chiral proton catalysis in organic synthesis proton catalysis in organic synthesis samantha m....

46
Chiral Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14 th , 2005

Upload: tranthuy

Post on 25-May-2018

230 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Chiral Proton Catalysis in Organic Synthesis

Samantha M. FrawleyOrganic Seminar

September 14th, 2005

Page 2: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Seminar Outline

IntroductionLewis Acid-assisted Chiral Brønsted Acids

Enantioselective protonation for silyl enol ethers

Chiral Brønsted Acid Catalysis: Polar Covalent Enantioselective synthesis using chiral phosphoric acidsEnantioselective synthesis using di-ol Brønsted acids

Chiral Brønsted Acid Catalysis: Polar IonicDifficulties in formationFirst successful useEnantioselective synthesis using a “chiral proton”

Conclusion

Page 3: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Lewis Acid Catalysis

AdvantagesStructural diversity and reactivity enabling the design for a variety of ligandsEasily adapted for asymmetric reactions

DisadvantagesMany are metals

ToxicExpensive reagentsCostly waste disposal

Page 4: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Brønsted Acid Catalysis

AdvantagesMild reaction conditions Non-toxic waste Inexpensive and stable catalysts

DisadvantagesDifficult to accomplish asymmetricallyHard to tune for various reactions

Dalko, R.; Moisan, L. Angew. Chem. Int. Ed. 2001, 40, 3726.List, B.; Lerner, R.; Barbas III, C. J. Am. Chem. Soc. 2000, 122, 2395.

Page 5: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Tips From Nature

H R2

O

R1 R2

O OH+

H R2

O

R1

OHR1

OH

H

H

R1

OH

H R2

O

R1 R2

O OH+

H R2

OH

R1

OHL*

L H*

Page 6: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Methods in Chiral Proton Catalysis

Lewis Acid-assisted Chiral Brønsted Acids

Chiral Brønsted Acids: Polar Covalent

Chiral Brønsted Acids: Polar Ionic

M H + substrate H substrate**

L H + substrate H substrate**

L H H substratesubstrate+ **

Page 7: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Seminar Outline

IntroductionLewis Acid-assisted Chiral Brønsted Acids

Enantioselective protonation for silyl enol ethers

Chiral Brønsted Acid Catalysis: Polar Covalent Enantioselective synthesis using chiral phosphoric acidsEnantioselective synthesis using di-ol Brønsted acids

Chiral Brønsted Acid Catalysis: Polar Ionic Difficulties in formationFirst successful useEnantioselective synthesis using a “chiral proton”

Conclusion

Page 8: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Lewis Acid-assisted Chiral BrønstedAcids (LBA)

Brønsted acids coordinate to Lewis acidsRestricting orientation of protonsRaising the acidity of the protons

O

O

Ar

ArSnCl4

H

R

O

O

H

R

SnCl4

Nakamura, S.; Kaneeda, M.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8120.Ishihara, K.; Nakashima, D.; Hiraiwa, Y.; Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 24.

Page 9: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Enantioselective Protonation of SilylEnol Ethers using an LBA

OSiMe3Ph

O

+toluene

-78 oC, 1 h>99% yield

PhO

O

H

R

SnCl4

O OH

RSn

Cl

Cl

Cl

Cl

OSiR3

OSiR3Ar (R) LBA

OAr

Ar

Nakamura, S.; Kaneeda, M.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8120.Ishihara, K.; Nakashima, D.; Hiraiwa, Y.; Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 24.

Page 10: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Enantioselective Protonation of SilylEnol Ethers-Results

OSiR3Ar

3

BINOL 1-SnCl4

toluene, -78 oC, 1 h100 % conv.

OAr

4

entry 3 (Ar, R3Si) ee (%), (config)

1

2

3

4

5

6

3a (Ph, Me3Si)

3b (Ph, t-BuMe2Si)

3c (p-MeOC6H4, t-BuMe2Si)

3d (p-MeOC6H4, Me3Si)

3e (2-naphthyl, Me3Si)

91, (S)

86, (S)

86, (R)

82, (S)

96, (S)

91, (S)

3b (Ph, t-BuMe2Si)

7 3f (2-naphthyl, t-BuMe2Si) 91, (S)

Nakamura, S.; Kaneeda, M.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8120.

Page 11: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Enantioselective Protonation of SilylEnol Ethers Acetals Using Various (R,R)-LBAs

OSiMe3Ph

OO

O

Ar

ArSnCl4+

solvent

-78 oC, 1 h>99% yield

Ph

H

R

entry LBA solvent ee (%)

1

2

3

4

5

toluene-CH2Cl2 (1:1)

toluene

toluene

toluene

toluene

66 [S]

51 [S]

35 [S]

96 [S]

96 [S]

1-SnCl4

2-SnCl4

3-SnCl4

4-SnCl4

6-SnCl4

O

O

Ar

ArSnCl4

H

R

1: Ar = Phenyl; R = H2: Ar = 3,4,5-F3C6H2; R = H3: Ar = C6F5; R = H4: Ar = 3,5-(CF3)2C6H3; R = H6: Ar = 3,5-(CF3)2C6H3; R = Bn

Ishihara, K.; Nakashima, D.; Hiraiwa, Y.; Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 24.

Page 12: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Enantioselective Protonation of Ketene Disilyl Acetals

OSiMe3

CH3

OSiMe3

CO2H toluene, -78 oC

>95% yield

O

O

Ar

ArSnCl4

H

RCH3

Ar

H

OH MeCl

Sn

Cl

Cl

ClO

HF3C

Me3SiOCF3

Favored

OSiMe3

Ar

H

OH MeCl

Sn

Cl

Cl

ClO

HF3C

CF3 OSiMe3

OSiMe3

Unfavored

Ishihara, K.; Nakashima, D.; Hiraiwa, Y.; Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 24.

Page 13: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Enantioselective Protonation of Ketene Disilyl Acetals with (R,R)-LBAs

R2OSiMe3

R1

OSiMe3

R2 CO2H

R1

toluene, -78 oC>95% yield

Chiral LBA

entry LBA solvent product ee (%)

1

2

3

4

5

6

(R,R)-6-SnCl4

(R,R)-7-SnCl4

(R,R)-7-SnCl4

(R,R)-8-SnCl4

(R,R)-7-SnCl4

(R,R)-7-SnCl4

toluene

toluene

toluene

toluene

toluene

toluene

76 [S]

86 [S]

90 [S]

90 [S]

85 [S]

85 [S]

CO2H

MeO

CO2H

i-Bu

Ph CO2H

Ph CO2H

OMe

CO2H

Ph CO2H

i-Pr

O

OSnCl4

H

R

6: R = Bn7: R = o-FC6H4CH28: R = Me

CF3

F3CF3C

CF3

Ishihara, K.; Nakashima, D.; Hiraiwa, Y.; Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 24.

Page 14: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Final Thoughts on Lewis Acid-assisted Chiral Brønsted Acid

AdvantagesIncreases the acidity of the proton in the BrønstedacidPreorganizes the orientation of the proton, which improves enantioselectivity

DisadvantagesStill using metals…

Page 15: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Seminar Outline

IntroductionLewis Acid-assisted Chiral Brønsted Acids

Enantioselective protonation for silyl enol ethers

Chiral Brønsted Acid Catalysis: Polar Covalent Enantioselective synthesis using chiral phosphoric acidsEnantioselective synthesis using di-ol Brønsted acids

Chiral Brønsted Acid Catalysis: Polar IonicDifficulties in formationFirst successful useEnantioselective synthesis using a “chiral proton”

Conclusion

Page 16: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Polar Covalent Hydrogen Bond-An Introduction

L H + substrate H substrate**

Orientational flexibility on proton is limitedThe proton is acidic enough so there is no need for a Lewis acidFacial preference of proton donation can be promoted by chiral acid to yield a enantiomeric/diastereomeric product

Page 17: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Using Chiral Phosphoric Acids to Promote Enantioselectivity

BINOL-derived phosphoric acid: forcing selective nucleophilic attack

OO

PO

O

H

R

R

Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Page 18: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Mannich-Type Reaction Catalyzed by a Chiral Phosphoric Acid

R1 H

N

HO

+OTMS

OMeR1

CO2MeHN

HO

OO

POH

O

R

R10 mol%

toluene-78 oC, 24 h

OO

PO

O

H

R

R

R

N

H Nuc

HO

Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Page 19: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Effects of the Aromatic Substituentson Chiral Phosphoric Acids

H

N

HO

+OTMS

OMeR1

CO2MeHN

HO

O

Ar

Ar

OP

OH

O

30 mol%

toluene-78 oC

Entry Ar t [hr] Yield [%] ee [%]

1

2

3

4

5

H

Ph

2,4,6-Me3C6H2

4-MeOC6H4

4-NO2C6H4

22

20

27

46

4

57

100

100

99

96

0

27

60

52

87

Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Page 20: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Enantioselective Mannich-type Reaction Results

R1 H

N

HO

+OTMS

OMeR1

CO2MeHN

HO

OO

POH

O

NO2

NO2

10 mol%

toluene-78 oC, 24 h

Entry R1 Yield [%] ee [%]

1

2

3

4

Ph

p-MeC6H4

p-FC6H4

p-ClC6H4

98

100

100

100

89

89

85

80

Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Page 21: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Diastereoselective Mannich-Type Reaction: Mechanistic Insight

N

HO

+

OTMS

OR3H

R2CO2R3

HN

HO

R2

+CO2R3

HN

HO

R2

OO

POH

O

NO2

NO2

10 mol%

OOP O

OH

N

HO

HR2

R3O OTMS

NO2

Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Page 22: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Diastereoselective Mannich-type Reaction Results

R1

N

HO

+

OTMS

OR3H

R2 R1CO2R3

HN

HO

R2

+

R1CO2R3

HN

HO

R2

OO

POH

O

NO2

NO2

10 mol%

Entry

123456789

10

R1R2 R3 Yield [%] syn / anti ee [%]

96888481889091879091

87:1392:891:994:694:695:593:793:795:5

100:0

1001001001008191

100926579

EtEtEtEtEtEtEtEtEtMe

MeMeMeMeMeMePhCH2

PhCH2

PhCH2

Ph3SiO

Php-MeOC6H4

p-FC6H4

p-MeC6H4

2-ThienylPhCH=CHPhp-MeOC6H4

PhCH=CHPh

Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Page 23: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

EnantioselectiveHydrophosphonylation of Imines

R P(Oi-Pr)2R H

N

OMe

PO

HOi--Pr

Oi-Pr+

10 mol%

m-Xylenert

HN

O

OMe

OO

CF3

CF3

CF3

CF3

PO

O

H

Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org. Lett. 2005, 7, 2583.

Page 24: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

EnantioselectiveHydrophosphonylation-Results

R1 H

N +10 mol% chiral Phosphoric Acid

OMe

PO

H Oi-PrOi-Pr m-Xylene, rt R1 P(Oi-Pr)2

HN

O

OMe

Entry R1 Yield [%] ee [%]

1

2

3

4

Ph

o-MeC6H4

o-NO2C6H4

p-CH3C6H4CH=CH

84

76

72

52

69

77

time (h)

24

46

24

170

145

171

70

49

46

88

97

80

82

92

86

86

83

82

87

88

90

5

6

7

8

9

p-ClC6H4CH=CH

o-CH3C6H4CH=CH

o-ClC6H4CH=CH

o-NO2C6H4CH=CH

o-CF3C6H4CH=CH

OO

F3C

CF3

F3C

CF3

PO

O H

Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org. Lett. 2005, 7, 2583.

Page 25: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Mechanistic Insight and Experimental Support

OO

F3C

CF3

F3C

CF3

PO

O H

OP

H OR

Ar HORN

OMe10 mol%

m-Xylenert

Ph

NPMP

Ph P(OR)2

HN

O

+ Nu

PMP

OO

F3C

CF3

F3C

CF3

PO

O H

OP

HOR

POH

OROROR

Entry Nu Yield [%] ee [%]

1

2

HPO(O-i-Pr)2

P(O-i-Pr)3

92

23

84

3

Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org. Lett. 2005, 7, 2583.

Page 26: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Enantioselective Reduction of Imines Using Hantzsch Dihydropyridine

R R1

NR2 N

H

OEt

O

EtO

O

R R1

HNR2

Ar

Ar

OO

POOH

5 mol%

*

Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781.

Page 27: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Catalytic cycle for the Transfer Hydrogenation

R R1

N

ArOArO

POOH

R2

ArOArO

POO

R R1

NR2H

NH

OEt

O

EtO

O

R R1

HNR2

*

NH

OEt

O

EtO

O

ArOArO

POO

N

OEt

O

EtO

O

*

*

*

HH

Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781.

Page 28: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Catalytic Enatioselective Reduction Results

R CH3

NNH

OEt

O

EtO

O

R CH3

HN

*benzene, 60 oC5 mol% Bronsted acid

OMe OMe

Entry R Yield [%] ee [%]

1

2

3

4

71

76

82

72

74

84

74

91

71

76

62

46

78

78

74

72

72

82

5

6

7

8

9

p-CF3C6H4

Ph

o-FC6H4

o-CH3C6H4

2,4-Me2C6H3

biphenyl

p-MeOC6H4

m-BrC6H4

o-CF3C6H4

OO

F3C

CF3

F3C

CF3

PO

O H

Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781.

Page 29: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Seminar Outline

IntroductionLewis Acid-assisted Chiral Brønsted Acids

Enantioselective protonation for silyl enol ethers

Chiral Brønsted Acid Catalysis: Polar CovalentEnantioselective synthesis using chiral phosphoric acidsEnantioselective synthesis using di-ol Brønsted acids

Chiral Brønsted Acid Catalysis: Polar Ionic Difficulties in formationFirst successful useEnantioselective synthesis using a “Chiral proton”

Conclusion

Page 30: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Chiral Brønsted Acid Catalyzed Asymmetric Morita-Baylis-Hillman

2 mol% Bronsted acid

0 oCEt3P

THF,Ph H

OO O

Ph

OH

+

O

O

OCH3

O

O

OCH3

H

7

H

X

OHOH

5a X = H

X

5b X = Br5c X = CHPh2

X

OCH3

OH

6a X = H

X

6b X = Br

entry catalyst % yield %ee

1

2

3

4

5

6

7

8

9

10

5a5b

8a

8e

8b8c

6a

1

6b

5

74

73

73

69

9

70

84

43

15

32

48

79

86

31

88

86

3

3

11

12

13

8d 68 86

7 13 5

5c 36 74

Ar

OHOH

Ar

8a Ar = Ph8b Ar = 3,5 Me2Ph

8d Ar = biphenyl8c Ar = 3,5 (CF3)2Ph

8e Ar = 2,4,6 Me3Ph

McDougal, N.; Trevellini, W.; Rodgen, S.; Kliman, L.; Schaus, S. Adv. Synth. Catal. 2004, 346, 1231.

Page 31: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Asymmetric Morita-Baylis-Hillman Reaction Results

Ar

OHOH

Ar

8b Ar = 3,5 Me2Ph8c Ar = 3,5 (CF3)2Ph

R H

OO O

R

OH10 mol % catalystEt3PTHF

-10 oC

+

Entry Aldehyde Catalyst Yield [%] % ee

1

2

3

4

5

6

Ph H

O

H

O

n-Pent

H

O

H

OEt

BnO H

O

BnOH

O

8c

8b

8b

8b

8c

8b

88

86

80

72

74

56

90

91

90

96

82

55

7 H

O

8b 71 96

8

9

10

11

12

H

O

O

O

H

O

H

H

O

Ph H

OO2N

O

8b

8c

8b

8b

8b

82

70

40

30

39

95

92

67

34

81

Entry Aldehyde Catalyst Yield [%] % ee

McDougal, N.; Trevellini, W.; Rodgen, S.; Kliman, L.; Schaus, S. Adv. Synth. Catal. 2004, 346, 1231.

Page 32: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Brønsted Acid vs. Lewis Acid Catalyzed Morita-Baylis-Hillman

OO

Bs-Bus-Bu

Li

Bronsted Acid Catalyzed Results

Entry Aldehyde Time (h) Yield [%] % ee

1

2

3

4

Ph H

O

H

O

H

O

Ph H

O

48

48

48

88

71

82

40

90

96

95

67

48

Heterobimetallic Catalyst Results

Time (h) Yield [%] % ee

48

288

120

49

71

94

32

58

63

99

15

240

Ar

OHOH

Ar

8b Ar = 3,5 Me2Ph8c Ar = 3,5 (CF3)2Ph

Matsui, K.; Takizawa, S.; Sasai, H. Tetrahedron Lett. 2005, 46, 1943.McDougal, N.; Trevellini, W.; Rodgen, S.; Kliman, L.; Schaus, S. Adv. Synth. Catal. 2004, 346, 1231.

Page 33: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Brønsted Acid Catalyzed Enantioselective Nitroso AldolReaction

O

O

OHOH

(30mol%)

toluene-78 oC, 2h

NR' R'

RR

NO O

NOH

+nn

OO

OHONO

H

NRR

Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 1080.

Page 34: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

N-Nitroso Aldol Synthesis Results

O

O

OHOH

(30mol%)

toluene-78 oC, 2h

NR' R'

RR

NO O

R R

NOH

+nnN

X

X = C: 1bX = O: 1cX = S: 1d

entry enamine n % Yield % ee

1

2

3

4

5

6

7

8

1b 0

1

1

1

1

1

1

2

H, H

Me, Me

<1

81

78

63

67

91

88

81

83

82

91

65

79

77

80

R, R

1b1b

1b

1b

1c

1d

1e

H, H

H, H

H, H

H, H

H, H

(OCH2CH2O) __

1e

N

OO

Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 1080.

Page 35: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Final Thoughts on Chiral BrønstedAcids: Polar Covalent

AdvantagesNo more metals in the reactionThe acid works to activate the substrate and control the stereochemistryMild reaction conditions

LimitationsVery dependant on aciditySubstrate dependent

Page 36: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Seminar Outline

IntroductionLewis Acid-assisted Chiral Brønsted Acids

Enantioselective protonation for silyl enol ethers

Chiral Brønsted Acid Catalysis: Polar Covalent Enantioselective synthesis using chiral phosphoric acidsEnantioselective synthesis using di-ol Brønsted acids

Chiral Brønsted Acid Catalysis: Polar IonicDifficulties in formationFirst successful useEnantioselective synthesis using a “chiral proton”

Conclusion

Page 37: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Developing Enantioselective Polar Ionic Hydrogen Bonds

L H H substratesubstrate+ **

BenefitsNo acidity/basicity catalyst limitationsLigands serve only as a “binding pocket” to deliver a proton asymmetrically to the substrate

ChallengesSpherical nature of empty 1s orbitalProton’s nucleus is more “promiscuous” than other Lewis acidsChiral complex leads to achiral catalysis by solvent-coordinated Brønsted acid

Nugent, B.; Yoder, R.; Johnston, J. J. Am. Chem. Soc. 2004, 126, 3418.

Page 38: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

The First Use of Polar Ionic Bonds as Stereocontrol Elements

4-5 oC*-27 oC

MeON

R'

NH

R H

H

O O+

MeO

OH

O

HHCH2Cl2

MeO

OH

H

H

O

5a 6a

+

H3C(H2C)14

NH2

NH27

9

NH

HON

HO

OH

catalyst (equiv) % yield %ee of 5a

8a (1)

9a (1)

9b (1)

7a (1)<346

70

83

35

011

22

19a (1) 73 26

no catalyst

(5a + ent-5a):(6a + ent-6a) %ee of 6a

<0.1:1

2.4:1

2.5:1

2.8:1

2.8:11.0:1

0 0

0

15

28

33

2

*NH

HONH

8

a: Counterion = tetrakis(3,5-bis(trifouoromethyl)phenyl)borateb: Counterion = picrate

Schuster, T.; Bauch, M.; Dürner, G.; Göbel, M. Org. Lett. 2000, 2, 179.

Page 39: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Mechanistic Insight on Major Product Formation

The diene is shielded from the backside due to the phenylnaphthalene moiety Cycloaddition occurs at the front

O

OH

H

ON NH

HH

O O

NNH

R H

H

O OH

O

NNH

R H

H

O OH

O

unfavored favored

Schuster, T.; Bauch, M.; Dürner, G.; Göbel, M. Org. Lett. 2000, 2, 179.

Page 40: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Enantioselective Diels-Alder with Amidinium Ions-Results

H3C(H2C)14

NH2

NH27

HO

OH

NH

HONH

9a

entry catalyst (equiv) % yield %ee of 5b

123

4

5

6

9a (0.25)

9a (0.5)

9a (1)

9a (0.1)3320

70

89

94

3940

40

43

9a (1) 83 40

7(1)

(5b + ent-5b):(6b + ent-6b) %ee of 6b

2.8:1

3.1:13.1:1

3.0:1

2.9:13.2:1

0 0

4244

45

46

50*

4-5 oC*-27 oC

MeON

R'

NH

R H

H

O O+

MeO

OH

O

HHCH2Cl2

MeO

OH

H

H

O

5b 6b

+

Schuster, T.; Bauch, M.; Dürner, G.; Göbel, M. Org. Lett. 2000, 2, 179.

Page 41: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Did Polar Ionic Hydrogen Bonds Really Play a Role in the Enantioselectivity?

The amidinium ion induced facial selectivity based on one face was sterically blockedWhen a stronger counterion was used, the stereoselectivity disappearedThis work lead to the thought “can we design a chiral proton?”

Page 42: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Enantioselective Aza-Henry Reaction using a Polar Ionic Hydrogen Bond

R1-C6H4 H

NBocR2 NO2

N

NH

HN

H

NH

H

+ R1-C6H4

NHBocNO2

R2

OTf

10 mol%

-20 oC

NN

N

H H

N H

N

H

Boc

R2 NO2

Nugent, B.; Yoder, R.; Johnston, J. J. Am. Chem. Soc. 2004, 126, 3418.

Page 43: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Aza-Henry Results

10 mol%

-20 oCR1-C6H4 H

NBocR2 NO2+ R1-C6H4

NHBocNO2

R2

HQuin-BAM-HOTf

entry R1 R2 % Yield dr % ee

1

2

3

4

5

6

7

8

9

10

H

p-NO2

m-NO2

H

p-CF3O

p-Cl

m-NO2

o-NO2

p-CF3

p-NO2

H

H

H

CH3

CH3

CH3

CH3

CH3

CH3

CH3

57

61

65

69

53

59

51

62

50

60

-

-

-

14:1

19:1

17:1

11:1

7:1

19:1

7:1

60

82

95

59

81

82

89

82

84

90

N

NH

HN

H

NH

H

OTf

Nugent, B.; Yoder, R.; Johnston, J. J. Am. Chem. Soc. 2004, 126, 3418.

Page 44: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Final Thoughts on Chiral BrønstedAcids: Polar Ionic

Advantages:source of a chiral protonAbility to circumnavigate previous problems associated with forming a chiral protonChiral proton is used both to activate and control stereochemistry

LimitationsSubstrate dependent-has to fit in the “binding pocket” of the acid in order to be efficient

Page 45: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

Conclusion

Chiral Brønsted acids are successful at enantioselective proton donation

AdvantagesNo metalsReusable catalystMild reaction conditions

DisadvantagesReactions are very substrate dependentRequires different catalyst for different reactions

Development of other reactionsDevelopment of new catalysts

Page 46: Chiral Proton Catalysis in Organic Synthesis Proton Catalysis in Organic Synthesis Samantha M. Frawley Organic Seminar September 14th, 2005

AcknowledgementsDr. WagnerDr. TepeGroup Members

VasudhaTeriJasonChrisAdamManasiJamesGwenSam 2Brandon