chemistry 102(01) spring 2013

49
12-1 CHEM 102, Spring 2013 LA TECH Instructor: Dr. Upali Siriwardane e-mail: [email protected] Office: CTH 311 Phone 257-4941 Office Hours: M,W 8:00-9:00 & 11:00-12:00 am; Tu,Th,F 9:30 - 11:30 am. Test Dates: Chemistry 102(01) Spring 2013 September 27, 2013 (Test 1): Chapter 12 & 13 April 24, 2013 (Test 2): Chapter 14 & 15 May13, 2013 (Test 3) Chapter 16 & 17 May 15, 2012 (Make-up test) comprehensive: Chapters 12-17 9:30-10:45:15 AM, CTH 328

Upload: tybalt

Post on 15-Feb-2016

90 views

Category:

Documents


0 download

DESCRIPTION

Chemistry 102(01) Spring 2013. Instructor: Dr. Upali Siriwardane e-mail : [email protected] Office : CTH 311 Phone 257-4941 Office Hours : M ,W 8:00-9:00 & 11:00-12:00 am; Tu,Th,F 9:30 - 11:30 am.  Test Dates :. September 27 , 2013 (Test 1): Chapter 12 & 13 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chemistry  102(01) Spring 2013

12-1CHEM 102, Spring 2013 LA TECH

Instructor: Dr. Upali Siriwardane

e-mail: [email protected]

Office: CTH 311

Phone 257-4941

Office Hours: M,W 8:00-9:00 & 11:00-12:00 am;

Tu,Th,F 9:30 - 11:30 am. 

Test Dates:

Chemistry 102(01) Spring 2013

September 27, 2013 (Test 1): Chapter 12 & 13

April 24, 2013 (Test 2): Chapter 14 & 15

May13, 2013 (Test 3) Chapter 16 & 17

May 15, 2012 (Make-up test) comprehensive: Chapters 12-17 9:30-10:45:15 AM, CTH 328

Page 2: Chemistry  102(01) Spring 2013

12-2CHEM 102, Spring 2013 LA TECH

REQUIRED :

Textbook:  Principles of Chemistry: A Molecular Approach, 2nd Edition-Nivaldo J. Tro - Pearson Prentice

Hall and also purchase the Mastering Chemistry

Group Homework, Slides and Exam review guides and sample exam questions are available online:

http://moodle.latech.edu/ and follow the course information links.

OPTIONAL :

Study Guide: Chemistry: A Molecular Approach, 2nd Edition-Nivaldo J. Tro 2nd Edition

Student Solutions Manual: Chemistry: A Molecular Approach, 2nd Edition-Nivaldo J. Tro 2nd

Text Book & Resources

Page 3: Chemistry  102(01) Spring 2013

12-3CHEM 102, Spring 2013 LA TECH

Chapter 12. Solutions 12.1 Thirsty Solutions:

12.2 Types of Solutions and Solubility

12.3 Energetics of Solution Formation

12.4 Solubility Equilibrium and Factors Affecting solution Formation

12.5 Expressing Solution Concentration

12.6 Colligative Properties: Vapor Pressure, Freezing Point, Boiling Point, Osmatic Pressure

12.7 Colligative properties of Strong Electrolytes

Page 4: Chemistry  102(01) Spring 2013

12-4CHEM 102, Spring 2013 LA TECH

Effect of Solutes on SolutionColligative Properties

Colligative Properties: Depend on the number of particles not on the identity of the particles

Solution Colligative Propertiesa) Vapor Pressure Loweringb) Freezing Point Depressionc) Boiling Point Elevationd) Osmotic Pressure

Two types of solutes affect colligative properties differentlya) Volatile solutes (covalent)b) nonvolatile solutes (ionic)

Page 5: Chemistry  102(01) Spring 2013

12-5CHEM 102, Spring 2013 LA TECH

1) What are colligative properties?

Page 6: Chemistry  102(01) Spring 2013

12-6CHEM 102, Spring 2013 LA TECH

Vapor Pressure ofPure Water vs. Sea Water

Page 7: Chemistry  102(01) Spring 2013

12-7CHEM 102, Spring 2013 LA TECH

Vapor Pressure LoweringRaoult’s Law

P1 = X1P1o

Psol = solvent Psolvent

Psol = (1-solute) Psolvent

The vapor pressure above a glucose-water solution at 25oC is 23.8 torr. What is the mole fraction of glucose (non-dissociating solute) in the solution. The vapor pressure of water at 25oC is 30.5 torr.

Page 8: Chemistry  102(01) Spring 2013

12-8CHEM 102, Spring 2013 LA TECH

Vapor Pressure Lowering

Page 9: Chemistry  102(01) Spring 2013

12-9CHEM 102, Spring 2013 LA TECH

2) What’s Rauolts Law? How it applies to a) a volatile & nondissociating,

b) nonvolatile & nondissociating,

c) nonvolatile & dissociating solutes in a solution of volatile solvent.

Page 10: Chemistry  102(01) Spring 2013

12-10CHEM 102, Spring 2013 LA TECH

3) What is the vapor pressure (atm) of a solution of a nonvolatile, nondissociating solute(mole fraction 0.25) in water at 50oC? The vapor pressure of water at 50oC is 0.122 atm.

Page 11: Chemistry  102(01) Spring 2013

12-11CHEM 102, Spring 2013 LA TECH

4) What is the total pressure at 25oC of a solution of 2.90 moles of C6H14 and 5.94 moles of C6H12 at 25oC if the vapor pressures of the pure solvents are 151 and 98 mm Hg respectively at 25oC?(Atomic weights: C = 12.01, H = 1.008, Cl = 35.45).

Page 12: Chemistry  102(01) Spring 2013

12-12CHEM 102, Spring 2013 LA TECH

Acetone/water(CH3)2CO/H2O

Page 13: Chemistry  102(01) Spring 2013

12-13CHEM 102, Spring 2013 LA TECH

Ethanol(C2H5OH)/hexane(C6H14)

Page 14: Chemistry  102(01) Spring 2013

12-14CHEM 102, Spring 2013 LA TECH

Benzene (C6H6)/toluene CH3C6H5

Page 15: Chemistry  102(01) Spring 2013

12-15CHEM 102, Spring 2013 LA TECH

Deviations from Raoult’s LawIntermolecular forces between components in a

dissolved solution cause deviations from the adjustment to vapor pressure.

Vapo

r Pre

ssur

e

A

Pvap A

Pvap B

Page 16: Chemistry  102(01) Spring 2013

12-16CHEM 102, Spring 2013 LA TECH

Ideal, Negative, Positive Behavior of Vapor Pressure of

Two Volatile Liquids

Page 17: Chemistry  102(01) Spring 2013

12-17CHEM 102, Spring 2013 LA TECH

5) What is ideal, positive and negative behavior applying Raoult's Law.

Ideal:

Positive:

Negative:

Page 18: Chemistry  102(01) Spring 2013

12-18CHEM 102, Spring 2013 LA TECH

Effect on Boling and Freezing point

Page 19: Chemistry  102(01) Spring 2013

12-19CHEM 102, Spring 2013 LA TECH

Boiling Point Elevation

Page 20: Chemistry  102(01) Spring 2013

12-20CHEM 102, Spring 2013 LA TECH

Boiling Point ElevationDTb = Tfinal - Tinitial

(DTb = bpsolution - bppure solvent)DTb = kb x mwhere kb => boiling point elevation constant

m => molality of all solutes in solutionFreezing Point Depression

(DTf = fppure solvent - fpsolution)

DTf = kf x m

where kf => freezing point depression constant

m => molality of all solutes in solution

For electrolytes multiply

i => number of particles per formula unit

Page 21: Chemistry  102(01) Spring 2013

12-21CHEM 102, Spring 2013 LA TECH

Boiling Point Elevation & Freezing point Depression Constants

Page 22: Chemistry  102(01) Spring 2013

12-22CHEM 102, Spring 2013 LA TECH

What is the freezing point of a 0.500 m aqueous solution of glucose? (Kf for H2O is 1.86 oC/m) (DTf = fppure solvent - fpsolution)DTf = kf x m

Freezing Point Depression Problem

Page 23: Chemistry  102(01) Spring 2013

12-23CHEM 102, Spring 2013 LA TECH

Calculation of Molecular Weight

A 2.25g sample of a compound is dissolved in 125 g of benzene. The freezing point of the solution is 1.02oC. What is the molecular weight of the compound? Kf for benzene = 5.12 oC/m, freezing point = 5.5oC. DTf = kf x mm = moles/ kg of solventMW = g/moles

Page 24: Chemistry  102(01) Spring 2013

12-24CHEM 102, Spring 2013 LA TECH

Solvent Freezing

Page 25: Chemistry  102(01) Spring 2013

12-25CHEM 102, Spring 2013 LA TECH

Colligative Properties ofElectrolytesNumber of solute particles in the solution depends

on dissociation into ions expressed as Van’t Hoff facotor(i)

Van’t Hoff facotor (i) moles of particles in solution moles of

solutes dissolved

Page 26: Chemistry  102(01) Spring 2013

12-26CHEM 102, Spring 2013 LA TECH

Colligative Properties of ElectrolytesIonic vs. covalent substances

vpwater > vp1M sucrose > vp1M NaCl > vp 1M CaCl2

1 mole sucrose = 1 mole molecules (i = 1)1 mole NaCl = 2 mole of ions (i = 2)1 mole CaCl2 = 3 moles ions (i = 3)

i => number of particles per formula unitPsol = (1- i solute) Psolvent

DTf = i kf x mDTb = i kb x mP = i MRT

Page 27: Chemistry  102(01) Spring 2013

12-27CHEM 102, Spring 2013 LA TECH

Osmosis

Page 28: Chemistry  102(01) Spring 2013

12-28CHEM 102, Spring 2013 LA TECH

Measuring Osmotic Pressure

Page 29: Chemistry  102(01) Spring 2013

12-29CHEM 102, Spring 2013 LA TECH

Osmosis and the Cell

Page 30: Chemistry  102(01) Spring 2013

12-30CHEM 102, Spring 2013 LA TECH

Osmotic Pressure

P = MRTiwhere P => osmotic pressure

M => concentration R => gas constant T => absolute Kelvin temperature

i => number of particles per formula unit

Page 31: Chemistry  102(01) Spring 2013

12-31CHEM 102, Spring 2013 LA TECH

Calculate the osmotic pressure in atm at 20oC of an aqueous solution containing 5.0 g of sucrose (C12H22O11), in 100.0 mL solution.M.W.(C12H22O11)= 342.34P = MRT R = 0.0821 L-atm/mol K = 62.4 L-torr/mol K

Calculation

Page 32: Chemistry  102(01) Spring 2013

12-32CHEM 102, Spring 2013 LA TECH

Calculate the osmotic pressure in torr of a 0.500 M solution of NaCl in water at 25oC. Assume a 100%dissociation of NaCl.

Calculation

Page 33: Chemistry  102(01) Spring 2013

12-33CHEM 102, Spring 2013 LA TECH

Define the Van't Hoff factor (i). Which of the following solutions will show the highest osmotic pressure: a) 0.2 M Na3PO4 b) 0.2 M C6H12O6 (glucose)c) 0.3 M Al2(SO4)3 d) 0.3 M CaCl2 e) 0.3 M NaCl

Which one has higher Osmotic Pressure

Page 34: Chemistry  102(01) Spring 2013

12-34CHEM 102, Spring 2013 LA TECH

6) Which of the following solutes dissolved in 1000 g of water estimate the number particles in the solution? Use Vant Hoff factor.

0.030 moles urea, CO(NH2)2 (a covalent compound)  0.030 moles acetic acid, CH3COOH(weak acid)  0.030 moles ammonium nitrate, NH4NO3(soluble)   0.030 moles calcium sulfate, CaSO4 (insoluble)  0.030 moles aluminum chloride, AlCl3 (soluble)

Page 35: Chemistry  102(01) Spring 2013

12-35CHEM 102, Spring 2013 LA TECH

7) Determine the molecular weight of acetic acid if a solution that contains 30.0 grams of acetic acid per kilogram of water freezes at -0.93oC. Do these results agree with the assumption that acetic acid has the formula CH3CO2H? Kf (water) = 1.86.

Page 36: Chemistry  102(01) Spring 2013

12-36CHEM 102, Spring 2013 LA TECH

8) Explain why a 0.100 m solution of HCl dissolved in benzene has a freezing point depression of 0.512oC, while an 0.100 m solution of HCl in water has a freezing point depression of 0.352oC. Kf (benzene) = 5.5, Kf (water) = 1.86

Page 37: Chemistry  102(01) Spring 2013

12-37CHEM 102, Spring 2013 LA TECH

Normal vs. Reverse Osmosis

Page 38: Chemistry  102(01) Spring 2013

12-38CHEM 102, Spring 2013 LA TECH

Predict the type of behavior (ideal, negative, positive) based on vapor pressure of the following pairs ofvolatile liquids and explain it in terms of intermolecular attractions: a) Acetone/water(CH3)2CO/H2Ob) Ethanol(C2H5OH)/hexane(C6H14) c) Benzene (C6H6)/toluene CH3C6H5.

Ideal, Negative, Positive Behavior of Vapor Pressure

Page 39: Chemistry  102(01) Spring 2013

12-39CHEM 102, Spring 2013 LA TECH

a) True solutionsb) Colloids (Tyndall effect)c) Suspensions.

Types of Solutions

Page 40: Chemistry  102(01) Spring 2013

12-40CHEM 102, Spring 2013 LA TECH

Page 41: Chemistry  102(01) Spring 2013

12-41CHEM 102, Spring 2013 LA TECH

Solution vs. Dispersion vs. SuspensionSmaller particles => Larger particles

Colloidal True solution dispersion Suspension

Particles Ions & molecules Colloids Large-sized particles

Particle size 0.2-2.0 nm 2-2000 nm >2000 nmProperties * Don’t settle out * Don’t settle out * Settle out on

on standing on standing on standing* Not filterable * Not filterable * Filterable

Example Sea water Fog River silt

Page 42: Chemistry  102(01) Spring 2013

12-42CHEM 102, Spring 2013 LA TECH

Tyndall Effect

Page 43: Chemistry  102(01) Spring 2013

12-43CHEM 102, Spring 2013 LA TECH

Surfactants

Page 44: Chemistry  102(01) Spring 2013

12-44CHEM 102, Spring 2013 LA TECH

Soaps and Detergents

CH 3CH 2CH2CH 2CH 2CH 2CH2CH 2CH 2CH 2CH2CH 2CH 2CH 2CH2CH 2CH 2

Hydrophobic end Hydrophilic end

sodium stearate

C O-Na+

O

CH 3CH 2CH2CH 2CH 2CH 2CH2CH 2CH 2CH 2CH2CH 2OS O-3Na +

sodium lauryl sulfate

Page 45: Chemistry  102(01) Spring 2013

12-45CHEM 102, Spring 2013 LA TECH

Cleaning Action

Page 46: Chemistry  102(01) Spring 2013

12-46CHEM 102, Spring 2013 LA TECH

Earth’s Water Supply

Page 47: Chemistry  102(01) Spring 2013

12-47CHEM 102, Spring 2013 LA TECH

Treatment of Drinking Water

Page 48: Chemistry  102(01) Spring 2013

12-48CHEM 102, Spring 2013 LA TECH

Hard Waternatural water containing relatively high

concentrations of Ca+2, Mg+2, Fe+3, or Mn+2 cations and CO3

-2 and HCO3-1 anions

Page 49: Chemistry  102(01) Spring 2013

12-49CHEM 102, Spring 2013 LA TECH

Common HazardousHousehold Chemicals