chemistry stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 a u 5 p...

12
1 Stability of radical-functionalized gold surfaces by self-assembly and on-surface chemistry Tobias Junghoefer, a ‡ Ewa Malgorzata Nowik-Boltyk, a ‡ J. Alejandro de Sousa, b,d Erika Giangrisostomi, c Ruslan Ovsyannikov, c Thomas Chassé, a Jaume Veciana, b Marta Mas-Torrent, b Concepció Rovira, b Núria Crivillers, b Maria Benedetta Casu* a a Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany b Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) Campus de la UAB, 08193 Bellaterra, Spain c Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), 12489 Berlin, Germany. d Laboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, 5101 Mérida, Venezuela ‡These authors contributed equally to this work Contents: 1) Survey spectra of SAM2 and fit results for the photoemission lines in the SAM2 C 1s spectra. 2) SAM1 Survey, stoichiometric analysis, and fit results for the photoemission lines in the SAM1 C 1s spectra. 3) C 1s core level spectra at 460 and 640 eV. 4) Fit results for SAM2 and SAM4 at 460 eV. 5) Fit results for SAM2 and SAM4 at 640 eV. 6) Electrochemical measurements. 7) Stability under air exposure. 8) Stability under beam exposure. Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Upload: others

Post on 18-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: chemistry Stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 A u 5 p A u 4 f A u 5 s C 1 s C l 2 p A u 4 d N 1 s O 1 s A u 4 p 3 / 2 A u 4 p 1 / 2 F

1

Stability of radical-functionalized gold surfaces by self-assembly and on-surface

chemistry

Tobias Junghoefer,a‡ Ewa Malgorzata Nowik-Boltyk,a‡ J. Alejandro de Sousa,b,d Erika

Giangrisostomi,c Ruslan Ovsyannikov,c Thomas Chassé,a Jaume Veciana,b Marta Mas-Torrent,b

Concepció Rovira,b Núria Crivillers,b Maria Benedetta Casu* a

aInstitute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen,

Germany

bInstitut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center

on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) Campus de la UAB, 08193

Bellaterra, Spain

cHelmholtz-Zentrum Berlin für Materialien und Energie (HZB), 12489 Berlin, Germany.

dLaboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias, Universidad

de los Andes, 5101 Mérida, Venezuela

‡These authors contributed equally to this work

Contents:1) Survey spectra of SAM2 and fit results for the photoemission lines in the SAM2 C 1s

spectra.2) SAM1 Survey, stoichiometric analysis, and fit results for the photoemission lines in the

SAM1 C 1s spectra.3) C 1s core level spectra at 460 and 640 eV.4) Fit results for SAM2 and SAM4 at 460 eV.5) Fit results for SAM2 and SAM4 at 640 eV.6) Electrochemical measurements.7) Stability under air exposure.8) Stability under beam exposure.

Electronic Supplementary Material (ESI) for Chemical Science.This journal is © The Royal Society of Chemistry 2020

Page 2: chemistry Stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 A u 5 p A u 4 f A u 5 s C 1 s C l 2 p A u 4 d N 1 s O 1 s A u 4 p 3 / 2 A u 4 p 1 / 2 F

2

1) SAM2 Survey.

1000 800 600 400 200 0

Au 5p

Au 4f

Au 5sCl 2pC 1s

Au 4d

N 1s

O 1s

Au 4p3/2

Au 4p1/2

Fe 2pAu 4s

O AugerInte

nsity

(a.u

.)

Binding Energy (eV)

SAM2

Survey

Cl 2s

Figure S1. SAM2 XPS survey spectrum (photon energy: 1486.6 eV).

Page 3: chemistry Stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 A u 5 p A u 4 f A u 5 s C 1 s C l 2 p A u 4 d N 1 s O 1 s A u 4 p 3 / 2 A u 4 p 1 / 2 F

3

Stoichiometric and experimental elemental ratios for SAM2.

Table S1. Stoichiometric and experimental elemental ratios for SAM2.

*C. D. Wagner, J. Electron Spectrosc. Relat. Phenom. 1983, 32, 99-102.

Table S2. Fit results for the energy positions and relative intensities of the photoemission lines in the SAM2 C 1s spectra.

Energy (eV)

Lorentzian Width (eV)

Gaussian Width (eV)

Intensity (%)

Theoretical values (%)

C-C 284.2 0.08 1.00 19.9 22C-H 284.6 0.08 1.00 36.5 46S1 285.3 0.08 1.00 11.9

C-N 285.7 0.08 1.00 6.6 6C-Cl 286.3 0.08 1.30 21.8 26

S2 288.1 0.08 1.30 3.3C-C + C-H + S1 = 68.3 %

C-Cl + S2 = 25.1 %

C N Cl FeSensitivity factor* 0.25 0.42 0.73 3

Number of atoms 50 3 13 1

Theoretical values (%) 75 4 19 2

SAM2F (%) 84.3 5.2 10.0 0.5

Page 4: chemistry Stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 A u 5 p A u 4 f A u 5 s C 1 s C l 2 p A u 4 d N 1 s O 1 s A u 4 p 3 / 2 A u 4 p 1 / 2 F

4

2) SAM1 Survey.

1000 800 600 400 200 0

SAM1

Survey

Fe 2pN 1s

Au 4f

Inte

nsity

(a.u

.)

Binding Energy (eV)

Au 4p1/2Au 4s

O 1s

Au 4p3/2

Au 4d

Cl 2pC 1s

Cl 2sAu 5p

Figure S2. SAM1 XPS survey spectrum of (photon energy: 1486.6 eV).

Page 5: chemistry Stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 A u 5 p A u 4 f A u 5 s C 1 s C l 2 p A u 4 d N 1 s O 1 s A u 4 p 3 / 2 A u 4 p 1 / 2 F

5

Table S3. Stoichiometric and experimental elemental ratios for SAM1.

*C. D. Wagner, J. Electron Spectrosc. Relat. Phenom. 1983, 32, 99-102.

Table S4. Fit results for the energy positions and relative intensities of the photoemission lines in the SAM1 C 1s spectra.

Energy (eV)

Lorentzian Width (eV)

Gaussian Width (eV)

Intensity (%)

Theoretical values (%)

C-C 284.3 0.08 0.88 23.0 20C-H 284.9 0.08 0.88 33.4 48S1 285.5 0.08 0.88 10.0

C-N 285.7 0.08 0.89 6.1 6C-Cl 286.5 0.08 1.10 23.4 26

S2 288.5 0.08 1.50 4.1C-C + C-H + S1 = 66.4 %

C-Cl + S2 = 27.5 %

C N Cl FeSensitivity factor* 0.25 0.42 0.73 3

Number of atoms 50 3 13 1

Theoretical values (%) 75 4 19 2

SAM1 (%) 79 6 14 1

Page 6: chemistry Stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 A u 5 p A u 4 f A u 5 s C 1 s C l 2 p A u 4 d N 1 s O 1 s A u 4 p 3 / 2 A u 4 p 1 / 2 F

6

3) C 1s core level spectra at 460 and 640 eV.

290 288 286 284 282 280

SAM2FC 1s460 eV

Inte

nsity

(a.u

.)

Binding Energy (eV)290 288 286 284 282 280

SAM2C 1s640 eV

Inte

nsity

(a.u

.)

Binding Energy (eV)

290 288 286 284 282 280

SAM1C 1s460 eV

Inte

nsity

(a.u

.)

Binding Energy (eV)290 288 286 284 282 280

SAM1C 1s640 eV

Inte

nsity

(a.u

.)

Binding Energy (eV)

290 288 286 284 282 280

SAM4C 1s460 eV

Inte

nsity

(a.u

.)

Binding Energy (eV)290 288 286 284 282 280

SAM4C 1s640 eV

Inte

nsity

(a.u

.)

Binding Energy (eV)

Figure S3. C 1s core level spectra at 460 and 640 eV, as indicated. Upper panel: SAM2.

Middle panel: SAM1. Lower panel: SAM4. Intensities are normalized to the peak maximum

to allow comparison.

Page 7: chemistry Stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 A u 5 p A u 4 f A u 5 s C 1 s C l 2 p A u 4 d N 1 s O 1 s A u 4 p 3 / 2 A u 4 p 1 / 2 F

7

4) Fit results for SAM2 and SAM4 at 460 eV.

Table S5. SAM2 C 1s at 460 eV. Fit results for the energy positions and relative intensities.

Energy (eV)

Lorentzian Width (eV)

Gaussian Width (eV)

Intensity (%)

Theoretical values (%)

C-C 284.1 0.08 1.05 19.0 22C-H 284.5 0.08 1.05 41.5 46S1 285.1 0.08 1.05 9.0

C-N 285.5 0.08 1.05 6.5 6C-Cl 286.1 0.08 1.05 19.0 26

S2 287.8 0.08 1.35 5.0C-C + C-H + S1 = 69.50 %

C-Cl + S2 = 24.00 %

Table S6. SAM4 C 1s at 460 eV. Fit results for the energy positions and relative intensities.

Energy (eV)

Lorentzian Width (eV)

Gaussian Width (eV)

Intensity (%)

Theoretical values (%)

C-C 284.1 0.08 1.05 19.3 22C-H 284.4 0.08 1.05 42.6 46S1 285.1 0.08 1.05 9.1

C-N 285.5 0.08 1.05 6.6 6C-Cl 286.3 0.08 1.05 18.3 26

S2 288.1 0.08 1.35 4.1C-C + C-H + S1 = 71 %

C-Cl + S2 = 22.4 %

Page 8: chemistry Stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 A u 5 p A u 4 f A u 5 s C 1 s C l 2 p A u 4 d N 1 s O 1 s A u 4 p 3 / 2 A u 4 p 1 / 2 F

8

5) Fit results for SAM2 and SAM4 at 640 eV.

Table S7. SAM2 C 1s at 640 eV. Fit results for the energy positions and relative intensities.

Energy (eV)

Lorentzian Width (eV)

Gaussian Width (eV)

Intensity (%)

Theoretical values (%)

C-C 284.1 0.08 1.30 17.9 22C-H 284.5 0.08 1.30 37.7 46S1 285.1 0.08 1.30 8.3

C-N 285.5 0.08 1.30 6.0 6C-Cl 286.0 0.08 1.30 21.0 26

S2 287.7 0.08 1.70 9.1C-C + C-H + S1 = 63.9 %

C-Cl + S2 = 30.1 %

Table S8. SAM4 C 1s at 640 eV. Fit results for the energy positions and relative intensities.

Energy (eV)

Lorentzian Width (eV)

Gaussian Width (eV)

Intensity (%)

Theoretical values (%)

C-C 284.0 0.08 1.30 17.6 22C-H 284.4 0.08 1.30 37.3 46S1 285.0 0.08 1.30 8.4

C-N 285.5 0.08 1.30 6.1 6C-Cl 286.0 0.08 1.30 26.8 26

S2 287.7 0.08 1.70 3.8C-C + C-H + S1 = 63.3 %

C-Cl + S2 = 30.6 %

Page 9: chemistry Stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 A u 5 p A u 4 f A u 5 s C 1 s C l 2 p A u 4 d N 1 s O 1 s A u 4 p 3 / 2 A u 4 p 1 / 2 F

9

6) Electrochemical measurements

Cyclic voltammetry experiments were performed with an AUTOLAB 204 potentiostat equipped with NOVA 2.3 software. A Pt mesh was used as the counter electrode, Ag/AgCl 3M KCl was used as reference electrode. For the electrochemical characterization of the SAMs, the modified Au was used as the working electrode (area exposed of 1 cm2). A 0.2M solution of TBAPF6 in dry CH2Cl2 was used as the electrolytic medium, under argon atmosphere.

The redox peaks corresponding to PTM radical ↔ PTM anion and ferrocene ↔ ferrocenium redox process are clearly observed.

-1.0 -0.5 0.0 0.5 1.0-100.0µ

-50.0µ

0.0

50.0µ

100.0µ

J(A

/cm

2 )

E(V) vs Ag/AgCl KCl 3M 4 V/s 3 V/s 2 V/s 1 V/s 0,5 V/s 0,25 V/s 0,1V/s 0,05V/s

Figure S4. Cyclic voltammetry behavior of SAM4 using as electrolytic medium solution 0.2M TBAPF6/ CH2Cl2, under argon atmosphere.

Page 10: chemistry Stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 A u 5 p A u 4 f A u 5 s C 1 s C l 2 p A u 4 d N 1 s O 1 s A u 4 p 3 / 2 A u 4 p 1 / 2 F

10

7) Stability under air exposure.

292 290 288 286 284 282

Inte

nsity

(a.u

.)

Binding Energy (eV)

SAM2

128 days air exposure

C 1s

C-H

S2

C-Cl

C-N S1 C-C

Figure S5. C1s core level spectrum together with its fit analysis after 128 days air exposure. The fit hypothesis was based on the switch to the PPF radical (chemical structure on the right, photon energy: 1486.6 eV).

Table S9. Fit results for the energy positions and relative intensities of the photoemission lines in the SAM2 C 1s spectra after 128 days air exposure, light-induced ring closure hypothesis.

Energy(eV)

Lorentzian Width (eV)

Gaussian Width (eV)

Intensity(%)

Theoretical values (%)

C-C 284.1 0.08 1.0 22.0 26C-H 284.5 0.08 1.0 41.3 46S1 285.2 0.08 1.0 8.9

C-N 285.6 0.08 1.0 5.8 6C-Cl 286.2 0.08 1.3 18.3 22

S2 288.2 0.08 1.3 3.7C-C + C-H + S1 = 72.2 %

C-Cl + S2 = 22.0 %

Page 11: chemistry Stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 A u 5 p A u 4 f A u 5 s C 1 s C l 2 p A u 4 d N 1 s O 1 s A u 4 p 3 / 2 A u 4 p 1 / 2 F

11

292 290 288 286 284 282 280

C*

SAM2

128 days air exposure

C 1s

Inte

nsity

(a.u

.)

Binding Energy (eV)

C-C

S1

C-H

C-NC-Cl

S2

Figure S6. C1s core level spectrum together with its fit analysis after 128 days air exposure. The fit hypothesis was based on considering carbon contaminant adsorption, C*, on intact molecules (chemical structure on the right, see main text) (photon energy: 1486.6 eV).

Table S10. Fit results for the energy positions and relative intensities of the photoemission lines in the SAM2 C 1s spectra after 128 days air exposure, contaminant adsorption, C*; on intact molecules.

Energy (eV)

Lorentzian Width (eV)

Gaussian Width (eV)

Intensity (%)

Theoretical values (%)

C-C 284.2 0.08 1.0 16.6 22C-H 284.5 0.08 1.0 30.1 46S1 285.3 0.08 1.0 9.9

C-N 285.6 0.08 1.0 5.2 6C-Cl 286.2 0.08 1.3 18.1 26

S2 288.2 0.08 1.3 3.6C* 284.5 0.08 1.3 16.5

Page 12: chemistry Stability of radical-functionalized gold ... · 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 A u 5 p A u 4 f A u 5 s C 1 s C l 2 p A u 4 d N 1 s O 1 s A u 4 p 3 / 2 A u 4 p 1 / 2 F

12

8) Stability under beam exposure.

292 290 288 286 284 282 280

Inte

nsity

(a. u

.)

Binding Energy (eV)

SAM2C 1s

Fresh after 3.5 hours

beam exposure

292 290 288 286 284 282 280

Inte

nsity

(a. u

.)

Binding Energy (eV)

SAM2C 1safter 18 hoursbeam exposure

S1

C-C

C-H

C-N

S2

C-Cl

Figure S7. SAM2 C 1s spectra (left) after 3.5 hours beam exposure compared to the fresh film spectrum. No changes are detected. (right) After 18 hours beam exposure, together with its best fit (photon energy: 1486.6 eV).

Table S11. Fit results for the energy positions and relative intensities of the photoemission lines for the fresh film.

Energy (eV)

Lorentzian Width (eV)

Gaussian Width (eV)

Intensity (%)

Theoretical values (%)

C-C 284.1 0.08 0.86 20.3 22C-H 284.5 0.08 0.86 36.9 46S1 285.2 0.08 0.86 10.5

C-N 285.3 0.08 0.87 6.1 6C-Cl 286.2 0.08 1.07 19.8 26

S2 288.2 0.08 1.40 6.4

Table S12. Fit results for the energy positions and relative intensities of the photoemission lines after 18 hours X-ray (photon energy: 1486.6 eV).

Energy (eV)

Lorentzian Width (eV)

Gaussian Width (eV)

Intensity (%)

Theoretical values (%)

C-C 284.2 0.08 0.86 20.5 22C-H 284.7 0.08 0.86 36.0 46S1 285.3 0.08 0.86 11.1

C-N 285.4 0.08 0.87 6.3 6C-Cl 286.2 0.08 1.18 22.4 26

S2 288.1 0.08 1.51 3.7