052

5Cement plaster0,0150,930,016129

61/e--0,042

Total thermal rezistance of the element R=2,3410686

Tsi= 19,33

T2= 19,14 T3= 18,48T4= 7,81 T5= 7,72

b) masonry wall

No.Material layerLayer thickness [m]Thermal conductivity ()[W/mK]d/

11/i--0,125

2Lime plaster0,030,870,0344828

3Masonry wall(BCA)0,20,300,6666667

4Rigid mineral wool0,10,052

5Cement plaster0,0150,930,016129

61/2--0,042

Total thermal rezistance of the element R=2,8842785

Masonry wall(BCA) -- autoclaved concrete blocks with usual joints, type GBN 30

Tsi= 19,45 T2= 19,30 T3= 16,42 T4= 7,75 T5= 7,68

c) terrace roofNo.Material layerLayer thickness [m]Thermal conductivity ()[W/mK]d/

11/i--0,167

2Ceiling plaster0,0150,180,083333

3R.C. Slab0,151,620,092593

4Sloping layer0,050,930,053763

5Water vapour barrier0,0020,380,005263

6Extruded polystyrene0,20,0336,060606

7Waterproof layer0,0030,380,007895

8Protecting layer(bitumen)0,050,170,294118

91/2--0,084

Total thermal rezistance of the element R=6,848571

Tsi= 19,69 T5= 19,26 T2= 19,54 T6= 8,20 T3= 19,37 T7= 8,19 T4= 19,27 T8= 7,65

2. The determination of the saturated vapour pressure of the inside and outside air (pse,psi) and the saturated vapour pressure on each surface ( ps,si,ps1, ...ps,se).psi=2340 [Pa]; pse= 1038 [Pa].a) Reinforced concrete wallTsi= 19,33 ps,si = 2240 [Pa]

T2= 19,14ps2 = 2211 [Pa]T3= 18,48 ps3 = 2118 [Pa]T4= 7,81 ps4= 1059 [Pa]T5= 7,72 ps5 = 1051 [Pa]b) Masonry wallTsi= 19,45 ps,si= 2251 [Pa]T2= 19,3 ps2= 2240 [Pa]T3= 16,42 - ps3= 1865 [Pa]T4= -7,75 ps4= 1051 [Pa]T5= 7,68 ps5= 1044 [Pa]c) Terrace roof

Tsi= 19,69 ps,si= 2282 [Pa]; T5= 19,26 ps5= 2226 [Pa];T2= 19,54 ps2= 2267 [Pa]; T6= 8,20 ps6= 1088 [Pa];T3= 19,37 ps3= 2240 [Pa]; T7= 8,19 ps7= 1081 [Pa];T4= 19,27 ps4= 2226 [Pa]; T8= 7,65 ps8= 1044 [Pa].

3. The determination of outside and inside air water vapours partial pressure: pve , pvi. [Pa]. pvi= 1404 [Pa]; pve= 726.6 [Pa].4. Computation of the vapour resistivity of each material. Mj= ; .a) Reinforced concrete wallMaterial layerThicknessMj1/KdRv

Lime plaster0,0354000000005,3858600000

R.C: wall0,2540000000021,32,3E+10

R.M.W.0,154000000002,51,35E+09

Cement plaster0,01554000000007,1575100000

Rv,2== 8,58* 108 m/s Rv,3= 2,3*1010 m/s;Rv,4= 1,35*109 m/s;Rv,5= 5,75*108 m/s.b) Masonry wallMaterial layerThicknessMj1/KdRv

Lime plaster0,0354000000005,3858600000

Masonry0,254000000004,34,644E+09

R.M.W.0,154000000002,51,35E+09

Cement plaster0,01554000000007,1575100000

Rv,2= 8,58*108 m/s;Rv,3= 4,644* 109 m/s;Rv,4= 1,35*109 m/s;Rv,5= 5,75*108 m/s.c) Terrace roofMaterial layerLayer thickness [m]Mj1/KdRv

Ceiling plaster0,01554000000001,7137700000

R.C. Slab0,15540000000021,31,7253E+10

Sloping layer0,0554000000007,11917000000

Water vapour barrier0,002540000000000

Extruded polystyrene0,25400000000121,296E+10

Waterproof layer0,003540000000000

Protecting layer(bitumen)0,05540000000000

Rv,2= 13,77*107 m/s Rv,5=--- Rv,3= 1,725*1010 m/s Rv,6=1,296*1010 m/sRv,4= 19,17* 108 m/s Rv,7=--- Rv,8=---

5. `Graphical representation of the building element.

6. Graphical representation of partial and saturated pressures diagrams.

Loads evaluationPermanent loads-given by the self weight of the building elements1) The self weight of the outer wall made of reinforced concrete:No.Material layerLayer thickness Specific weight (xg)Characteristic load (gk) fDesign load (gd)

0-[m][N/m^3][N/m^2]1,35[N/m^2]

1Lime plaster0,0317000510688,5

2R.C. Wall0,22400048006480

3Rigid mineral wool0,11600160216

4Cement plaster0,01518000270364,5

Self-weight on sq m of the element57407749

2) The self weight of the outer wall made of masonry:No.Material layerLayer thickness Specific weight (xg)Characteristic load (gk) fDesign load (gd)

0-[m][N/m^3][N/m^2]1,35[N/m^2]

1Lime plaster0,0317000510688,5

2Masonry wall(BCA)0,2825016502227,5

3Rigid mineral wool0,11600160216

4Cement plaster0,01518000270364,5

Self-weight on sq m of the element25903496,5

3) The self weight the inner wall made of reinforced concrete:No.Material layerLayer thickness Specific weight (xg)Characteristic load (gk) fDesign load (gd)

0-[m][N/m^3][N/m^2]1,35[N/m^2]

1Lime plaster0,0317000510688,5

2R.C.0,22400048006480

3Lime plaster0,0317000510688,5

Self-weight on sq m of the element58207857

4) The self weight of the inner wall made of masonry:No.Material layerLayer thickness Specific weight (xg)Characteristic load (gk) fDesign load (gd)

0-[m][N/m^3][N/m^2]1,35[N/m^2]

1Lime plaster0,0317000510688,5

2Masonry0,2825016502227,5

3Lime plaster0,0317000510688,5

Self-weight on sq m of the element26703604,5

5) The self weight of the terrace roof:

No.Material layerLayer thickness [m]Specific weight (xg)Characteristic load (gk) fDesign load (gd)

0-[m][N/m^3][N/m^2]1,35[N/m^2]

1Ceiling plaster0,015500075101,25

2R.C. Slab0,152400036004860

3Sloping layer0,05180009001215

4Water vapour barrier0,002915018,324,705

5Extruded polystyrene0,2960019202592

6Waterproof layer0,003915027,4537,0575

7Protect layer(bitumen)0,0511000550742,5

Self-weight on sq m of the element7090,759572,513

6) the self weight of the current floor with cold finishing:No.Material layerLayer thickness Specific weight (xg)Characteristic load (gk) fDesign load (gd)

01/i[m][N/m^3][N/m^2]1,35[N/m^2]

1Ceramic tiles0,01524000360486

2Mortar bead0,0318000540729

3R.C. Slab0,152400036004860

4Rigid mineral wool0,181600288388,8

5Ceiling plaster0,015500075101,25

Self-weight on sq m of the element48636565,05

7) the self weight of the current floor with warm finishing:No.Material layerLayer thickness Specific weight (xg)Characteristic load (gk) fDesign load (gd)

01/i[m][N/m^3][N/m^2]1,35[N/m^2]

1Parquet0,0160006081

2Mortar bead0,0318000540729

3R.C. Slab0,152400036004860

4Rigid mineral wool0,21600320432

5Ceiling plaster0,015500075101,25

Self-weight on sq m of the element45956203,25

8) The self weight of the stairs:No.Material layerLayer thickness Specific weight (xg)Characteristic load (gk) fDesign load (gd)

0-[m][N/m^3][N/m^2]1,35[N/m^2]

1Finishing( ceramic tiles)0,01524000360486

2Mortar bead0,0218000360486

3R.C. Slab0,22400048006480

4Ceiling plaster0,015500075101,25

Self-weight on sq m of the element55957553,25

Variable loads1) The self weight of the dividing walls:No.Material layerLayer thickness Specific weight (xg)Characteristic load (gk) fDesign load (gd)

0-[m][N/m^3][N/m^2]1,35[N/m^2]hwall

1Lime plaster0,0051700085114,752,8

2Gypsum board0,04811000528712,8

3Mineral wool0,086004864,8

4Lime plaster0,0051700085114,75

Self-weight on sq m of the element7461007,1N/m^2

the weight of the wall Gk281,988daN/m^2100,71daN/m^2

The equivalent uniform distrib load100daN/m^2

Live loadsImposed loads on buildings, arising from occupancy.

Category of loaded area A: Categories of laoded areasqk [KN/sqm]

floors1,5

stairs3

balconies2,5

not accessible roofs0,75

accesible roofs1,5

Snow loadsSnow loads

Sk=*Ce*Ct*s0,k

s0,k=2 [KN/m2]

=0.8

Ce=1

Sk=1.92 [KN/m2]

Where: - is the shape coefficient; Ce is the exposure coefficient; Ct is the thermal factor; S0,k is the characteristic value of the snow load on the ground;

Loads evaluationLoads evaluation on the current floor plan: Permanent loads from the self weight of the slabsType of floorTotal surfaceSurface with warm flooringSurface with cold flooringLoads on warm flooring solutionLoads on cold flooring solutionWeight of the warm flooring solutionWeight of the cold flooring solutionTotal weightNo. of similar floorsTotal of each type of floor

PiStSwScgcgrGwGcG-Gt

-m^2m^2m^2KN/m^2KN/m^2KNKnKn-KN

P118,19018,195,9498,930162,4367162,43672324,8734

P218,6925018,69255,9498,930166,924166,9242333,8481

P318,1718,1705,9498,93108,09330108,09332216,1867

P420,3520,3505,9498,93121,06220121,06221121,0622

P519,702514,84,90255,9498,9388,045243,77933131,82451131,8245

P618,710,717,997,5538,9380,8926371,3507152,24331152,2433

P718,1913,64,595,9498,9380,906440,9887121,89511121,8951

P84,5604,565,9498,93040,720840,7208281,4416

total1483,375

Variable loadsType of floorTotal surfaceUnitary variable loads Variable loadNo.of similar floorsTotal of each type of floors

PiStqQ-Qt

-m^2KN/m^2KN/m^2-KN

123456

P118,192,545,475290,95

P218,69252,546,73125293,4625

P318,171,527,255254,51

P420,351,530,525130,525

P519,70252,549,25625149,25625

P618,7356,1156,1

P718,192,545,475145,475

P84,562,511,4222,8

449,0788

Permanent loads from the self weight of the walls

Permanent loads from the self weight of the ext walls

Type of floorTotal surfaceThe surface of the openingsWalls surface without openingsLoads on wall without openingsLoads from carpentryWeight of the wall without openingsWeight of the carpentryTotal weight of the wallNo.of similar wallsTotal of each type of floors

EiStSoSngpgoGnGoG-Qt

-m^2m^2m^2KN/m^2KN/m^2KNKNKN-KN

E115,962,413,567,7490,5105,07641,2106,27642212,5529

E215,961,9214,047,7490,5108,7960,96109,7562219,5119

E310,922,768,163,49650,528,531441,3829,91144259,82288

E410,082,167,923,49650,527,692281,0828,77228257,54456

E510,920,7210,23,49650,535,66430,3636,0243272,0486

E610,082,47,683,49650,526,853121,228,05312128,05312

E710,081,688,43,49650,529,37060,8430,2106130,2106

E810,083,126,963,49650,524,335641,5625,89564251,79128

731,5358

Permanent loads from the self weight of the int walls

Type of floorTotal surfaceThe surface of the openingsWalls surface without openingsLoads on wall without openingsLoads from carpentryWeight of the wall without openingsWeght of the carpentryTotal weight of the wallNo.of similar wallsTotal of each type of floors

IiStSoSngpgoGnGoG-Qt

-m^2m^2m^2KN/m^2KN/m^2KNKNKN-KN

I115,96015,963,6040,557,51984057,519842115,0397

I215,96015,967,8570,5125,39770125,39771125,3977

I315,962,113,863,6040,549,951441,0551,001442102,0029

I415,962,113,867,8570,5108,8981,05109,9482219,896

I510,081,898,197,8570,564,348830,94565,293832130,5877

I610,921,899,037,8570,570,948710,94571,893712143,7874

I710,08010,087,8570,579,19856079,19856179,19856

I815,962,6613,37,8570,5104,49811,33105,82811105,8281

1021,738

Loads evaluation on the terrace roof plan:

Permanent loads from the self weight of the slab

Variable loadsType of floorTotal surface of the floorUnitary variable loadVariable loadNo. of similar floorsTotal of each type of floors

PterrStqQterr-Qt,terr

-m2KN/m2Kn-KN

1234=2X356=4X5

P1,terr213,541,5320,311320,31

Permanent loads from the self weight of the atticType of floorAttic surfaceLoads from the atticTotal weightNo.of similar wallsTotal load

PiStgcGatt-Gt,att

-m^2KN/m^2KN-KN

E1,att27,364,806131,49221131,4922

Type of floorSurface of the floorLoads on the terrace floorTotal weightNo.of similar floorsTotal loads

PiStgcGterr-Qt

-m^2KN/m^2KN-KN

P1213,549,5722044,00512044,005

Loads evaluation on the whole building

G = G1 + G2 + G3 + G4 + G5 G1 = G2 = G3 = G4 = Gc G=4xGc + G5= 16845,4 KN Gc = Ge,walls + Gi,walls + Gslab + ndi(Qlive or Gd,walls)= 3416,28 KN G5 = Gt,terr + Gt,att + 0.5 Gwall + ndi (Sk or Qk)= 3180,24 KN

Active cross-section of vertical elements (stanchions)

Element no. 1

Iy= 407752.2850 cm4=0.0041 m4;Ix= 111918304.62 cm4= 1.119 m4. Active sections to shear force:Amt= b*h/k= 20*390/1.1= 7090.91 cm2= 0.71 m2.Element no. 2

Moments of inertia:Iy= 152724057.9710 cm4=1.527 m4;Ix= 626666.6667 cm4= 0.0062 m4. Active sections to shear force:Amt= b*h/k= 20*420/ 1.1= 7636.3636 cm2= 0.7636 m2.Element no. 3

Moments of inertia:Iy= 1959557.8365 cm4= 0.0196 m4Ix= 19943960.6821 cm4= 0.1994 m4 Active sections to shear force:Amt= b*h/k= 20*100/ 1.1= 1818.1818 cm2= 0.181 m2

Element no. 4

Moments of inertia: Iy= 42824506.4480 cm4= 0.428 m4;Ix= 802032785.2187 cm4= 8.02 m4. Active sections to shear force:Amt= b*h/k= 20*640/1.1= 11636.36 cm2= 1.163 m2

Element no. 5

Moments of inertia: Iy= 349549.3146 cm4= 0.0035 m4 Ix= 57586056.746 cm4= 0.576 m4 Active sections to shear force:Amt= b*h/k= 20*310/ 1.1= 5636.3636 cm2= 0.5636 m2

Active cross section of the girdes/coupling beamsBeam no. 1

Moments of inertia:Iy= 1675104.1667 cm4= 0.0167 m4Ix= 475416.6667 cm4= 0.00475 m4 Active area :Amt= b*h/k= 1545.4545 cm2= 0.1545 m2

Beam no. 2

Moments of inertia:Iy= 1023681.3946 cm4= 0.0102 m4Ix= 9013971.7916 cm4= 0.0901 m4 Active area:Amt= b*h/k= 20*175/1.1= 3181.818 cm2=0.3181 m2

Beam no.3

Moments of inertia:Iy= 654811.2108cm4= 0.00654 m4Ix= 8997592.2445cm4= 0.0899 m4 Active area:Amt= b*h/k= 20*175/1.1= 3181.818 cm2= 0.3181 m2

Seismic load distribution Corner period Tc for Brasov is: 0.7 s. Base shear force : Fb= 0.18*Gtot= 0.18*16845.4=3032.172 KN Gtot= Gterrace+4*Gfloor= 16845.4 KN Coefficient s for 5 storeys is 10.87.

Shear walls with two lines of openingsThe wall consists of stanchion elements E1, E3, E5, and coupling beams R3 and R2. The structure is symmetrical so that there are two walls like that.

m4

Em= 3000 KN/cm2= 3*107KN/m he= 2.80 m.

L= 827.81 cm= 8.27 m l2=l0+2a=200+2*29.75= 259.5 cm= 2.59 m

l3=160+2*29.75= 219.5 cm=2.19 m

s=0.142the overall moment of inertia:

+0.71= 1.4546 m2

Shear walls with one unsymmetrical opening The wall consists of the coupling beam R1 and of the stanchions E2 and E4.The structure is symmetrical so that there are two walls like that.

L= 5.897 ml=1+2*a=1+2*0.35*0.85=1.595 m

1.

2.

s= 0.426 the overall moment of inertia:

Distribution factor computation:

Shear base seismic force:

The equivalent load distributed along the height of the storey :

Determination of the N,V,M diagrams for the wall no. 2, wall with one line of unsymmetrical openings.The moments in the stanchions are computed with the relation:

Shear force and bending moment in the stanchions:SectionmsMmeMm2Mm4Vm2Vm4

0-114,13313,872,5598663311,310,371102480,0385

1-0-8,07-1896,66-1,46511-1895,2

1-29,12138,7391,6521122137,0870,344639445,8069

2-1-3,5-822,592-0,63543-821,956

2-35,091196,2840,9240931195,3590,295405382,1202

3-2-0,29-68,1576-0,05265-68,105

3-42,09491,20480,379441490,82540,221553286,5901

4-31,51354,88960,274142354,6155

4-50,2968,157610,0526568,104960,123085159,2167

5-41,71401,89490,310452401,5844

Shear force and bending moments in the coupling beams:

SectionmsMmeMm2Mm4Mr4Mr2Vr

0-114,13313,872,5598663311,31-1416,11-1,09475-1417,21

1-0-8,07-1896,66-1,46511-1895,2

1-29,12138,7391,6521122137,087-1315,13-1,01668-1316,15

2-1-3,5-822,592-0,63543-821,956

2-35,091196,2840,9240931195,359-1127,25-0,87144-1128,13

3-2-0,29-68,1576-0,05265-68,105

3-42,09491,20480,379441490,8254-845,441-0,65358-846,094

4-31,51354,88960,274142354,6155

4-50,2968,157610,0526568,10496-469,689-0,3631-470,052

5-41,71401,89490,310452401,5844

Gravitational load distribution

Axial load and shear force o the shear wall:SectionAxial load on the shear wall [N]M2 stanchionM4 stanchion

Axial loadShear force VTotal axial load on the stanchionAxial loadShear force VTotal axial load on the stanchion

0-12245455,7-1417,20,3712244038,5-1417,2480,08352242621,297

1-02021076,992021076,992021076,992

1-21765881,63-1316,140,3441764565,49-1316,14445,80691763249,352

2-11541504,641541504,641541504,636

2-31286309,28-1128,130,2951285181,15-1128,13382,12021284053,026

3-21061932,281061932,281061932,279

3-4806736,919-846,090,221805890,829-846,09286,5901805044,7394

4-3582359,923582359,923582359,9231

4-5327164,563-470,050,123326694,513-470,05159,2167326224,4631

5-4000