choosing and using scientific cameras - hamamatsu · pdf file ·...

93
{{ }} {{ Choosing and using scientific cameras }} {{ }} KEITH BENNETT, PH.D. | HAMAMATSU PHOTONICS K.K. | FOCUS ON MICROSCOPY| 04.13.2014

Upload: doanxuyen

Post on 23-Feb-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

{{ }}{{ Choosing and using scientific cameras }}{{ }}KEITH BENNETT, PH.D. | HAMAMATSU PHOTONICS K.K. | FOCUS ON MICROSCOPY| 04.13.2014

Page 2: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

Choosing and Using Scientific CamerasChoosing and Using Scientific Cameras

1 Th i bl{1 The image problem{{ Think in photons2{{3 Real cameras are not perfect{4{ Know thyself

5{

{ The Living Image: Case Studies5{ g g

Page 3: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

Choosing and Using Scientific CamerasChoosing and Using Scientific Cameras

1{1 The image problem{{ Think in photons2{{3 Real cameras are not perfect{4{ Know thyself

5{

{ The Living Image: Case Studies5{ g g

Page 4: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

The Image Problem…g

Courtesy:  Prof. Jason SwedlowUniversity of Dundee, ScotlandO Mi E i t

4

Open Microscopy Environment

Page 5: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

The Image Problem…g

A pretty picture?A pretty picture?

A measurement?

A resource?

A reference?A reference?

Courtesy:  Prof. Jason SwedlowUniversity of Dundee, ScotlandO Mi E i t

5

Open Microscopy Environment

Page 6: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

THE IMAGE PROBLEM1{ } THE IMAGE PROBLEM1{ }• Eyes can be fooled

- Not good at quantifying greysbj i- Not objective

- Emphasizes patterns and colors- Viewing environmentLOOK Viewing environment

• Screens are not capable of CAREFULLY

pdisplaying full bit depth

• Image display can (and should be!) manipulated for on screen viewing p g

Page 7: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

THREE IDENTICAL IMAGES?1{ }1{ }AA

B

C

Page 8: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

THREE IDENTICALLY DISPLAYED IMAGES!1{ }1{ }AA

B

200 photons200 photons

C

200 photons200 photons

500 photons500 photons

1000 photons1000 photons

Page 9: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

THREE DIFFERENT INTENSITIES?1{ }1{ }

Page 10: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

THREE DIFFERENT DISPLAYS OF THE SAME INTENSITY!1{ }THREE DIFFERENT DISPLAYS OF THE SAME INTENSITY!1{ }

1000 photons1000 photons1000 photons1000 photons

1000 photons1000 photons1000 photons1000 photons

1000 h t1000 h t1000 photons1000 photons

Page 11: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

HISTOGRAM AND AREA STATISTICS1{ } HISTOGRAM AND AREA STATISTICS1{ }A B C

Peak (photons) 200 500 1000(p )Mean (photons)

20047.0 117.4 234.7

Page 12: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

Choosing and Using Scientific CamerasChoosing and Using Scientific Cameras

1{1 The image problem{{ Think in photons2{{3 Real cameras are not perfect{4{ Know thyself

5{

{ The Living Image: Case Studies5{ g g

Page 13: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

THINKING IN PHOTONS2{ } THINKING IN PHOTONS2{ }IIS

THINKING IN• Aren’t ADU’s or grey levels good 

enough?PHOTONSREALLY gREALLY

NECESSARY?

SCIENTIFIC CAMERAS SHOULD MEASURE PHOTONS

Page 14: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

PHOTONS REALLY MATTER2{ } PHOTONS REALLY MATTER2{ }

Truth

100 photons peakLooks similar butLooks similar, but‐ The histogram is different‐ Information is different

ifi i diff

Perfect camera

‐ Quantification different‐ Lower image contrastPerfect camera Background = Peak/10

Page 15: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

REMEMBER SHOT NOISE2{ } REMEMBER SHOT NOISE2{ }

Page 16: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

THINKING IN PHOTONS2{ } THINKING IN PHOTONS2{ }h i f i i i i li i d• The information in an image is limited by the number of photons.WHAT’S

• A perfect camera does not produce a perfect image, especially if photons 

LIMITINGMY

are limited.

Th i i b f h

MYSCIENCE?

• The minimum number of photons needed depends upon the object imaged resolution and measurementimaged, resolution and measurement requirements (i.e. your experiment).

Page 17: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

PHOTONS REALLY MATTER2{ } PHOTONS REALLY MATTER2{ }

ARE YOUCONVINCED?CONVINCED?

Page 18: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

Choosing and Using Scientific CamerasChoosing and Using Scientific Cameras

1 h bl{1 The image problem

2{{ Think in photons2{3 Real cameras are not perfect{4{ Know thyself

5{

{ The Living Image: Case Studies5{ g g

Page 19: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

{ }3 REAL CAMERAS: THINKING IN PHOTONS{ }3  REAL CAMERAS: THINKING IN PHOTONS

• Makes comparisons among camerasMakes comparisons among cameras meaningful.  (ADUs are arbitrary)HOW

DOES THIS • Brings relevance to your data.

• Kno ing the n mber of photons

DOES THISMAKE ME

• Knowing the number of photons and contrast in sample is key to picking the correct camera.

A BETTERMICROSCOPIST? picking the correct camera.

Page 20: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

REAL CAMERAS3{ } REAL CAMERAS3{ }I

• Can’t we figure everything out from a camera specs (QE and electronic

ISTHINKING IN camera specs (QE and electronic 

specs)?PHOTONSREALLY

[Hint: Maybe, but  there’s a better way]REALLY

NECESSARY?

SCIENTIFIC CAMERAS SHOULD MEASURE PHOTONS

Page 21: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

3 REAL CAMERAS ARE NOT PERFECT{

{

3 REAL CAMERAS ARE NOT PERFECT{

{

• The GapTHE• Electron multiplying CCDs (EMCCDs)• Simulations comparing perfect to product by spec• All pixels are not created equal

THEWHATAND All pixels are not created equal

• Actual product measurements• Camera noise & visualization

ANDHOW

Page 22: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

Why is aWhy is a camera manufacturer 

proclaiminghthat 

cameras are not perfect?cameras are not perfect?

Page 23: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

Because NO camera is perfect&

B d t di hBecause understanding why matters to your sciencematters to your science

Page 24: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

WHAT IS THE GAP?3{ } WHAT IS THE GAP?3{ }The difference between the performance of an actual camera and a theoretically perfect camera

{Perfect Camera

The GAP {Actual Camera

Page 25: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

UNDERSTANDINGWHY THERE IS A GAP ENABLES:3{ }UNDERSTANDINGWHY THERE IS A GAP ENABLES:3{ }

• Appropriate camera selectionAppropriate camera selection

• Optimized camera usage Better• Optimized experimental design 

BetterResults

• More reliable data analysis

Page 26: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

THE GAP DEPENDS ON:3{ } THE GAP DEPENDS ON:

{1 S h lCCD

3{ }

{1. Sensor technology EMCCDsCMOS

{2 CQuantum EfficiencyCamera Noise{2. Camera specs Camera Noise

• Read noise• Excess noise• Photo response non uniformity (PRNU)

{• Photo‐response non‐uniformity (PRNU)

Ultra low lighth{3. Input photon level Low Light

IntermediateHighHigh

Page 27: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

THE (HYPOTHETICAL) PERFECT CAMERA3{ } THE (HYPOTHETICAL) PERFECT CAMERA

Every photon is converted into one electron100% QE {3{ }

Every photon is converted into one electron100% QE 

0 e‐read noise Every electron is digitized exactly as expected every time

{{read noise

0% fixed tt i

y g y p y

Every pixel and amplifier perform identically and predictably

{{

Perfect Camera Signal to Noise Ratio

pattern noise y p p p y p y{

10

100

e R

atio

(SN

R)

In a perfect camera, the SNR of a single pixel is limited only by the physics of photon statistics

1

0.1 1 10 100 1000 10000 100000Si

gnal

to N

oisby the physics of photon statistics… i.e. shot noise.

0Signal (Photons)

Page 28: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

REAL CAMERAS ARE NOT PERFECT{ }3 REAL CAMERAS ARE NOT PERFECT{ }3

I EM X2 ORCA Fl h4 0 V2 ORCA R2ImagEM X2 EMCCD: Electron Multiplying CCD

ORCA‐Flash4.0 V2Scientific CMOS Camera

ORCA‐R2Cooled Interline CCD

Page 29: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

3 BASIC SPECS: COMPARED{ }3 BASIC SPECS: COMPAREDCCD EMCCD CMOS

{ } { { {Camera Name ORCA‐R2 ImagEM x2 ORCA Flash4 0 V2Camera Name ORCA R2  ImagEM x2 ORCA Flash4.0  V2

QE (550 nm) 70 % 90 % 72 % Read Noise SingleRead Noise Single Frame rms (e‐) 6 < 0.5 (M = 200) 1.5  

Full Well Capacity (e‐) 18,000 Gain dependent 30,000, p ,

Dynamic Range 3000:1 Gain dependent 20,000:1

Bit Depth 16 16 16p 16 16 16

Max pixel rate (Mps) 13 18 420

Pixel Size (m) 6.45 x 6.45 16 x 16 6.5 x 6.5Pixel Size (m) 6.45 x 6.45 16 x 16 6.5 x 6.5

Pixel Number 1024 x 1344 512 x 512 2048 x 2048

Page 30: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

AMPLIFIERS3{ } AMPLIFIERS3{ }

CCD and sCMOSImportant EMCCD

pdifferences

Page 31: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

ELECTRON MULTIPLYING CCDS (EMCCDS)3{ }A t f CCD F t f d

ELECTRON MULTIPLYING CCDS (EMCCDS)3{ }• A type of CCD:  Frame transfer and back‐thinned for increased QE

• Frame transfer requires ~ 100s

• Serial devices where each pixel’s chargeSerial devices where each pixel s charge is read out one at a time

• High voltage gain register on sensor for• High voltage gain register on sensor for on‐chip amplification.  

O ti t d t th h EM i it• Option to read out through EM circuitry or non‐EM circuit (normal CCD mode)

{{EMCCD architecture}}{{EMCCD architecture}}

Page 32: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

CMOS AND CCD AMPLIFIER NOISE3{ } CMOS AND CCD AMPLIFIER NOISE3{ }Output an exact multiple of the input

No noise broadening

Output is a multiple  of the input

“Read noise” broadening

Width independent of signal p glevel

CMOS d i 1 5CMOS read noise: 1.5 e‐ rms

Page 33: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

EMCCD AMPLIFIER NOISE DEPENDS ON SIGNAL3{ }EMCCD AMPLIFIER NOISE DEPENDS ON SIGNAL3{ }No electron:No electron:‐ Very small noise‐ beautiful blacks

Signal:‐ Broad (excess noise)‐ Long tail: larger apparent

contrast

Signal independent‐ No excess noise‐ Short  tail

Page 34: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

EMCCDS “DETECT” SINGLE PHOTONS BUT3{ } EMCCDS DETECT  SINGLE PHOTONS, BUT3{ }

Peak of 1e‐ output is  ~0.4e‐!0.4 e‐ (!!)

Long tail 

Signal < (some) noise

S t i di t ib ti ithSymmetric distribution, with noise extending  ~+2  (3 e‐) from mean.

Significant overlap

Quantization of ADC not included

Page 35: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

EMCCDS CAN’T COUNT3{ } EMCCDS CAN T COUNT3{ }

Outputs from 1e‐ and 2e‐loverlap.

Peak output of 2e‐ input is ~ 1e‐

CMOS not so good either at very low light

2e‐ input, CMOS tail is shorter than EMCCD

Page 36: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

EMCCD: SIGNAL DEPENDENT NOISE3{ } EMCCD: SIGNAL DEPENDENT NOISE3{ }Most probable output < mean.

Very long tail

2 = signal

Lots of overlap: 10e‐ & 20e‐Lots of overlap: 10e & 20e

Most probable output = mean

Short tail

2 = 1.5 e‐

CMOS clearly better

Page 37: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

EMCCD OUTPUT INCLUDING PHOTON SHOT NOISE3{ } EMCCD OUTPUT INCLUDING PHOTON SHOT NOISE

In simulated probability distribution functions for EMCCD, the output at 

3{ }p y p

high gain is not Poisson due to the electron multiplication process!

2 Photon Average Input 10 Photon Average InputGain = 200 Gain = 200

0 0005

0.0006

0.0007

0.0008

[a.u.]

0 00015

0.0002

0.00025

[a.u.] Long tailLong tail

0.0002

0.0003

0.0004

0.0005

roba

bility [

0.00005

0.0001

0.00015

Prob

ability 

0

0.0001

‐5 0 5 10

Pr

0

0 5 10 15 20 25 30

P

Photon equivalentPhoton equivalent Photon equivalent

Page 38: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

EMCCD VS CMOS AMPLIFIERS3{ } EMCCD VS. CMOS AMPLIFIERS

S h i lifi i

3{ }• Stochastic EM amplification:

– Very low noise without input– Excess noise effectively doubles photoelectron shot noise (Fn2 = 2)A i di ib i– Asymmetric output distribution

• At low light, peak output is much below mean• Long tail• Long tail

• CMOS N i i ith l i t– Noisier with no or very low input

– Noise independent of signal

Page 39: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

ELECTRON MULTIPLYING CCDS3{ } ELECTRON MULTIPLYING CCDS3{ }

Are theyAre they really what 

you thought?

Page 40: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

SIMPLE (PIXEL) SNR EQUATION3{ } SIMPLE (PIXEL) SNR EQUATION3{ }

Terms included: Not included:

QE: Quantum EfficiencyS:    Input Signal Photon Number (photon/pixel)Fn: Noise Factor

Dark Noise:  Dark current X time; considered negligible

Fn:    Noise Factor (= 1 for CCD/sCMOS and √2 for EM‐CCD)

Nr:  Readout NoiseM: EM Gain (=1 for CCD / CMOS)

Photo response non uniformity: necessary for image SNR

M:  EM Gain (=1 for CCD / CMOS)Ib:   Background

Page 41: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

RELATIVE SNR: DISPLAYS IMPERFECTIONS PERFECTLY3{ }RELATIVE SNR: DISPLAYS IMPERFECTIONS PERFECTLY3{ }

0.8

0.9

1

) rSNR is the SNR for a

0.5

0.6

0.7

SNR

(rSN

R)

Perfect

QE 70%

rSNR is the SNR for a camera plotted relative to the perfect camera

0.2

0.3

0.4

Rel

ativ

e S

QE 50% rSNR shows differences among cameras over full range of signal level

0

0.1

0.1 1 10 100 1000 10000

Signal (Photons)

g g

Signal (Photons)

Page 42: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

READ NOISE REDUCES RSNR ONLY AT LOW LIGHT3{ }READ NOISE REDUCES RSNR ONLY AT LOW LIGHT3{ }

0 9

1.0

70% QE LimitShot NoiseLimited

Read NoiseLimited

50% QE Limit

• Nr(ph): Read noise in photonsis the key low light parameter0.6

0.7

0.8

0.9

R (rSN

R)

Nr(ph) = Nr(e‐)/QE

• QE: always important0.3

0.4

0.5

elative  SNR

QE 70%, Nr(ph) = 3

QE 50%, Nr(ph) = 3 

0.0

0.1

0.2Re

Same Nr(ph) Nr (e‐) = 2.1 e‐Nr (ph) = 3

0.1 1 10 100 1000 10000

Signal (photons)Nr (e‐) = 1.5 e‐Nr (ph) = 3

Page 43: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

EMCCDS: EXCESS NOISE CREATES A GAP3{ }EMCCDS: EXCESS NOISE CREATES A GAP

SNR for CCD / CMOS SNR for EM‐CCD

3{ }SNR for CCD / CMOS SNR  for EM CCD

PQEPQESNR

F

PQEPQEMF

PQEMSNRn

2n

PQE

PQE

PQE

FPQEMF

eff

n

n

QE: Quantum Efficiency, 22

QEFQEQE

neff

yP: Input Signal Photon Number, M: EM Gain Fn: Noise Factor (assumes dark current and read noise are negligible)

2Fn

(assumes dark current and read noise are negligible)

Page 44: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

EMCCDs3{ } EMCCDs3{ }• Stochastic EM amplification adds excess noise Native QE

• Excess noise effectively lowers the SNR to a detector with½ eQEthe SNR to a detector with ½ the QE

eQE

{{ ff }}{{ Effective QE in EMCCDs }}

Page 45: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

MIND THE GAP:  PREDICTED PIXEL rSNR PERFORMANCE FOR3{ }COMMON CAMERAS

A camera with the highest The SNR of an EMCCD above 1

{ {

3{ }A camera with the highest SNR at the lowest light level may not be the best at higher light levels

The SNR of an EMCCD above 1 electron/pixel is comparable to a camera with QEeff =QE/2 due to excess noise from EM gain.

1.{ 2. {0.9

1

R)

g g g

0 5

0.6

0.7

0.8

NR

(rSN

R

P f t

1.

2.

0 2

0.3

0.4

0.5

elat

ive

SN Perfect

ORCA-R2 (CCD)

ImagEM X2 (EMCCD)

sCMOS Flash4 0 (100 fps)

0

0.1

0.2

0 1 1 10 100 1000 10000

Re sCMOS Flash4.0 (100 fps)

ImagEM X2 (BT CCD mode)

0.1 1 10 100 1000 10000

Signal (Photon, no background) = 650 nm

Page 46: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

ARE ALLPIXELS THE

• Offset non‐uniformity• Photo response non‐PIXELS THE

SAME?uniformity (PRNU)

• Dark signal non‐SAME?uniformity (DSNU)

• Read noise distribution

Page 47: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

ACCURATE MEASUREMENT OF THE NUMBER OF PHOTONS3{ } OFFSET NON‐UNIFORMITY3{ }Pixel to pixel variation of readings in the dark

+0.6

‐0.20.2

+1.0

If the zero is incorrect, then absolute measurement is also incorrect.• Most noticeable in dark or low light conditions• Most noticeable in dark or low light conditions.• Usually expressed as DN or e‐, rms.• For scientific cameras, should be less than read noise.

Page 48: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

ACCURATEMEASUREMENT OF THE NUMBER OF PHOTONS3{ } PHOTO RESPONSE NON‐UNIFORMTIY3{ }PRNU: pixel to pixel variation of the response to light (DN / photon)‐ QE variation : conversion rate of photon to e‐

(may be spectrum dependent)‐ Electronic gain variation: Conversion factor from e‐ to DN

‐15%

+22%

‐6.5%

Mean: 11.9

If the unit length incorrect, then absolute measurement is also incorrect.g ,•Most noticeable in higher light conditions.•May have spatial pattern, stable over time.U ll d % i•Usually expressed as % maximum.

Page 49: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

ACCURATE MEASUREMENT OF THE NUMBER OF PHOTONS3{ } TOTAL FIXED PATTERN NOISE3{ }Total pixel‐to‐pixel variation in the accuracy of the measurement of the number of photons Includesphotons.   Includes

• Offset non‐uniformity• Photo‐response non‐uniformity

‐15%

+22%

‐6 5%

Overall specification of the non‐uniformity measurement across the image sensor

‐6.5%

Does not include:• Errors in average QE• Temporal noise (excess noise read noise)Temporal noise (excess  noise,  read noise)• Dark current and dark current shot

Page 50: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

DARK SIGNAL NON UNIFORMITY (DSNU)3{ } DARK SIGNAL NON‐UNIFORMITY (DSNU)

550 nm 850 nm

3{ }Pixel‐to‐pixel variation in dark current

Offset : dark signal x exposure time.Noise :  (offset in e‐)

• Proportional to exposure time.• Can be >100 e- / sec for a few pixels, especially for sensors > 0C• For a given image sensor, a multiple of average dark current

Mean: 30157s: 369.5 (1.2%)

Mean: 30508s: 432 (1.4%){How big?

• Doubles for each ~8C increase in sensor temperature• Higher noise for high dark current pixels due to dark shot noise.

.

{Which {Whichtechnologies? { • Mainly sCMOS

• Identify high noise pixels and correct in image• Dark shot noise can NOT be corrected.Correction {{

Page 51: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

READ NOISE UNIFORMITY: CCD & EMCCD3{ } READ NOISE UNIFORMITY: CCD & EMCCD

CCDs and EMCCDs: All pixels are readout through the same amplifier and digitization

3{ }CCDs and EMCCDs:  All pixels are readout through the same amplifier and digitizationcircuits and therefore read noise is very  uniform.Median = spatial rms

1000000

10000000Noise Histogram

6 e (rms)0 4 ( )

10000

100000

s (0.1 e‐

bin)

CCD

EMCCD Gain

6 e‐ (rms) temporal ~8 Mpix / sec

0.4 e‐ (rms) temporal)

100

1000

Num

ber o

f pixel EMCCD.   Gain 

dependent~18 Mpix / sec

1

10

0 2 4 6 8 10 12 14 16 18 200 2 4 6 8 10 12 14 16 18 20

Temporal read noise (e‐, rms)

Page 52: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

READ NOISE UNIFORMITY: CMOS3{ } READ NOISE UNIFORMITY: CMOS

CMOS: Each pixel has an independent amplifier and each column has an independent

3{ }CMOS:  Each pixel has an independent amplifier and each column has an independentamplifier.  Read noise is pixel dependent“Median” < spatial rms. 

1,000,0000.85  e‐Median

10,000

100,000

of pixels 

1.51 e‐ spatial rms

100

1,000

Num

ber 

(10 s/ row) = 420  Mpix/sec

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Temporal read noise (e‐, rms)

Page 53: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

READ NOISE3{ } READ NOISE3{ }• CCDs: Uniform, readout speed 

dependent, relatively high.

• EMCCDs: Uniform, gain and readout speed dependent, very 

Things to p p , y

low with EM gain > ~50, but relatively high in “normal CCD” 

keep in i dmode.

• sCMOS: pixel dependent little

mind• sCMOS: pixel dependent, little 

dependence on readout speed for a particular camera.p

Page 54: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

MEASURINGMEASURINGTHE

R GAn in‐depth look at noise in CCD, EMCCD and CMOSREAL GAPCCD, EMCCD and CMOS cameras

Page 55: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

A CLEARER WAY TO COMBINE CAMERA SPECIFICATIONS3{ }A CLEARER WAY TO COMBINE CAMERA SPECIFICATIONS3{ }• Single Frame rSNR Summarizes whole sensor performancep– QEGain– Gain

– Noise: including spatial rms read noise, excess i d k h t inoise, dark shot noise

– Fixed pattern noises, including offset non‐uniformity and PRNU

– Saturation

Page 56: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

ORCA R2 INTERLINE CCD: PREDICTABLE AND ROBUST3{ } ORCA‐R2 INTERLINE CCD:  PREDICTABLE AND ROBUST

PRNU is insignificant{1 Bright Image:

3{ }PRNU is insignificant{1. shot noise limited

{ Mean intensity: 17,300 e-: 130.5e-

PRNU: not measurable{2.Single frame read noise histogram has a  Gaussian distribution 

10000 1.0 

Read Noise(Nr/QE)

Shot Noise & QE

100

1000

10000

Coun

t

0.6 0.7 0.8 0.9  58% QE Limit

1

10

78 60 43 25 8 10 27 45 62 80

C

0.10.2 0.3 0.4 0.5 

‐78 ‐60 ‐43 ‐25 ‐8 10 27 45 62 80

Dark reading (ph)‐

0.1 

10  100  1,000  10,000 signal (photon)

=650 nm

Page 57: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

EMCCD: SOME SURPRISING RESULTS3{ } EMCCD:  SOME SURPRISING RESULTS

Thickness variations from back- 550 nm 850 nm

{

3{ }Thickness variations from backthinning process causes spectrally-dependent PRNU

• Cannot be removed during

{1.• Cannot be removed during

manufacturing• Must be calibrated by users for their

specific spectrum.

Mean: 30157s: 369.5 (1.2%)

Mean: 30508s: 432 (1.4%)

p p• Individual pixel map required for

correction

0 7

0.8

0.9

1Calculated Single Frame rSNR

0 3

0.4

0.5

0.6

0.7

rSNR

Q % ( ff)

The Gap for EMCCD in CCD mode becomes very wide due to PRNU{2.

0

0.1

0.2

0.3

10 100 1000 10000 100000

eQE: 95% (gain off)Nr/eQE = 8.4 photonsPRNU: 1.4%

wide due to PRNU{10 100 1000 10000 100000

Photons

Page 58: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

COMPLEX BEHAVIOR:  A CLOSER LOOK AT EMCCD SNR WITH3{ } HIGH AND LOW GAIN

Complex Behavior

3{ }Complex Behavior

tura

tion

0 8

0.9

1- Excess noise (eQE)- PRNU- Saturation

Hi h d i

Sa 90% QE Limit

Excess Noise

0.6

0.7

0.8

e SN

R

- High read noise (34 e- @ M=5, 70 fps)

- Gain hard to measure

Excess Noise

0.3

0.4

0.5Re

lativ

e

系列1Gain = 5

0

0.1

0.2

0 01 0 1 1 10 100 1000 10000

系列1系列2Gain   5

Gain = 400

0.01 0.1 1 10 100 1000 10000

Input photon number (photon)

Page 59: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

ORCA FLASH4 0 V2 (SCMOS): A VERY COMFORTABLE SWEET SPOT3{ } ORCA‐FLASH4.0 V2 (SCMOS):  A VERY COMFORTABLE SWEET SPOT3{ }The “Sweet Spot”

1.0

Shot Noise & QE

70% QE Limit

0 60.70.80.9 70% QE Limit

0.30.40.50.6

rSNR

0.00.10.2

1 10 100 1,000 10,000Signal (Photons @650 nm)

Page 60: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

THE IMAGE SENSOR IS NOT THE CAMERA:  PRNU IS SIGNIFICANT IN3{ } “SCIENTIFIC” CMOS IMAGE SENSORS

Raw Data  Corrected Data 

3{ } {

Bright Image

{

Bright Image

PRNU ~2% PRNU ~0 5%

Si l lifi d d di i i d i l ll l

PRNU: ~2% PRNU: ~0.5%

Signal amplified and digitized in column‐parallel ADC.FPGA provides offset and gain correction to the  raw digitized signal.

Page 61: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

SCMOS: PIXEL DEPENDENT READ NOISE3{ } SCMOS:  PIXEL‐DEPENDENT READ NOISE1,000,000

0.85  e‐Median Single Frame Read

3{ }

Rms read noise matches single frame rSNR.

10,000

100,000

er of p

ixels 

1.51 e‐ rmsNoise (measured)

g

100

1,000

Num

be

(10 s/ row) = 100 full fps10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Temporal read noise (e‐, rms)

( / ) p

Single Frame Dark Histogram

Does not fit a Gaussian 100

1000

10000

r of p

ixels

distribution, i.e. is not completely modeled by a single “read noise.”1

10

‐19.7

‐17.8

‐15.8

‐13.9

‐11.9

‐10.0

‐8.0

‐6.1

‐4.1

‐2.2

‐0.2 1.7

3.7

5.6

7.6

9.5

11.5

13.4

15.4

17.3

19.3

Num

ber

photon equivalent @ 650 nm

Page 62: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

SCMOS: IMPROVING VISUAL IMAGE QUALITY3{ } “NOISY” PIXEL FILTERINGMap high noise pixels  and 

3{ }T

Correction OFF Correction ON selectively replace value with the average of the surrounding pixels.

AUTO

 LUT

A

• Improves  contrast & “flicker”  with “auto” LUT.

• Small difference with 

olled LU

T controlled LUT• Affects only a very small 

number of pixels in frame

Contro

30 photons peak, ~10 photons  avg.

Page 63: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

3 MANAGING READ NOISE{ }3 MANAGING READ NOISECCD EMCCD CMOS

{ }

Read noise expressed in photons is the key specification

{ { {Specs

Read noise expressed in photons is the key specification.Nr (ph) = Nr (e‐)/QE

DistributionUse spatial or singleUse spatial or single 

frame rms, not median rms

Optical matchingData collection Analog binning,  optical matching

Use slowest clock speed possible 

Optical matchingUse pixel noise filter 

when possible  

Visualization Set lower threshold to a minimum of  offset plus 0 to 3 noise standard deviations

Statistical Poisson + uniform Complicated gain Poisson + pixel‐noise model

Poisson + uniform Gaussian

Complicated, gain dependent

Poisson + pixeldependent Gaussian

Page 64: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

WHAT ABOUTIMAGES?

• Perfect and real cameras

IMAGES? • Visualization• Histograms• How many photons do 

you need?

Page 65: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

COMPARING CAMERAS: 1000 PHOTON PEAK3{ } VISUALLY SIMILAR3{ }

T

PerfectsCMOS EMCCD CCD

AUTO

 LUT

lled LU

TCo

ntrol

sCMOS:Noise Correction ON

Page 66: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

COMPARING CAMERAS: 100 PHOTON PEAK3{ } CAMERA NOISE AND / OR VISUALIZATION MATTER3{ }

T

PerfectsCMOS EMCCD CCD

AUTO

 LUT

olled LU

TCo

ntro

sCMOS:Noise Correction ON

Page 67: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

HARDER TO SEE IN THE DARK: 30 PHOTON PEAK3{ } CAMERA & VISUALIZATION CRITICAL3{ }

T

PerfectsCMOS EMCCD CCD

AUTO

 LUT

rolled LU

TCo

ntr

sCMOS:Noise Correction ON

Page 68: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

3{ }HISTOGRAMS: MOST SIMILAR TO THE PERFECT CAMERA

sCMOS EMCCD CCD Perfect

3{ }HISTOGRAMS: MOST SIMILAR TO THE PERFECT CAMERA

sCMOS EMCCD CCD Perfect

hotons

30 ph

photon

sph

oton

s100 

100 

000 ph

oton

s10

Mean photons: ~35% of peak

Page 69: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

HOW MANY PHOTONS DO I NEED WITH A PERFECT CAMERA?3{ }HOW MANY PHOTONS DO I NEED WITH A PERFECT CAMERA?30 100 1000

3{ }UT

AUTO

 LUed

 LUT

Controll

Page 70: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

HOW MANY PHOTONS DO I NEED WITH A REAL CAMERA?3{ }HOW MANY PHOTONS DO I NEED WITH A REAL CAMERA?EMCCDsCMOS CCD Perfect

3{ }0 ph

oton

s

Good enough?

30nsUT

? Bad Good enough?

100 ph

oton

ontrolled L

Good

oton

s

Co Good ? Good

Good1000

 pho

Good Good GoodsCMOS:Noise Correction ON Photons : peak intensity in whole, not zoomed, image

Page 71: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

HOW TO NARROW THE GAP3{ } HOW TO NARROW THE GAP

1 K h d{

3{ }1 Know what you want to do{ The number of photons required to “see” something depends upon what 

you want to see, and how clearly you want to see it, even with a perfect 

Turn up the light carefully2{camera.

R l d i lit h h th i h

3 Vi li ti tt

{

{

Real cameras reduce image quality, however when there is enough light, all scientific cameras work well

3 Visualization matters{ Monitor choice, ambient light, LUT settings all make a difference 

4 Use the right camera{ Gen II sCMOS cameras have comparable or better image quality than EMCCDs at light levels typically required for visual imaging

Page 72: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

CHOOSING AND USING SCIENTIFIC CAMERASCHOOSING AND USING SCIENTIFIC CAMERAS

1 h bl{1 The image problem

2{{ Think in photons2{3 Real cameras are not perfect{4{ Know thyself

5{

{ The Living Image: Case Studies5{ g g

Page 73: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

KNOW THYSELF4{ } KNOW THYSELF4{ }

sample contrast

WHAT IS MOSTl ti

frame rate

IMPORTANTFOR YOUR accuracy

resolution

FOR YOUREXPERIMENT?

accuracy

background

Page 74: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

CONSIDER THE ENTIRE SYSTEM4{ }CONSIDER THE ENTIRE SYSTEM4{ }

• Lightsheet microscopy (SPIM)• Lightsheet microscopy (SPIM)TWO

EXAMPLES • Single molecule localization microscopy

EXAMPLES

Page 75: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

Light Sheet Micoscopy4{ }

Light Sheet Micoscopy4{ } Just like Localization 

Microscopy LSM has many faces

LSFM ‐ Light Sheet Fluorescence MicroscopeSPIM ‐ Single Plane Illumination MicroscopeOPM ‐ Oblique PlaneMicroscopysTSLIM – Scanning Thin Sheet Laser Illuminationfaces

Benefits

MicroscopymSPIM – Multidirectional SPIM

Benefits Better sectioning vs. widefield Less photodamage vs. confocal Fast acquisition of large samples

N d l t New developments Multiple Cameras Structured Illumination 

75

Page 76: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

MuVi SPIM and SIMView4{ }

MuVi‐SPIM and SIMView4{ } Multiple illumination 

beams and cameras

Increased isotropy and axial resolutionaxial resolution

Faster scanning with phase Faster scanning with phase or wavelength separation of offset beamsof offset beams

76

Page 77: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

4{ } SCMOS IS >20X FASTER THAN EMCCDS4{ }

SPEED!SPEED!

Page 78: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

LIGHT SHEET MICROSCOPY4{ } LIGHT SHEET MICROSCOPY4{ }

http://thelivingimage.hamamatsu.com/http://player.vimeo.com/video/74253101

Page 79: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

LIGHT SHEET MICROSCOPY4{ } LIGHT SHEET MICROSCOPY4{ }

• Large field of view (high pixel number)• High speed (data rate)• High speed (data rate)• Large dynamic range• Reasonably low noise

CRITICAL CAMERA

CHA AC IS ICS • Reasonably low noise• Rolling shutter synchronized to sample 

scanning with variable speed

CHARACTERISTICS

scanning with variable speed

Camera: ORCA Flash4.0 Scientific CMOS

Page 80: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

LIGHT SHEET MICROSCOPY4{ } LIGHT SHEET MICROSCOPY4{ }Light sheet microscopy – matching the camera 

and optical systemp y

http://www hamamatsu com/sp/sys/en/promotion/mp4/s Lightsheet en htmlhttp://www.hamamatsu.com/sp/sys/en/promotion/mp4/s_Lightsheet_en.html

Page 81: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

OPTIMALLY USING THE CAMERA FOR THE TASK4{ }

{4{ }

{{{{

{{{

Page 82: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

STANDARD PRACTICE IS NOT THE BEST PRACTICE: USING EMCCD4{ } STANDARD PRACTICE IS NOT THE BEST PRACTICE:  USING EMCCD WITH GAIN YIELDS LEAST ACCURATE RESULTS

4{ }

CCD QE: 100%, read noise = 1.8 ph, no background;  No fixed pattern noise.

Ad d f J Ch l (Ob L b) N M h10 2013) d i 10 1038/ h 2396Adapted from: J. Chao et al (Ober Lab), Nat.  Meth10, 2013) doi:10.1038/nmeth.2396http://www.wardoberlab.com/

Page 83: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

UNCORRECTED PRNU CAN LEAD TO LOCALIZATION BIAS4{ } UNCORRECTED PRNU CAN LEAD TO LOCALIZATION BIAS

Localization di t ib ti & bi

Impact of PRNU on localization bias:

4{ }distribution & bias

mEos2 simulation Alexa 647 simulation 

0.5% PRNU: 1 – 2 nm @ 100 nm/ pixel

(750 photons)(3000 photons)

Courtesy: Zhen‐li Huang, Huazhong University of Science and Technology, (unpublished)

Page 84: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

COMPENSATING READ NOISE VARIATION4{ } COMPENSATING READ NOISE VARIATION4{ }

Courtesy Prof. Joerg Bewersdorf, Yale University

I ti i l ifi d i i t th M i Lik lih d P b bilit M d l li i t d thIncorporating pixel‐specific read noise into the Maximum Likelihood Probability Model eliminates  and narrows the asymmetric  distribution of localized molecules caused by higher read noise pixels.Courtesy F. Huang, Bewersdorf Lab

Page 85: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

MLE RECONSTRUCTION MUST USE A NOISE MODEL4{ } INCLUDING CAMERA NOISEWorst

4{ }

Best

Note:  MLE for EMCCDs are also difficult:I t i

Simple and good‐ Inaccurate gain‐ Output PDF not Poisson‐ Even at “high” light,  the variance is 2X the mean signal (in photons). 

Courtesy: Zhen‐li Huang, Huazhong University of Science and Technology, (unpublished)

Page 86: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

SELECTING AND USING CAMERAS: CASE STUDIES4{ } SELECTING AND USING CAMERAS: CASE STUDIES

{4{ }

{{{{

{{{

Page 87: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

44{ }44{ }

{Accurate measurement of the distance between two

{ResultsAccurate measurement of the distance between two fluorophores of different colors.  distance ~0.77 nm using a dichroic beamsplitter to direct each color of light to separate halves of the CCD camera{halves of the CCD camera.

{Camera Measured PRNU maps for each color.  Improved 

{Speed: 5 50 s / measurement Imaging: Simultaneous 2 color

{Correctionp p

localization relative accuracy by ~2– 4 nm.

{DetailsSpeed: 5 – 50 s / measurementLight: ~4,000 – 10,000 ph/ mol/frame

~105 ph / mol before bleaching

Imaging: Simultaneous 2 colorCamera:  Back‐thinned EM‐CCD, gain off

Nature (2010)| doi:10.1038/nature09163

Page 88: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

4{ }4{ }

{Cholera toxin B subunit             scale bar: 1 m

Localization Microscopy with Minimal Bleaching.  Plasma membrane dynamics for > 60 s (594 frames). 40% better localization precision than “conventional” EMCCD localization 

1 m 1 m{Resultsp

Implemented detailed statistical EM noise model into 

{{Camera

maximum likelihood reconstruction probability model.{Correction

{Speed: ~60s / reconstructed imageLight: ~100 photons /molecule  frame

Mag: 630XCamera: EM‐CCD, Gain ~1000{Details

Courtesy of J. Chao et al (Ober Lab) Adapted from Nat  Meth (2013) doi:10.1038/nmeth.2396

Page 89: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

Localization Precision “conventional” EMCCD vs. 4{ } sCMOS4{ }

C t f F H B d f L b Y lCourtesy of F. Huang. Bewersdorf Lab, Yale   Adapted from F. Huang et al., Nature Methods 10(7): 653‐658 (2013) 

Page 90: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

MINIMIZING THE GAP: MATCHING THE CAMERA TO4{ }YOUR NEEDS4{ }

Higher AccuracyBetter ResolutionL S l C S i ifi CMOS

ired

Lower Sample Contrast(BT)‐CCD

Scientific CMOSght R

equi

EMCCDLi EMCCD Singlephoton

EMCCD 

Speed / Field of ViewFaster (or more pixels)

Page 91: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

Choosing and Using Scientific CamerasChoosing and Using Scientific Cameras

1 h bl{1 The image problem

2{{ Think in photons2{3 Real cameras are not perfect{4{ Know thyself

5{

{ The Living Image5{ The Living Image

Page 92: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

RESOURCES FOR MICROSCOPISTS5{ } RESOURCES FOR MICROSCOPISTS5{ }

http://thelivingimage hamamatsu comhttp://thelivingimage.hamamatsu.com

Page 93: Choosing and using scientific cameras - Hamamatsu  · PDF file · 2014-04-22displaying full bit depth ... (HYPOTHETICAL) PERFECT CAMERA ... EMCCDS: EXCESS NOISE CREATES A GAP

ACKNOWLEDGEMENTSACKNOWLEDGEMENTS

Prof Zhen‐li Huang Huazhong University of Science and TechnologyProf. Zhen‐li Huang, Huazhong University of Science and TechnologyF.  Long et al, OPTICS EXPRESS 17741 (2012) 

Prof. Joerg Bewersdorf, Yale UniversityF. Huang et al., Nature Methods 10(7): 653‐658 (2013) 

Prof. Raimund Ober, Texas Southwestern UniversityJ. Chao et al, Nat  Meth (2013) doi:10.1038/nmeth.2396

Prof. Lars Hufnagel, EMBL

Dr. Philip Keller, Janelia Farms

HamamatsuTeruo Takahashi: simulationsHiroyuki Kawai: camera measurementsoyu a a ca e a easu e e tsStephanie Fullerton: presentation guidanceKatsuhide Ito:  Lightsheet microscopyEiji Toda: budget

Download 32 f d i 500Download(look on The Living Image)Keith [email protected]

32  fps dynamics.  500 nm scaleCourtesy Vutara / Prof. Bewersdorf