circulatorysystems ananimal’spersonal“ocean…circulatorysystems ananimal’spersonal“ocean...

64
Circulatory systems an animal’s personal “oceanWater flows over singlecelled creatures… hydra sponge Mul6cellular algae •Delivers dissolved gases (O 2 ,CO 2 ) and nutrients, washes away waste. A system of vessels and pump is needed to push fluid around, and bathe all cells: this is the circulatory system, which func6ons to deliver gases and nutrients to all 6ssues Ever hear the ocean in a seashell? Bacterium protozoan singlecell algae •Insufficient for organisms of considerable size or complexity. and through small, simple organisms…

Upload: vantu

Post on 19-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Circulatory  systems  an  animal’s  personal  “ocean”  

•Water  flows  over  single-­‐celled  creatures…      

   

hydra   sponge   Mul6cellular  algae  

•Delivers  dissolved  gases  (O2,CO2)  and  nutrients,  washes  away  waste.  

A  system  of  vessels  and  pump  is  needed  to  push  fluid  around,  and  bathe  all  cells:  this  is  the  circulatory  system,  which  func6ons  to  deliver  gases  and  nutrients  to  all  6ssues  

Ever  hear  the  ocean  in  a  seashell?  

Bacterium  protozoan  

single-­‐cell    algae  

•Insufficient  for  organisms  of  considerable  size  or  complexity.  

and  through  small,  simple  organisms…  

Increasingly  Complex  Circulatory  Systems  with  increasingly  complex  animals    

“Open”  circulatory  system:  blood  and  8ssue  fluid  is  con8nuous  –  Arthropods  

•  insects  •  arachnids  (spiders,  scorpions)  •  myriapods  (millipedes,  cen5pedes)  •  crustaceans  (crabs,  lobsters,  crayfish,  shrimp)  

– molluscs  (clams,  snails,  octopus,  squid)  

 

“Closed”  circulatory  system:  blood  and  8ssue  fluid  are  separate  –  Fish,  sharks,  rays  –  Amphibians,  rep6les,  birds,  mammals  

“Open”  circulatory  system  of  insects  Anterior  

Posterior  

Heart                                                                        Aorta  

Valve-­‐like  openings  

4      3      

2      1  

Fluid  (“haemolymph”)  flows  out  through  the  open  end  at  the  anterior  and  bathes  the  body.        

It  re-­‐enters  through  openings    of  the  elongated  heart  in  the  distal  porNon  of  the  body.      

SequenNal  peristalic  contracNons  close  each  “valve”  and  force  fluid  towards  the  anterior.  

This  corresponds  to  their  open  respiraNon  system.    Their  “blood”  pulls  nutrients  through  the  body.    This  is  inefficient  and  imposes  a  

size  limita8on.  

Corresponds  to  an  “open”  respiratory  system  

Spiracles  

Trachea  Hollow  tubes  for  air  flow  

Openings  in  exoskeleton  

Haemolymph  pushes  nutrients  through  the  body.      

O2  and  CO2  diffuse  through  the  body  

via  trachea.      

Closed  Circulatory  System  Blood  and  Inters66al  Fluid  are  Separate  

Components:  •A  pump      •Vessels  to  carry  blood  from  and  to  the  pump        •Smaller,  porous  vessels  where  gases  and  nutrients  exchange  with  Nssues  of  the  body  

Pump  O2   CO2  

Nutrients   Waste  

the  Heart  

Arteries  &  Veins  

Capillaries  

Vein  

Artery  

Heart  

Capillaries  

Microvasculature:  between  arteries  &  veins  

Arteriole   Venule  

Capillary  

Arteries  >  arterioles  >  capillaries  >  venules  >  Veins  

The  “capillary  bed”  delivers  oxygen  and  food  to  6ssues,  and  removes  CO2  and  waste  via  concentra6on  gradients  

(small  artery)   (small  vein)  

Artery                                                                                Vein  

•Thin  walls  that  expand  to  hold  large  volumes  of  blood  when  the  body  is  at  rest.      

•One-­‐way  valves.  

Valve  flaps  

Muscle  layer  

 Elas6c  layer  

 Inner  layer  

•Thick,  muscular,  elasNc  walls    

•Resists  the  pressure  of  blood  pumped  with  each  heartbeat.  

 Outer  layer  

Away  from  the  heart       Back  to  the  heart      

Gaps  between  cells  allow  substances  to  pass  through  Fenestrated  

Capillaries  

Their  walls  are  only  one  cell  thick  

Side  view                                                              Front  view  

Con6nuous  Cells  are  Nghtly  connected,  restricNng  flow  in  and  out  

A  problem  with  closed  circulatory  systems  •Blood  pressure  (“pump  force”)  dissipates  as  blood  flows  through  capillaries,  which  creates  a  problem…  

Heart  Gills   Body  

Capillaries  

•When  blood  goes  through  the  capillaries  of  gills/lungs  first,  there  is  only  sluggish  delivery  of  O2-­‐rich  blood  to  body.    

•If  blood  instead  goes  to  body  Nssues  first,  there  is  only  sluggish  delivery  of    O2-­‐poor  blood  back  to  gills/lungs.    

•Both  gills/lungs  AND  body  Nssues  must  have  capillary  beds,  which  results  in  a  further  loss  of  pressure.  

Strong  pressure  

Sluggish  

Even  more  sluggish  

Two  types  of  closed  circulatory  systems  Evolu8on  of  a  “double  system”  

Single  System  

Heart  Gills   Body  

Capillaries  

Double  System  

Lungs   Body  

Heart  

Fish,  sharks,  rays   Amphibians,  rep6les,  birds,  mammals  

•Animals  with  a  single  system  have  a  slow  metabolism  

•Animals  with  a  double  system  have  an  efficient,  fast  metabolism  

•Some  are  warm-­‐blooded  (depending  upon  their  heart’s  anatomy).  

•Animals  with  a  single  system  are  cold-­‐blooded  

Strong   Strong  

Hearts  are  not  all  created  equal  Fish  have  a  2-­‐chambered  heart  

Liver  

Kidney  Gills  

Heart  

Atrium  

Ventricle  

•  Blood  enters  the  atrium.  •  As  the  heart  relaxes,  the  blood  passes  through  a  valve  into  the  

thick-­‐walled,  muscular  ventricle.  •  Ventricle  contracts,  pumps  blood  to  gill  capillaries  (gas  exchange).  •  O2-­‐rich  blood  flows  to  the  capillary  networks  of  the  body.  •  Blood  returns  to  the  atrium.  •  Not  efficient,  poor  pressure  a^er  gill  capillaries.    

Hearts  are  not  all  created  equal  

•Frog  (amphibian):  3-­‐chambered  heart  mixes  O2-­‐rich  and  O2-­‐poor  blood  in  the  ventricle.  Body  receives  50%  oxygenated  blood.      

•Turtles  (lizards):  a  septum  parNally  divides  the  ventricle.  Body  receives  approx.  75%  oxygenated  blood.    

•Birds  &  Mammals:  ventricles  fully  separated,  fully  dual  circulatory  system.  Body  receives  100%  oxygenated  blood.  

100%  O2  75-­‐25%  O2-­‐CO2  50-­‐50%  O2-­‐CO2  100%  CO2  

Par6al  septum  

Turtle,  lizards  Frog   Birds,  mammals  

Full  septum  

Chambers  of  the  Human  Heart  

Atria  (someNmes  called  “auricles”)  

Ventricles  

Superior  vena  cava          

Veins  that  deliver  blood  from  the  

body            

Inferior  vena  cava  

Aorta    Artery  that  delivers  blood  to  

the  body  

Valves  separate  Atria  &  Ventricles  

1  2  

3  4  

4  Chambers  

Blood  flow  through  the  human  heart  Deoxygenated  blood    

(from  the  upper  body)  

Superior  vena  cava  

Inferior  vena  cava  

Oxygenated  blood  (to  the  upper  body)  

Aorta  

Pulmonary  veins    (from  the  lungs)  

Pulmonary  artery  (to  the  lungs)  

Aorta  

Pulmonary  veins    (from  the  lungs)  

Pulmonary  artery  (to  the  lungs)  

Oxygenated  blood  (to  the  lower  body)  

Deoxygenated  blood    (from  the  lower  body)  

Heart  valves  maintain  a  one-­‐way  flow  

Low  pressure  

Valve  leaflet  (flap)  

High  pressure  

High  pressure  

Valve  leaflet  

Low  pressure  

Open  heart  valve  •Heart  chamber  contracts.  •Blood  pressure  pushes  open  the  valve  leaflets  •Blood  flows  through  to  the  other  side  of  the  valve.  

Closed  heart  valve  •Blood  pressure  on  the  other  side  of  the  valve  rises  •Forces  the  valve  leaflets  back.    •Closed  valve  prevents  backflow.  

The heart cycle - Diastole

Movement of blood Blood enters the atria

Electrical activity

Deoxygenated blood from upper body

Oxygenated blood from

right lung

Oxygenated blood from left lung

Superior vena cava

Full left atrium

Full right atrium

Deoxygenated blood from lower body

Electrical pulse

Sinoatrial node

•Heart muscle cells signal each other to coordinate contraction: the sinoatrial node is the pacemaker.

•The RATE (not strength) can be changed by nervous system input

The heart cycle – Atrial systole

Movement of blood

Electrical activity

Electrical pulse

Atrioventricular node

Full right ventricle

Open valve

Contracted right atrium

Open valve

Full left ventricle

Contracted left atrium

Contraction of atria pushes blood to ventricles

The heart cycle – Ventricular systole

Movement of blood

Electrical activity

Electrical pulse

Aorta Oxygenated blood flows to upper and lower body

Closed valve

Closed valve

Contracted ventricles

Open valve

Pulmonary artery

Open valve

Deoxygenated blood flows to

the lungs

Contraction of ventricles pushes blood out of heart

Simultaneous delivery of blood to

body and lungs

Artery                                                                                Vein  

•Thin  walls  that  expand  to  hold  large  volumes  of  blood  when  the  body  is  at  rest.      

•One-­‐way  valves.  

Valve  flaps  

Muscle  layer  

 Elas6c  layer  

 Inner  layer  

•Thick,  muscular,  elasNc  walls    

•Resists  the  pressure  of  blood  pumped  with  each  heartbeat.  

 Outer  layer  

Away  from  the  heart       Back  to  the  heart      

Muscle  movement  pumps  blood  through  veins  

•Blood  pressure  is  virtually  lost  by  passing  through  capillaries.    

•Muscles  contrac6on  squeezing  veins  that  pass  through  them.    

•This  pushes  blood  through  them,  back  to  the  heart.        

•One-­‐way  valves  prevent  backflow.  

Direc6on  of  blood  flow  

Vein  surrounded  by  muscle  

Relaxed  muscle  

One-­‐way  valve  

Direc6on  of  increased  blood  flow  

Squeezed  vein  Contracted  muscle  

Inhala6on  also  moves  blood  through  veins  

Air  inhaled   Chest  cavity  pressure  is  lowered  

Blood  drawn  toward  heart  

Diaphragm  

•Chest  cavity  expands  during  inhala6on.  •Pressure  in  chest  is  lowered.  •Higher  pressure  in  the  rest  of  the  body  pushes  blood  in  the  veins  toward  the  heart.  

Circulatory  System  Gas  exchange  

To  and  from  other  6ssues  

Exhaled  air  120  u  O2  27  u  CO2  

Inhaled  air  160  u  O2  0.3  u  CO2  

     Blood  from        Lungs      104  u  O2        40  u  CO2  

Lung  Alveoli    104  u  O2      40  u  CO2  

 Blood  entering  6ssues  

   104  u  O2        40  u  CO2  

 Blood  leaving  6ssues      40  u  O2        45  u  CO2  

 Tissues      <40  u  O2        >45  u  CO2  

 Blood  entering  lung  

   40  u  O2        45  u  CO2  

•Incomplete  exchange  in  lungs  •Total  lung  volume  is  6  liters  •Only  0.5  liters  exchanges  with  a  normal  breath  (heavy  breath  more)  •1.5  liters    “residual  volume”  

Erythrocytes:  Red  Blood  Cells  •Generated  throughout  life  from  stem  cells  

         Stem  Cell                            Commieed            Differen6a6on            Nuclear  Ejec6on            Erythrocyte  

Ribosome  synthesis  Hemoglobin  accumula8on  

•Essen6ally  a  bag  of  hemoglobin  (250  million  molecules/cell)  •Jejson  their  nucleus    

•3-­‐5  days  to  differen6ate  

•Last  about  120  days  

Immune  system  cells  and  thrombocytes  (for  forma6on  of  clots)  

•insect  hemolymph  does  not  contain  hemoglobin  or  red  blood  cells  •Snails  and  slugs  creatures  have  haemocyanin  (Cu++-­‐containing  protein  that  binds  O2)  •Some  snails  have  hemoglobin    

Hemoglobin:  a  metaloprotein  

Heme  (iron-­‐containing  

group)  

Pep6de  A  complex  of  four  pep6des  

4O2  binding  sites  

High  affinity  for  O2  increases  amount  of  O2  in  blood  by  7-­‐fold  more  than  the  amount  that  can  dissolve  in  blood  

O2  from  lungs  

O2  to  6ssues  

Blood  cell  with  

“loaded”  hemoglobin  in  circula6on  

•Hemoglobin  also  binds  CO2.  •Occurs  at  Nssues  and  lungs  depending  upon  relaNve  levels.  •CO2  binds  to  the  protein,  not  heme;  RBC  can  carry  both  O2  and  CO2  •Needn’t  rely  on  diffusion  of  CO2  through  plasma,  which  is  weak.  

Removal  of  CO2  from  6ssues  

Low  O2,  high  CO2  environment    

•  CO2  dissolved  in  water  forms  Bicarbonate  and  hydrogen  ions:                                                              CO2  +  H2O  -­‐>  HCO3

-­‐  +  H+  •Most  CO2  in  plasma  of  blood  undergoes  this  reacNon.            •H+  would  lower  blood  pH,  but  binds  to  hemoglobin.            •HCO3

-­‐  is  a  buffer  for  blood:  maintains  blood  pH  at  approx  7.4.  •HCO3

-­‐  will  bind  H+  generated  during  metabolism  to  yield  H2CO3    

More  on  control  of  blood  pH  •CO2  dissolved  in  plasma  forms  CO2  +  H2O  -­‐>  HCO3

-­‐  +  H+        

•Hemoglobin  binds  and  sequesters  H+.    The  “free”  HCO3-­‐  can  

then  bind  H+  generated  during  metabolism  to  yield  H2CO3      

•Hemoglobin,  H2O  and  CO2  are  essenNally  in  unlimited  supply    

•Allows  the  above  reacNon  to  provide  excellent  pH  control.        Under  stress:  •Increased  breathing  will  eliminates  more  CO2,  which  will  push  the  above  reacNon  to  the  le^,  and  elevate  blood  pH.        

•Increased  acNvity  of  the  kidneys  will  eliminate  HCO3-­‐,  which  will  

push  the  reacNon  to  the  right,  and  lower  blood  pH.  

O2 and CO2 exchange: lungs, blood, tissues

Tissue

O2-rich blood lungs > heart > tissues

O2-poor blood tissues > heart >lungs

Capillary

Carbon dioxide diffuses from tissues into plasma,

binds to hemoglobin. Oxygen diffuses from red

blood cells into tissues

Bronchiole Alveolar air space Alveolar wall

Carbon dioxide ( ) diffuses from red blood cells > plasma > alveoli.

Red blood cell

Oxygen ( ) diffuses across the alveolar wall > plasma (fluid of blood) > red blood cells, binds to hemoglobin

Carbon  monoxide    (CO-­‐)  

•Hemoglobin  binds  CO-­‐  in  preference  to  O2  

•Results  from  incomplete  combusNon,  insufficient  O2  to  generate  CO2  

•CO-­‐  has  >200  Nmes  stronger  affinity  for  hemoglobin  than  O2.  

Concentra6on     Symptoms    

35 ppm (0.0035%) Headache and dizziness within 6-8hr of constant exposure100 ppm (0.01%) Slight headache in 2-3hr200 ppm (0.02%) Slight headache within 2-3hr; loss of judgment400 ppm (0.04%) Frontal headache within 1-2hr800 ppm (0.08%) Dizziness, nausea, convulsions <45 min; insensible within 2hr

1,600 ppm (0.16%) Headache, increased heart rate, dizziness, and nausea within 20 min; death <2hr

3,200 ppm (0.32%) Headache, dizziness and nausea in 5-10min. Death <30 min.

6,400 ppm (0.64%) Headache and dizziness in 1-2min. Convulsions, respiratory arrest, and death <20min.

12,800 ppm (1.28%) Unconsciousness after 2–3 breaths. Death <3min.

Muscle  myoglobin  pulls  O2  from  Hemoglobin  

Myoglobin  >affinity  for  O2  than  hemoglobin  

Redness  of  red  meat,  and  its  “juice,”  is  due  to  myoglobin  

>simple  diffusion  to  accommodate  need  of  muscle  

Composi6on  of  Blood  

•  Plasma  (water  and  dissolved  salts,  proteins)  

•  RBCs  (3-­‐6  million  for  average  human)  

•  Platelets  (“thrombocytes,”which  help  with  clolng;  400,000-­‐500,000  for  average  human)  

•  “White”  blood  cells  (“leukocytes,”  4,000-­‐11,000  for  average  human)  –  anNbody-­‐producing  cells  (and  their  secreted  anNbodies)  – Macrophages  (“big  eaters”)  that  engulf  foreign  parNcles    –  Natural-­‐killer  cells  

Blood  groups    (“blood  type”)        Blood  group  A  •“A”  anNgens  on  RBCs  •anN-­‐B  anNbodies  in  blood.  

     Blood  group  AB  •“A&B”anNgens  on  RBC    •neither  anNbody  in  blood.  

     Blood  group  B  •“B”  anNgens  on  RBCs  •anN-­‐A  anNbodies  in  blood.  

     Blood  group  O  •  “O”,  no  RBC  anNgens  •anN-­‐A  and  anN-­‐B  anNbodies  in  blood.  

Receiving  the  incorrect  blood  type  promotes  an  acute  hemolyNc  reacNon,  kidney  failure  and  shock.    

If  not  an  emergency,  blood  is  “cross-­‐matched”  with  candidate  transfusion  blood  to  check  for  aggluNnaNon  (clumping).      

Since  Abs  have  2  binding  sites,  

clumps  will  form.    

Blood  type:  Rh+  or  Rh-­‐  •Rh+    means  “D  anNgen”  present  on  RBCs,  Rh-­‐  means  absent.    

•Fetus  can  have  different  blood  type  than  the  mother.    

•Not  a  problem,  BUT  mother  Rh-­‐  and  fetus  Rh+,  mother  may  form  anNbodies  against  Rh+  during  delivery.    

•Maternal  anNbodies  cross  placenta,  protects  fetus  from  infecNons.        

•Once  mother  encounters  fetal  blood,  forms  anNbodies  against  the  Rh+  “D  anNgen.”    

•Maternal  anN-­‐RH+  anNbodies  can  anack  and  destroy  fetal  RBCs.  Can  cause  mild-­‐severe  fetal  low  blood  count,  can  be  lethal.        

•TesNng  and  immunosuppression  if  appropriate.    

•An  Rh-­‐  individual  cannot  receive  a  transfusion  of  RH+  blood,  although,  an  Rh+  individual  can  receive  RH-­‐  blood.    (similar  to  type  O  being  acceptable  for  individuals  who  are  type  A,  B  or  AB)    

Why  can  there  be  a  maternal  reac6on  against  fetal  Rh+  but  not  against  a  different  A/B  type?    

•Our  immune  system  makes  several  types  of  anNbodies.      

•One  type,  “Immunoglobulin  G”  (IgG),  is  a  “Y”  shaped  structure    

•IgG  has  two  sites  at  the  Nps  recognize  a  potenNal  protein  shape          

 •We  also  make  “IgM”  anNbodies,  which  are  5  IgG-­‐like  molecules  joined  together  at  the  base  of  their  respecNve  Y  shapes.      

•AnNbodies  made  against  the  Rh  factor  (the  D  protein)  are  IgG    

•AnNbodies  made  against  the  A  and  B  proteins  are  IgM    

•IgG  can  cross  the  placental  barrier;  IgM  cannot.  

IgG  

IgG   IgM  

Lympha6c  system  

Lympha6c  vessels  

Lymph  nodes  

Thymus  

Spleen  •Fluid  within  the  lymphaNc  system  is  called  lymph.      

•Fluid  in  the  circulatory  system  is  plasma.    

•inters88al  fluid  is  among  Nssues    

•Recall  open  circulatory  system  of  arthropods:  “haemolymph”  is  a  combinaNon  of  blood  and  lymph  

Inters66al  fluid  drains  into  the  lympha6c  system,  where  it  is  filtered  and  eventually  drains  into  veins  

Lymph  nodes  

“Close-­‐up”  image  

•Important  for  proper  funcNoning  of  the  immune  system    

•Major  locaNon  of  immune  system  cells    

•Filters  foreign  parNcles  and  cancer  cells.    

•Become  inflamed  or  enlarged  in  various  infecNons  and  diseases  ranging  from  minor  throat  infecNons  to  cancer.    

Outgoing  Lymph  vessel  

Incoming  Lymph  vessel  

Cortex  

Paracortex    (mostly  T  cells)  

Medulla  (macrophages  and  plasma  cells)  

Follicle  

Germinal  center  (mostly  B  cells)  

B  cells  synthesize  an6bodies  T  cells  regulate  the  immune  system  

Lymph  node  

Spleen  

•FuncNons  like  a  specialized  lymph  node    

•Filters  blood      

•Removes  old  RBCs,    recycles  iron  and  hemoglobin  (“red  pulp”)  

 

•Contains  a  reserve  of  blood  (valuable  in  case  of  shock  or  trauma)    

•Contains  half  the  body’s  monocytes  (precursors  of  macrophages),  which  migrate  to  injured  Nssues  (“white  pulp”)    

•Synthesizes  anNbodies  via  its  immune  cells    

•Removes  anNbody-­‐coated  bacteria  and  anNbody-­‐coated  blood  cells      

•Houses  immune  system’s  “memory”  cells.        Splenectomy  impairs  immunizaNon    

Some  Problems,  Natural  Responses  and  Interven6ons    

•  Blood  clojng  

•  Impaired  circula6on  due  to  clogging  of  arteries  –  Heart  anack  –  Stroke  

•  Pacemaker  

•  Valve  disorders  and  surgical  replacement  

•  Arterial  rupture  (aneurism)  

•  Control  of  blood  pressure  

Thrombocytes:  “platelets”  essen8al  for  blood  cloPng  

         Stem  Cell  

the  same  stem  cell  populaNon  

Megakaryoblast                  Megakaryocyte                                                    Platelets  

Cytoplasmic  extensions  are  platelet  precursors  

Cytoplasmic  fragments  

•Platelets  are  “ac6vated”  following  damage  to  blood  vessels  •SNck  to  vessel  walls  at  the  injury  and  clump  together  •Release  chemicals  that  start  the  “coagula6on  cascade.”  •Fibrinogen  (dissolved  in  blood),  forms  sNcky  fibrin  strands.  •ResulNng  tangled  mesh  traps  blood  cells,  forming  a  clot.  

Erythrocyte  

Blood  clojng  following  penetra6ve  injury  to  skin  and  underlying  blood  vessel  

•A  blood  vessel  constricts  following  damage  

Red  blood  cell  

Platelet  

Constric6on  of  blood  vessel  

•Platelets  contacNng  the  damaged  wall  are  acNvated.    

•They  become  sNcky  and  start  to  adhere  to  the  blood  vessel                    walls  near  the  site  of  the  injury.  

Blood  clojng  following  penetra6ve  injury  to  skin  and  underlying  blood  vessel  

•AcNvated  platelets  clump  together.    

Platelets  clumped  together   Released  

chemicals  

•Damaged  Nssue  and  acNvated  platelets  release  chemicals        that  start  a  “coagulaNon  cascade”  

•A  series  of  clolng  factors  are  acNvated.  •Inability  to  make  factor(s)  prevents  clolng  (hemophilia)  

Blood  clojng  following  penetra6ve  injury  to  skin  and  underlying  blood  vessel  

•Fibrinogen,  (a  protein  dissolved  in  blood),  forms  fibrin  strands.    

Endothelial  cells  will  heal  vessel  wall  

Epithelial  cells  will  cover  over  from  edges  

•A  bruise  occurs  when  a  blood  vessel  is  broken  but  the  overlying      skin  is  not.    (“hematoma”  means  “body  of  blood”)  

•SNcky  fibrin  threads  traps  blood  cells  and  platelets,    forming  a  clot.  

Blood  supply  to  the  heart  

Le^  main  coronary  artery  

Le^  circumflex  artery  

Coronary  vein  

Le^  anterior  descending  artery  

Right  main  coronary  artery  

Coronary  arteries  bring  food  and  oxygen  to  heart  muscle  

Coronary  vein  

The  blood  pumped  through  the  heart  does  not  “feed”  it!  

Atherosclerosis  

Early  atherosclerosis  

Muscle  layer  Fat  globule  

Faey  deposit  (“plaque”)  

Advanced  atherosclerosis   Faey  deposit  

New  muscle  cell  Thickened  muscle  layer  

•Faey  substances  gradually  accumulate  in  the  artery  lining.  Minor  irregulari6es/breakage  may  be  how  adherence  begins.  •The  muscle  layer  thickens  as  new  muscle  cells  form  in  the  faey                    deposit.    ?Body  is  trying  to  bury/repair  the  wall’s  irregularity  •The  artery  becomes  progressively  narrowed.  

Blood  clot  within  artery  due  to  atherosclerosis  

•If  the  fibrous  cover  of  a  faey  deposit  ruptures,  a  blood  clot  forms.    

•Platelets  can  also  respond  to  irregulari6es  prior  to  any  rupture    –major  reason  for  failure  of  ar8ficial  hearts  and  valves!  

 

•The  clot  can  block  a  small  artery.    It  can  also  break  away  into  circula6on  and  block  a  distal  small  artery.    

•If  this  happens  in  a  coronary  artery,  blood  flow  to  an  area  of  heart  muscle  stops,  and  a  por6on  of  the  heart  muscle  dies.  

Coronary  artery  

Faey  deposit  

Blood  clot  Ruptured  fibrous  cover  

When  the  heart  does  not  receive  enough  O2…    

Symptoms  range  from  shortness  of  breath,  faNgue  and  dizziness  to  the  following:    •Angina:  chest  pain  or  discomfort  when  the  heart  muscle  doesn’t  get  enough  O2-­‐rich  blood.    Can  feel  like  indigesNon.    

•Arrhythmia:  heart  beats  too  fast,  slow,  or  irregular  rhythm.  Most  harmless,  some  can  be  serious  or  even  life-­‐threatening.    

•Atrial  Fibrilla6on:  rapid,  disorganized  electrical  signals  in  the  atria,  fast,  irregular  contracNon,  blood  pools  in  atria      

•Heart  Aeack:  blood  flow  to  a  secNon  of  heart  muscle  is  blocked.  If  not  restored  quickly,  that  secNon  dies.    

Stroke  or  Clauda6on:  alterna8ve  results  of  infarc8on  depending  

upon  loca8on  of  infarct  

•  Blockage  of  blood  flow  in  brain  can  lead  to  stroke  

•  ClaudaNon  (weakening  and/or  numbness)  can  result  from  infarcNon  in  legs  

Aneurysm  

Weakened,  bulging  wall  Faey  deposit  

An  area  of  artery  wall  in  which  there  is  a  fany  deposit  grows  weak  and  bulges  due  to  the  pressure  of  blood  in  the  vessel.  

Outer  wall  

Tear  in  inner  wall  

False  channel  

Faey  deposit  

Dissec6ng  aneurysm  •inner  wall  tears  away  from  the  outer  wall.  Blood  then  collects  in  a  false  channel  between  the  walls.  

Can  happen  anywhere…  If  in  skull,  can  cause  stroke  and  can  be  fatal  

Coronary  angiography  To  monitory  coronary  artery  flow  

•The  catheter  is  inserted  in  the  femoral  artery,  and  passed  through  the  aorta  to  a  coronary  artery,  where  a  contrast  dye  is  injected.    

•The  artery  and  vessels  leading  from  it  are  visualized  by  X-­‐rays.      

•The  catheter  is  reposiNoned  to  check  all  the  coronary  arteries.  

Coronary  artery  

Aorta  

Catheter  

Aorta  Unobstructed  flow   Obstructed  flow  

Coronary  angioplasty  

Catheter  

Balloon  before  infla6on  

Faey  deposit  

A  catheter  is  used  to  place  a  balloon  within  the  narrowed  area  of  the  coronary  artery.  

The  balloon  is  inflated  and  deflated  several  Nmes  to  compress  the  fany  deposit.  

Narrowed  area  of  artery  

Inflated  balloon  

Compressed  faey  deposit  

Artery  is  par6ally  cleared  The  catheter  is  withdrawn.    

A  small  tube  (“stent”)  may  be  inserted  to  keep  the  artery  open.  

“Coronary  bypass”  graXing  a  vein  

Cujng  site  

Cujng  site  

Saphenous  vein  Sec6ons  of  graqed  vein  

Aorta  

Blockages  in  the  coronary  arteries  

The  saphenous  vein  is  removed  and  divided  into  

sec6ons  to  make  several  graqs  

Each  graq  is  aeached  to  the  aorta  and  to  the  coronary  artery  beyond  a  blockage,  which  is  now  “bypassed.”  

Mammary  artery  bypass  graq  Subclavian  artery  

Internal  mammary  artery  

Blockage  in  coronary  artery  

Cujng  site  

Blockage  

Diverted  mammary  artery  joined  to  coronary  artery  

Tied  end  of  mammary  artery  

•Le^  internal  mammary  artery  is  cut  where  shown  above.    

•Upper  end  remains  anached  to  the  subclavian  artery  and  the  lower  end  is  Ned  off.    

•The  free  end  of  the  mammary  artery  is  connected  to  the  coronary  artery  beyond  the  blockage  to  supply  blood  to  the  heart  muscle.  

Bypass  graqs  are  used  throughout  the  body  Femoral  artery  bypass  gra^  

•Arterial  obstrucNon  prevents  blood  from  reaching  lower  leg.    

•A  small  secNon  of  a  vein  from  the  same  leg  is  selected  to  create  a  bypass.  

•SecNon  of  vein  anached  above  and  below  the  blockage  to  form  a  bypass.    

•Vein  is  reversed  so  that  its  valves  allow  arterial  blood  flow.  

Reversed  valve  Blockage  

Bypass  

Tied  vein  Sites  to  cut  vein  

Blockage  in  artery  

Vein  Valve  

Heart  valve  disorders  Problems  with  opening  

Normal  blood  flow  

Restricted  blood  flow  

Leaflet   Abnormal  leaflet  

In  “Valve  Stenosis,”  the  valve  leaflets  (flaps)  do  not  open  fully  and  blood  flow  is  restricted.  

Normal   Stenosed  

Heart  valve  disorders  Problems  with  closing  

•Valve  leaflets  normally  meet,  forming  a  seal  that  stops  blood  from  flowing  backward.    

•In  “Valve  regurgita6on,”  the  valve  does  not  close  completely  and  blood  leaks  backward.    So-­‐called  “Heart  Murmur”  

Blood  leaks  back  through  valve  

Abnormal  leaflet  

Normal   Regurgitant  

Valve  6ghtly  closed  

Heart  valve  replacement  

•The  aorNc  valve  is  the  most  commonly  replaced  heart  valve.      

•An  incision  is  made  in  the  aorta  to  gain  access  to  the  valve.    

•The  diseased  valve  is  excised,  leaving  a  ring  of  Nssue  to  which  the  replacement  aorNc  valve  is  then  sNtched.  

Aorta  

Excision  line  

Area  to  be  removed  

Diseased  aor6c  valve  

Leq  ventricle  

Septum  

Hypertrophic  cardiomyopathy  

•Septum  and  the  le^  ventriclular  wall  become  abnormally  thick.      

•Prevents  the  le^  ventricle  from  filling  properly  and  obstructs  the  ouslow  to  the  aorNc  valve.    

•leading  cause  of  “sudden  cardiac  death”  in  athletes  •Sudden  Cardiac  Arrest  (SCA):  heart  suddenly  and  unexpectedly  stops  beaNng,  causes  death  if  not  treated  in  minutes.      

•can  be  asymptomaNc  unNl  death  

Normal  muscle  

Thickened  muscle  

Thickened  Septum  

Ar6ficial  Pacemaker  Electrical  wires  

Pacemaker  

Wire  to  right  atrium  

Wire  to  right  ventricle  

•Inserted  just  under  the  skin,  sNtched  into  posiNon  in  the  chest  wall.    

•Primary  purpose  is  to  maintain  adequate  contracNon      

•Used  when  the  endogenous  pacemaker  ≠  fast  enough,  if  block  in  electrical  conducNon  within  the  heart,  if  ventricles  out  of  synch,  etc.    

•Externally  programmable  for  individual  opNmizaNon.  

Electrical pulses

Sinoartial node

The sinoartrial node is the endogenous

pacemaker.

Blood  Pressure  (BP)  •Usually  =  arterial  pressure  in  systemic  circulaNon    

•Expressed  as  systolic  (maximum)  /  diastolic  (minimum)    in  units  of  “mm  Hg.”    

 Systolic:  when  the  heart  contracts        Diastolic:  between  contracNons    

 

•Normal  resNng  BP  for  adult:                      Between  90/60  and  120/80  

•low    =  hypotension,  high  =  hypertension    

•Long-­‐term  hypertension  is  a  risk  factor  for  kidney  failure,  heart  disease,  stroke:  places  mechanical  stress  on  artery  walls    

•  If  severely  high  (≥50%  >average),  only  survive  a  few  years  without  treatment    

Hg  manometer  MV  Hayes  Wikipedia  

Adult  Blood  Pressure  Blood  Pressure  Range   Classifica6on      140/90    to    190/100   High  120/80    to    140/90   “Pre-­‐High”        90/60    to    120/90   Ideal    70/40    to    90/60   Low  

•Either  number  out  of  range  =  high  or  low  pressure    (e.g.,  150/85  =  high,    135/95  =  high)  

 •Pre-­‐high:  lifestyle  modificaNon  may  be  sufficient.    Vasoconstrictors  reduce  blood  vessel  diameter  (increases  BP)    Vasodilators  (nitroglycerin)  increase  diameter  (lowers  BP)    

Short-­‐term  control  of  blood  pressure  Normal  blood    

pressure  

Brain  signals  heart  to    increase  output.    

Brain  signals  blood  vessels    to  constrict  

Baroreceptors  detect    when  BP  is  normal.  

Signals  transmined  to  brain  

BP  rises  

Baroreceptors*  detect    decreased  BP.  

Signals  transmined  to  brain  

BP  falls  

*Baroreceptors  are  stretch  receptors  of  sensory  neurons  in  arterial  wall.    S6mulated  by  distor6on  due  to  BP.  

Sensory  nerve  endings  

Long-­‐term  control  of  blood  pressure  ADH  promotes  water  retenNon  by  the  kidneys,  raises  BP.  

Elevated  BP  stretches  the  atria  of  the  heart,  sNmulaNng  atrial  endocrine  cells  to  produce  natriureNc  hormone  

Low  BP  reduces  blood  flow  through  the  kidneys  and  sNmulates  them  to  produce  the  hormone  renin.  

Renin  acNvates  angiotensin  in  blood  vessels,  which  constrict  and  raise  BP  

Aldosterone  causes  the  kidneys  to  retain  salts  and  H2O,  increasing  the  amount  of  fluid  in  the  body  and  raising  BP.  

Adrenal  gland  produces  the  hormone  aldosterone  when  sNmulated  by  angiotensin,  which  is  acNvated  by  renin  from  the  kidneys  

Natriure6c  hormome,  secreted  by  the  heart,  acts  on  the  kidneys  to  lower  BP  by  inhibiNng  renin  secreNon  and  promoNng  excreNon  of  Na+  and  H2O;  also  inhibits  ADH  secreNon  by  the  Pituitary  gland    

ADH  (vasopressin)  produced  by  the  hypothalamus  is  stored  in  the  Pituitary  gland  and  secreted  when  BP  falls  

What  raises  blood  pressure?  •Dietary  Salt  

 OsmoNc  problem,  system  trying  to  balance,  therefore  kidneys  remove  less  H2O.    Increased  total  fluid,  increases  BP.  

 DiureNcs  (to  deplete  salt  and  H2O)  can  help    

•Dietary  Fat    Creates  resistance  within  the  circulatory  system,  which  

increases  upstream  BP.        Resistance  is  related  to  vessel  radius  (the  larger  the  radius,  

the  lower  the  resistance),  as  well  as  the  smoothness  of  the  blood  vessel  walls.    

 Smoothness  is  reduced  by  the  buildup  of  fany  deposits  on  the  arterial  walls.    

   

What  raises  blood  pressure?  

•  Chronic  stress  –  “Fight  or  flight”  reacNon  causes  a  transient  increase  in  BP.  –  Chronically  under  stress  MAY  contribute  to  long-­‐term  trouble      

•  Smoking  –  Temporary  increase  in  blood  pressure  

•  Excessive  alcohol  –  Temporary  increase  blood  pressure  

•  Overweight  –  Places  extra  strain  on  heart  –  Body  mass  index  (weight  vs.  height)  –  Current  lifestyle  (sedentary)  contributes…  need  to  move!    

Anemia  •  Abnormally  low  levels  of  RBCs  or  hemoglobin    

•  Individual  with  anemia  feels  constantly  Nred,  weak,  due  to  insufficient  O2.        (more  extreme:  increased  thirst,  feeling  faint)  

•  Results  from    –  blood  loss  (trauma)  –  decreased  RBC  producNon  (iron  or  B12  deficiency)  –  increased  RBC  breakdown  (sickle  cell  anemia;  infecNon,  malaria,  autoimmune  disorder)  

•  ErythropoiNn,  produced  by  kidneys,  sNmulates  bone  marrow  to  generate  more  RBCs.    

•  “Blood  doping”  =  syntheNc  erythropoiNn.  Gives  an  advantage  in  sports.    (difficult  to  detect  –  erythropoiNn  normally  present  and  the  syntheNc  version  is  rapidly  eliminated  from  blood)