chemical eng science2

5
8/13/2019 chemical eng science2 http://slidepdf.com/reader/full/chemical-eng-science2 1/5 ~ ~ ~ Q ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ Pergamon Chemical Enoineerin 0 Science Vol. 51 No. 15 pp. 3881-3885 1996 Copyright © 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved PII: S0009-2509 96)00233-3 0oo92509/96 SlS.0o+ 0.00 On optimal temperature for dissolution of polymers in hydrogen bonding solvents* (First received 21 November 1995; revised manuscript received 26 January 1996; accepted 12 February 1996) INTRODUCTION In microlithography, it is important to design the polymer dissolution conditions in a way that will ensure the dissolu- tion of the degraded/uncrosslinked portions of the pattern with minimal swelling of the unexposed/crosslinked por- tions. Higher dissolution rate and lesser swelling are gener- ally conflicting demands, since the factors that favour the former do not favour the latter. A change in dissolution conditions, such as increase in temperature or the thermo- dynamic quality of the solvent etc., increases the dissolution rate. However, it also increases the swelling of the polymer film. Recently, we showed Devotta and Mashelkar, 1995) that these conflicting requisites can be accomplished by using a mixed solvent medium, where one of the com ponents is a thermodynamically poor low molecular size solvent. In this work, we show that under certain conditions, temper- ature can produce similar effects in hydrogen-bonded sys- tems. Dissolution of polymer depends both on the extent of swelling as well as the diffusion rate of the solvent. In the absence of hydrogen bonding interactions, an increase in temperature increases the diffusion rate of the solvent and the extent of swelling. This results in a continuous enhance- ment of the chain mobility with increase in temperature and therefore influences the overall dissolution rate Manjkow et al., 1987; Papanu et at., 1989a). This can be seen from the dissolution data on the PM MA/MEK system Papanu et at., 1989a) in Fig. 1 curve a). In contrast, the dissolution of a polymer that interacts with the solvent through hydrogen bonding Blackadder and Ghavamika, 1979) shows non-m onotonic behaviour. Figure 1 curve b) shows typical data for the dissolution of poly- ethersulphone in chloroform. Note that chloroform is a pro- ton donor and the -O- and S = O groups in the polymer backbone are proton acceptors. This results in hydrogen bonding interactions and the swelling of the polymer shows a LCST behaviour Blhckadder and Ghavam ika, 1979). In systems where such hydrogen bonding interactions exist, there is an optimum temperature at which the higher dissolu- tion rate can be achieved with least swelling. No theoretical model presently exists, which can interpret the data shown in Fig. l b). We bridge this important gap in this communica- tion. Significant work has been done in the past to study the different aspects of polymer swelling and dissolution Her- man and Edwards, 1990; Tu and Ouano, 1977; Lee and Peppas, 1987; Papanu et al., 1989b; Astarita and Sarti, 1978; Peppas et al., 1994). Our school has been examining the interesting aspects of the dynamics of dissolution of polymer recently. Our studies have focused on the demonstration of the presence of a critical particle size of the polym er particle *NCL Communication No. 6323. below which the dissolution time becomes independent of the particle size Devotta et al., 1994a), comprehensive mod- elling of dissolution of a polymer particle in a well-defined convective field Ranade and M asbelkar, 1995), role of disen- gagem ent dynamics in dissolution Devotta et al., 1994b, 1995), dissolution of polym er in mixed solvents Devotta and Masbelkar, 1995), etc. A key feature of our model Devotta et al., 1995) has been that we have incorporated in a kinetic model, the relationship of the disengagement rate to the swelling rate, through the changing mobility of the disengag- ing macromolecule at the gel-liquid interface. MODEL DEVELOPMENT We consider the swelling-dissolution problem with a slab geometry. For simplicity, we will assume that the kinetics of dissolution is completely controlled by the process of disen- gagement of chains from the gel-liquid interface. However, we can easily show the feature of the maximum even if the process was partially controlled by diffusion in the boundary layer. Full details of the physics behind the process of dis- solution can be seen in our recent studies Devotta et al., 1994a, b, 1995; Ranade and Mashelkar, 1995; Devotta and Mashelkar, 1995). The diffusion of solvent into the polymer film can be described by the following conservation equation: c3----~=O---~ Or, O x. ] O<~x<~L. 1) Here, ~b, is the volume fraction of the solvent and D,, is the mutual diffusion coefficient, which is evaluated using the free-volume model of Vrentas and Duda Zielinski and Duda, 1992). The initial and the boundary conditions for eq. 1) are as follows: ~b,=0 at t=0, O<~x<~Lo 2) DmOCkS=O at x=0, t>0 3) Ox 4~s=~b] at x=l, t>0. 4) Here, ~b]is the interface concentration of the solvent, which will depend on the temperature of the solvent in the dissolu- tion medium. As the solvent diffuses into the polymer film, its thickness increases, and as the polymer chain leaves the interface, the thickness reduces. A ssuming completely disengagement con- trolled dissolution kinetics, the net rate of movement of the gel-liquid interface can be described as follows: l dt = D,, x=t -- ka, 5) 3881

Upload: nanban-jin

Post on 04-Jun-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: chemical eng science2

8/13/2019 chemical eng science2

http://slidepdf.com/reader/full/chemical-eng-science2 1/5

~ ~ ~ Q ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~

Pergamon Chem ical Eno ineerin 0 Science Vol. 51 No. 15 pp. 3881-3885 1996Copyright © 1996 Elsevier Science Ltd

Printed in Great Britain. All rights reservedPII: S0009-2509 96)00233-3 0oo92509/96 SlS.0o+ 0.00

O n o ptim al temperature for dissolution of polymers in hydrogen bonding solvents*

(Fir s t r ece ived 21 N o v e m b e r 1995; rev ised ma n u scr ip t r ece ived 26 J a n u a r y 1996; a c c e p t e d 12 F e b r u a r y 1996)

INTRODUCTION

I n m i c r o l i th o g r a p h y , i t is i m p o r t a n t t o d e s i g n t h e p o l y m e r

d i s s o l u t i on c ond i t i ons i n a wa y t ha t w i ll e n s u r e t he d i s s o l u -t i o n o f t h e d e g r a d e d / u n c r o s s l i n k e d p o r t i o n s o f t h e p a t t e r n

w i t h m i n i m a l s w e l l i n g o f t h e u n e x p o s e d / c r o s s l i n k e d p o r -t i ons . H i ghe r d i s s o l u t i on r a t e a n d l e s s e r s we l l i ng a r e ge ne r -

a l l y c on f l i c t i ng de m a nds , s i nc e t he f a c t o r s t ha t f a v ou r t he

f o r m e r d o n o t f a v o u r t h e l a t t e r . A c h a n g e i n d i s s o l u t i o n

c o n d i t i o n s , s u c h a s i n c r e a s e i n t e m p e r a t u r e o r t h e t h e r m o -dyn a m i c qua l i t y o f t he s o l ve n t e tc ., i nc r e a s e s t he d i s s o l u t i on

r a t e . Howe ve r , i t a l s o i nc r e a s e s t he s w e l l ing o f t he po l ym e rf il m . Re c e n t l y , we s howe d De v o t t a a nd M a s he l ka r , 1995 )

t ha t t he s e c on f l i c t i ng r e qu i s i t e s c a n be a c c ompl i s he d byu s i n g a m i x e d s o l v e n t m e d i u m , w h e r e o n e o f th e c o m p o n e n t si s a t h e r m o d y n a m i c a l l y p o o r l o w m o l e c u l a r s iz e s o lv e n t. I n

t h i s w o r k , w e s h o w t h a t u n d e r c e r t a in c o n d i t i o n s , t e m p e r -a t u r e c a n p r oduc e s i mi l a r e f f e c t s i n hyd r oge n - bonde d s y s -

tems.D i s s o l u t io n o f p o l y m e r d e p e n d s b o t h o n t h e e x t e n t o f

s we l l i ng a s we l l a s t he d i f f u s i on r a t e o f t he s o l ve n t . I n t hea b s e n c e o f h y d r o g e n b o n d i n g i n t e r a c t i o n s , a n i n c r e a s e i nt e mpe r a t u r e i nc r e a s e s t he d i f f u s i on r a t e o f t he s o l ve n t a nd

t he e x t e n t o f swe ll ing . Th i s r e s u l t s in a c on t i nuo us e nha nc e -

m e n t o f t h e c h a i n m o b i l i t y w i t h in c r e a s e in t e m p e r a t u r e a n d

t h e r e fo r e i n fl u e n c es t h e o v e r a ll d i s s o lu t i o n r a t e M a n j k o w e tal., 1 98 7 ; P a p a n u et a t . , 1989a ) . Th i s c a n be s e e n f r om t he

d i s so l u ti o n d a t a o n t h e P M M A / M E K s y st e m P a p a n u et a t . ,

1989a) in Fig. 1 curv e a).I n c o n t r a s t , t h e d i s s o l u t i o n o f a p o l y m e r t h a t i n t e r a c t s

w i t h t h e s o lv e n t t h r o u g h h y d r o g e n b o n d i n g B l a c k a d d e r a n d

G h a v a m i k a , 1 9 79 ) s h o w s n o n - m o n o t o n i c b e h a v i o u r . F i g u r e1 c u r ve b ) s hows t yp i c a l da t a f o r t he d i s s o l u t i on o f po l y -

e t h e r s u l p h o n e i n c h l o ro f o r m . N o t e t h a t c h l o r o f o r m i s a p r o -

t o n d o n o r a n d t h e - O - a n d S = O g r o u p s in t h e p o l y m e rb a c k b o n e a r e p r o t o n a c c e p t o r s . T h i s r e s u l t s i n h y d r o g e n

b o n d i n g i n t e r a c t i o n s a n d t h e s w e ll in g o f th e p o l y m e r s h o w sa L C S T b e h a v i o u r B l h c k a d d e r a n d G h a v a m i k a , 1 9 79 ). I ns y s t e m s w h e r e s u c h h y d r o g e n b o n d i n g i n t e r a c t i o n s e x i s t ,

t h e r e is a n o p t i m u m t e m p e r a t u r e a t w h i c h t h e h i g h e r d i s so l u -t i on r a t e c a n b e a c h i e ve d wi t h l e a s t swe ll ing . No t he o r e t i c a l

mod e l p r e s e n t l y ex is ts , wh i c h c a n i n t e r p r e t t he da t a s how n i nF i g. l b) . W e b r i d g e t h i s i m p o r t a n t g a p i n t h i s c o m m u n i c a -

t ion .S i g n i fi c a n t w o r k h a s b e e n d o n e i n t h e p a s t t o s t u d y t h e

d i f f e r e n t a s pe c t s o f po l ym e r s we l l ing a nd d i s s o l u t i on He r -m a n a n d E d w a r d s , 1 99 0; T u a n d O u a n o , 1 9 77 ; L e e a n dP e p p a s , 1 9 8 7; P a p a n u et a l . , 1989b ; As t a r i t a a nd Sa r t i , 1978 ;P e p p a s et a l . , 1 9 9 4 ) . O u r s c h o o l h a s b e e n e x a m i n i n g t h e

i n t e r e st i n g a sp e c t s o f t h e d y n a m i c s o f d i s s o l u t io n o f p o l y m e rr e c en t ly . O u r s t u d ie s h a v e f o c u s e d o n t h e d e m o n s t r a t i o n o ft he p r e s e nc e o f a c r i t i c a l pa r t i c l e s i ze o f t he po l ym e r pa r t i c l e

* N C L C o m m u n i c a t i o n N o . 63 2 3.

b e l o w w h i c h t h e d i s s o l u t i o n t i m e b e c o m e s i n d e p e n d e n t o f

t he pa r t i c l e s iz e De vo t t a et a l . , 1994a ), c ompr e he ns i ve mo d-e l l i ng o f d i s s o l u t i on o f a po l ym e r pa r t i c l e i n a we l l - de f i ne d

c onve c t i ve f i el d Ra na de a n d M a s be l k a r , 1995 ), r o l e o f d i s e n -

ga ge m e n t dyna mi c s i n d i s s o l u t i on De v o t t a e t al ., 1994b ,1995 ) , d i s s o l u t i on o f po l ym e r in mi xe d s o l ve n t s De v o t t a a nd

M a s be l ka r , 1995 ), e t c . A ke y f e a tu r e o f ou r m ode l De vo t t a e tal., 1 99 5) h a s b e e n t h a t w e h a v e i n c o r p o r a t e d i n a k i n e t ic

m o d e l , t h e r e l a t io n s h i p o f t h e d i s e n g a g e m e n t r a t e t o t h es w e l li n g r at e , t h r o u g h t h e c h a n g i n g m o b i l i t y o f t h e d i s e n g a g -

i ng ma c r omol e c u l e a t t he ge l - l i qu i d i n t e r f a c e .

MODEL DEVELOPMENT

We c ons i de r t he s we l l i ng - d i s s o l u t i on p r ob l e m wi t h a s l a bge ome t r y . F o r s i mp l i ci t y , we wi l l a s s ume t h a t t he k i ne t i c s o f

d i s s o l u t i on i s c ompl e t e l y c on t r o l l e d by t h e p r oc e s s o f d i s e n -ga ge me n t o f c ha i n s f r om t he ge l - l i qu i d i n t e r f a c e . Howe ve r ,

w e c a n e a s i ly s h o w t h e f e a t u re o f t h e m a x i m u m e v e n i f t h e

p r o c e s s w a s p a r t i a l ly c o n t r o l l e d b y d i ff u s io n i n t h e b o u n d a r yl a ye r . Fu l l de t a i l s o f t he phys i c s be h i nd t he p r oc e s s o f d is -s o l u t i o n c a n b e s e e n i n o u r r e c e n t s tu d i e s D e v o t t a et a l . ,

1994a , b , 1995 ; Ra na de a nd Ma s he l ka r , 1995 ; De vo t t a a nd

M a s he l k a r , 1995 ).T h e d i f f u s i o n o f s o l v e n t i n t o t h e p o l y m e r f i l m c a n b e

de s c r i be d by t he f o l l owi ng c ons e r va t i on e qua t i on :

c3----~=O---~ Or, O x. ] O < ~x < ~ L . 1)

He r e , ~b, i s t he vo l um e f r a c t i on o f t he s o l ve n t a n d D , , is t hemu t ua l d i f f u s i on c oef fi ci en t, wh i c h i s e va l ua t e d u s i ng t he

f r e e- v o l um e m o d e l o f V r e n t a s a n d D u d a Z i e li n s k i a n d

Duda, 1992) .

T h e i n i t i a l a n d t h e b o u n d a r y c o n d i t i o n s f o r e q. 1 ) a r e a sfollows:

~ b , = 0 a t t = 0 , O < ~ x < ~ L o 2)

D m O C k S = O a t x = 0 , t > 0 3)O x

4~s=~b] at x = l , t > 0 . 4 )

He r e , ~b] i s t he i n t e r f a c e c on c e n t r a t i on o f t he s o l ve n t , wh i c hw i ll d e p e n d o n t h e t e m p e r a t u r e o f t h e s o l v e n t i n t h e d i s s o lu -

t i o n m e d i u m .As t h e s o l ve n t d i ff u s e s i n t o t h e po l yme r f il m , i ts t h i c kne s s

i nc r e a s e s , a nd a s t he po l y me r c h a i n l e a ve s t he i n te r f a c e , t he

t h i c k n e s s re d u c es . A s s u m i n g c o m p l e t el y d i s e n g a g e m e n t c o n -t r o l le d d i s s o l u t i o n k i ne t ic s , t h e n e t r a t e o f m o v e m e n t o f t h ege l - l i qu i d i n t e r f a c e c a n be de s c r i be d a s f o ll ows :

l

dt = D, , x=t -- ka, 5)

3881

Page 2: chemical eng science2

8/13/2019 chemical eng science2

http://slidepdf.com/reader/full/chemical-eng-science2 2/5

3882 1. DEVOTTA an d R. A . MASHELKAR

(klox

A

.=_E

v

i i

I -

I -::3.J

o

o9

2 8 5- 0

2 . 5

2 - 0

1 . 5

i - 0

T E M P E R A T U R E ( K )

2 9 0 2 9 5 3 0 0i i

0 - 5 I L = K 02 8 0 2 9 0 3 0 0 3 10 3 2 0 3 3 0

T E M P E R A T U R E ( K )

3 0 5

7 5 0

6 0 0

4 5 0

3 0 0

1 5 0

c

c

ladI -

ZO

Jo¢o

o')

F i g . 1 . Expe r i me n t a l da t a on t he va r i a t i on o f d i s s o l u t i on r a t e w i t h t e mpe r a t u r e : ( a ) w i t hou t hyd r oge nb o n di n g: P M M A / M E K s ys te m ( P ap a n u e t a l . , 1989a ) ; a nd ( b ) w i t h hyd r oge n bond i ng : po l ye t he r s u l -

p h o n e /C H C 1 3 s y s te m ( B l a c k a d d e r a n d G h a v a m i k a , 1 97 9) .

He r e , kd i s t he t i me - de pe nde n t d i s e nga ge me n t r a t e o f t hepo l ym e r c ha i n s f r om t he ge l - l i qu i d i n t e r f ac e . The phys i c s o f

t h i s d i s e n g a g e m e n t p r o c es s h a s b e e n e l a b o r a t e d b y u s i n o u r

p r e v i o u s w o r k ( D e v o t t a e t a l . , 1994a, b , 1995) . As a p olym erc ha i n r e qu i r e s a c e r t a i n t i me t o d i s e nga ge f r om t he ge l - l i qu i d

i n t e rf a c e , t he d i s e n ga ge m e n t r a t e i s in i t i a l l y z e r o . Th i s m i n -i mu m t i me r e qu i r e d f o r t he f i r s t f ew c ha i n s t o d i s e nga ge i se qu i va l e n t t o t h e r e p t a t i on t i me , wh i c h i s r e l a t e d t o ~b~ a s

t ,ev = t0(~b/p) s (Bro cha rd a nd de G enn es , 1983). The refore ,

we a s s ume t h a t t he f o l l owi ng c ond i t i on e x i s ts a t t hege l - l i qu i d i n t e rf a c e :

k d = 0 t < tr e p . (6)

I n a n e a r l i e r a na l y s i s ( De v o t t a e t a l . , 1995), we re la ted th e

d i s e n g a g e m e n t r a t e t o t h e i n s t a n t a n e o u s m o b i l i t y o f t h e

d i s e nga g i ng c ha i n s . As t he s o l ve n t pe ne t r a t e s , t he c ha i n swi t h i n t he ge l pha s e d i s e n t a ng l e t he ms e l ve s a nd be c omemo r e m ob i l e . I f t he s o l ve n t d i f fu s i v it y i s h i gh , t he n i t p e n -

e t r a t e s i n t o t he po l yme r r a p i d l y . The r e f o r e , t he mob i l i t y o ft he c ha i n s w i t h i n t he ge l pha s e i nc r e a s e s f a s t e r a nd s uc hh i gh l y mob i l e c ha i n s , whe n t he y ha ve t o d i s e nga ge a t t hege l - l i qu i d i n t e r f a c e , d i s e nga ge a t a f a s t e r r a t e . The r e f o r e ,a c c o r d i n g t o o u r e a r li e r p o s t u l a te s ( D e v o t t a e t a l . , 1995), wec a n r e l a t e t he d i s e nga ge m e n t r a t e d i r e c t l y t o mob i l i t y o f t he

d i s e nga g i ng l a ye r o f c ha i n s a s f o ll ows :

k a o z m p t > t r e p .

(7)He r e , mp i s t he t i me - de p e nde n t mob i l i t y o f t he d i s e nga g i ng

po l ym e r c ha i n s . The m ob i l i t y o f t he po l ym e r mo l e c u l e s w i t h -i n t he l a ye r o f ge l pha s e c ha nge s t he e x t e n t o f d i s e n t a ng l e -m e n t . A s e x p l a in e d i n o u r e a r l i e r w o r k ( D e v o t t a e t a l . , 1995),t he m ob i l i t y o f t he c ha i n s a t d i f f er e n t po i n t s w i t h i n t he ge l

pha s e i s a s s ume d t o v a r y a s f o ll ows :

O m- ---e = K ( m p ® - r ) . 8 )O t

He r e , K i s a k i ne t i c c ons t a n t a nd mp . ~ i s t he ma x i mumm o b i l i t y t h a t t h e p o l y m e r c h a i n c a n a t t a i n a t t h a t c o n c e n t r a -

t i o n, w h e n a s t a t e o f m a x i m u m d i s e n t a n g l e m e n t is a t t a i n e da t l a r ge t i me . Th i s mob i l i t y o f t he po l yme r mo l e c u l e s w i l lde pe nd on t he f r e e vo l ume . The r e f o r e , i t i s g i ve n by t he

f o l l owi ng r e l a t i on ( Ku l ka r n i a nd Ma s he l a r , 1983 ) :

m , , o ~ = A d p exp \ fa ,} (9)

He r e , f 0 is t he f re e vo l ume o f t he ge l pha s e a n d i s ob t a i ne d bya s s um i ng a dd i t i v i t y o f f re e vo l ume s a s f o l l ows ( Ku l ka r n i a n dM a s he l ka r , 1983 ):

fo = fp~bp + L q ~ (10)

w h e r e f p a n d f s a r e t h e f r e e v o l u m e s o f t h e p u r e p o l y m e r a n dpur e so lvent , respect ive ly . ~bp an d tk , a re the v olum e f rac t io nso f t he po l ym e r a nd t he s o l ve n t a t d i f f e r e n t po i n t s w i t h i n t hegel phase, respectively.

T h e f r e e v o l u m e s o f th e p u r e c o m p o n e n t s a t a n y t e m p e r -a t u r e c a n be e va l ua t e d u s i ng t he f o l l owi ng r e l a t i on i n t e r ms

o f t he g l a s s t r a n s i t i on t e mpe r a t u r e ( To ) a nd t he t he r ma lexp ans ion coeff ic ient of f ree volum e (cO:

f = f T g ) + ~ T - - T a ) . (11)

Page 3: chemical eng science2

8/13/2019 chemical eng science2

http://slidepdf.com/reader/full/chemical-eng-science2 3/5

Optimal temperature for dissolution of polymers

The next question to be addressed is the variation of theinterface concentration of the solvent with the temper atureof the dissolution medium. This can be evaluated by assum-ing a thermodynamic equilibrium at the interface. Recently,

Lele e t a l . (1995) developed a lattice fluid hydrogen bonding Componen t(LFHB) mode l for isotropic swelling of cross linked gels bymodifying the LFHB model of Panayiotou and Sanchez Polymer(1991). In the present case, swelling of the polymer film is Solventconsidered to be only in one direction and the polymer is

physically entangled. Therefore, we modify the model fora case of non-i sotropic swelling of the physically crosslinkedpolymer by incorporating the appropriate changes in theelastic free energy contribution to the chemical potential.Thus, the chemical potential of the solvent at the gel-liquid i - j pair

interface is given by i = 1, j = 1

AP---Z1= 1n( 1/~1) + (1 - r l / r 2 ) ~ 2 + rlp~ 2X12 i = 1,j = 2R T

[ ]i e + ( g _ 1 ) i n (1 _ ~ ) + _ i n ~

+ r l - ~ 1 + T I r l

i j i j

r 1 V i j - - ~ d~ I n v~/vio) - ~ 1 jj In V J V o j )m n r a n

+ r I V* g -- (12)

where

/ ~ - 1- e ~ - - 2 ~ 1 2 ( t ~ 1 / l * ) 0 5X12 (13)

R T

Here, the terms on the first, second, third and the fourth linein eq. (12) account for ent ropy and enthalpy o f mixingthrough physical interaction, equation of state properties ofcomponents, hydrogen bond ing interactions and elasticity ofthe entangled network, respectively. Subscripts 1 and 2 cor-respond to the solvent and polymer, respectively. Different

symbols are explained in the nomenclature. ~ and v o are thereduced density and the number of hydrogen bonds evalu-ated using

~3(AG) •(AG)= 0 and =0 . (14)

~fi avq

N~ is the number of moles of physical entanglements. Assum-ing physical entanglements as being equivalent to chemicalcrosslinks (Papanu e t a l . , 1989b; Devotta e t a l . , 1995), Are isgiven by

V~ = Pe - . (15)

Here, M and Mc are the molecular weight of the polymer and

the critical molecular weight for entanglement, respectively,and pp is the density of polymer (g/m3). Assuming that thesolvent phase is a pure solvent, the equilibrium interfaceconcentration of the polymer can be obtained by setting thedifference between the chemical potential of the solvent inthe gel phase and that of pure solvent to zero. The massbalance equations were made dimensionless by defininga dimensionless time 0 = D o t / L o ) and position x / L o ) .

The equilibrium concentration was obtained by New-ton-Raphson technique. The values of equation of stateparameters used are given in Table 1. These are typicalvalues repo rted in the litera ture for many solvents and poly-mers. The governing equations were solved usingCrank-Nicholson technique. ~bl in eq. (12) is the closedpacked volume fraction and is rela ted to ~b~ in eq. (4) as

The average dissolution rate is defined as the ratio of theinitial thickness o f film to the total time required for the film todissolve. In o rder to evaluate this, the total dimensionless timerequired for the film to dissolve is determined. Its inverse isdefined as the average dimensionless dissolu tion rate.

Table 1. Typical values of the parameters used(a) Molecular parameters

3883

P* T * p*(bar) (K) (kg/m 3)

6050 541 15724760 499 1709

(b) Standard state hydrogen bonding parameters

o s oj V o

(k J/tool) (J/tool K) (cm3/mol)

- l 1.44 - 9.74 - 0.85- 11.44 - 19.7 -0 .8 5

RESULTS AND DISCUSSION

Before we predict the effect of temperature on the dissolu-tion rate of the polymer film, it will be useful to see the effect

of temperature on the surface concentration of the solvent atthe gel -liquid interface. Figure 2(a) presents the change in theconcentration of the solvent at the interface with temper-ature. It can be seen that increase in temperature decreasesthe solvent volume fraction at the gel- liquid interface. Thisindicates a decrease in the extent of swelling of the polymerfilm with an increase in temperature. Increase in tempera tureresults in a substantial decrease in the hydrogen bondinginteraction and a marginal increase in physical interactionbetween the polymer and solvent molecules. The net effect isthat the affinity o f the polymer to the solvent is reduced andtherefore the equilibrium concentration of the solvent at thegel-liquid interface is reduced.

In Fig. 2, curve (b) shows the effect of temperature on thesolvent volume fraction at the gel-li quid interface, when the

hydrogen bonding association is not considered. It can beclearly seen that the solvent volume frac tion increases withtemperature, indicating increase in swelling with temper-ature. However, the solvent volume fractions at all temper-atures are seen to be much lower compared to curve (a). Thisindicates that the swelling of the polymer is essentially due tothe hydrogen bonding interaction.

Figure 3 shows the effect of temperature on the dissolutionrate of the polymer film. The dissolution rate increases withan increase in temperature initially, although the extent ofswelling, which is determined by the concentration of thesolvent at the gel-liquid interface, is reduced. This is due tothe faster diffusion of the solvent into the polymer film andthe enhancement of the chain mobility with an increase intemperature. This results in faster disengagement of the

chains at the gel-l iquid interface. However, a further increasein temper ature results in a substantial reduc tion in swelling.Therefore, the mobility of the chains gets reduced. Thiscounterbalances the thermal effects. As a result, the dissolu-tion rate starts decreasing, thus showing a maximum. Thistrend predicted by the model is in line with the experimentalobservations shown in Fig. 1. We are thus able to capturetheoretically the presence of an optimum temperature atwhich the dissolution rate is maximum with minimum swell-ing. As mentioned earlier, this feature has important implica-tions in microli thography, where high dissolution rate withminimum swelling is critical.

It may be interesting to show a continuous increase indissolution rate with temperature, for a case without hydro-gen bonding interaction. However, as seen in Fig. 2(b) the

solvent concentrations are very low at all temperatures asthe chemical interaction is not considered. At such lowconcentr ations of solvent, the polymer mobility is not suffi-ciently high and t he disengagement rates are extremely low.Therefore, the variation of dissolution rate with tem peratureis predicted for a case where the polymer swells appreciably

Page 4: chemical eng science2

8/13/2019 chemical eng science2

http://slidepdf.com/reader/full/chemical-eng-science2 4/5

3 8 8 4 I D E V O T T A a n d R A M A S H E L KA R

0 - 7 0 O - I 0

0 - 6 5 0 . 0 8

zz0

r - - - i -o (,-)

, ' , 0 - 6 0 0 - 0 6 .e :h I.l..

u.,i hi

. J j

>

v - 0 - 5 5 : : ) . 0 4 ~_

z zI.l.I W:> 2>_ 1 j

o o(/) 0')

0 . 5 0 3 0 2

0 . 4 5 t i = I t 02 7 0 2 8 0 2 9 0 3 0 0 3 1 0 3 2 0 3 3 0

T E M P E R A T U R E ( K )

F i g . 2 . P r e d i c t e d v a r i a t i o n o f e q u i l i b r i u m s o l v e n t v o l u m e f r a c t io n a t t h e g e l - l i q u i d i n t e r f a c e w i t h t e m p e r -

a t u r e: a ) w i t h h y d r o g e n b o n d i n g a n d b ) w i t h o u t h y d r o g e n b o n d i n g .

9 5 1 0

9 - 0

x

uJ

ty

z

or - - 8 - 5

: 3. . J

o(/)( /)

( /)t n 8 - 0U.l_1z

o

Zh i

=E

7 . 5

( a )

( b )

7 - 0 = = = i t 22 7 0 2 8 0 2 9 0 3 0 0 3 1 0 3 2 0

T E M P E R A T U R E ( K )

8

¢¢

z_oI.-

=.1o

6 o~

Q

~0

h i..J

_o3

z4 w

=E

F

F i g. 3 . P r e d i c te d v a r i a t i o n o f d i m e n s i o n l e s s d i s s o l u t io n r a t e w i t h t e m p e r a t u r e : a ) w i t h h y d r o g e n b o n d i n g

a n d b ) w i t h o u t h y d r o g e n b o n d i n g . [KL~ Do= 1 . 0 x 1 0 s ; B d = 1 . 5 ; a p = 6 . 0 × 1 0 - 5 ; ~ s = 7 . 0 × 1 0 - 4 ;

f p T g ) = 0 . 0 2 5 ; f ~ T g ) = 0 . 0 9 . ]

e v e n w i t h o u t h y d r o g e n b o n d i n g . A n o b v i o u s t r e n d o f c o n -

t i n u o u s i n c re a s e i n d i s s o lu t i o n r a t e w i t h t e m p e r a t u r e i s se e n

i n F i g . 3 b ) i n l i n e w i t h t h e e x p e r i m e n t a l t r e n d s h o w n i n

F ig . l a ) .

C O N C L U S I O N S

A m a t h e m a t i c a l m o d e l f o r d i s so l u t i o n o f p o l y m e r f il m h a s

b e e n d e v e l o p e d b y i n c o r p o r a t i n g t h e h y d r o g e n b o n d i n g i n -

t e r a c t io n o f t h e p o l y m e r w i t h t h e s o l v e n t . A n i n t e r e s ti n g

Page 5: chemical eng science2

8/13/2019 chemical eng science2

http://slidepdf.com/reader/full/chemical-eng-science2 5/5

O pt i m a l t e m pe r a t u r e f o r d i s s o lu t i on o f po l ym e r s

p r e d i c t ion o f m a x i m um i n d i s s o lu t i on r a t e v s t e m pe r a t u r e i s s s o l ve n tobserved in l ine wi th the exper im enta l da ta repor ted in the oo va lue a t l a rge t imesl i t e ra ture . The m odel a l so predic t s redu ct ion in swel ling wi thi nc r e a s e i n t e m pe r a t u r e due t o r e duc t i on i n t he hyd r oge n Superscr ip ts

bon ding in terac t ions . The resul t s have pragm at ic impl ica- i surface va luet ions in de term ining the opt im um temp era ture for d i ssolu- * c lose packedt ion wi th the requis i t es of h igher d i ssolut ion ra te an d low erswelling.

I . D E V O T T ANat i ona l Che mi c a l Labor a t o r y

Pune 411 008, India

R . A. M A S H E L K A R *Counc i l o f Sc i e n t i fi c and I ndus t r i a l Re s e ar c h

Ra f t Mar y , Ne w De l h i 110 001 , I nd i a

NOTATION

a num be r o f p r o t on a c c e p t o r s pe r m o l e c u l eAd f ree-volume param eterBd f ree-volume param eterd num be r o f p r o t on donor s pe r m o l e c u l eDm diffusivity of the solve nt

f f ree-volume f rac t ionAG tota l f ree energyk d d i s e nga ge m e n t r a t eK kinet ic cons tantl swol len th ickness of the f ilmm p m ob i l i t y o f t he po l ym e r c ha i nsM m ol e c u l a r w e i gh t o f t he po l ym e rM c cr i t i ca l molecular weight for entanglementN e c onc e n t r a t i on o f e n t a ng le m e n t sP reduced pressure

r s e gm e n t l e ng t hR ga s c ons t a n tt t ime

t r e p r e p ta t io n t i m eT a bs o l u t e t e m pe r a t u r e

Tg glass t rans i t ion temp era turer e duc e d vo l um e

V swol len volum e of the ge lVo volu me of ge l as synthes izedx di s tance f rom the cent re of the s labX 2 b i na r y i n t e r a c t ion pa r a m e t e r

Greek le t tersOt

It

V U

f)

Pp~7

9

therma l expa ns ion coeff ic ient o f free volumef lexibi li ty param eter of an r -m erm e a n- f ie l d i n t e ra c t i on e ne r gy pe r m e rb i na r y i n t e r a c t i on pa r a m e t e rchemical potent ia lf r a c ti ona l num be r o f hyd r oge n bonds o f the ij pai rreduced dens i tyde ns i ty o f t he po l ym e rs ym m e t r y pa r a m e t e r o f a n r - m e tvo l um e f r a c ti on6 r / a e - 1

Subscr ip ts1 solvent2 po l ym e ra a c c e p t o rd d o n o ry gel phasei do no r of type i i = 1, m)i 0 non - bond e d dono r o f t ype ij accep tor of type j j = 1 , n)

0 j non - bond e d a c c e p t o r s o f t ype jp po l ym e r

tCorres pon ding author . Fax: 91 11 3710618. E-mai l :[email protected].

3885

R E F E R E N C E S

Astar i t a , G . an d Sar t i , G . C . , 1978, A c lass of mathe mat ica lmo del for sorpt ion of swel l ing solvents in g lassy p olymers .Polym. Engng Sci . 18, 388-394.

Blackadder , D . A. and Ghavamika , H. , 1979, Dissolut ion ofpo l ye t he r s u lphone i n c h l o r o fo r m . P o l y m e r 20, 523-528.

B r oc ha r d , F . a nd de G e nne s , 1983 , K i ne t i c s o f po l ym e rdissolut ion. Phy s i c o Che mi c a l Hy dr ody n ami c s 4, 313-322.

Cooper , W. J . , Kras icky, P . D . and Rodr iguez , F . , 1986,Dissolut ion ra tes of PM M A f i lms in mixed solvents . J .Appl . Polym. Sc i . 31, 65-73.

Dev ot ta , I ., Am beskar , V . D., Mand hare , A . B . and Mashel -kar , R . A. , 1994a, Li fe t ime o f a d i ssolving polym er par -ticle. Chem. Engng Sci . 49, 645-654.

Dev ot ta , I ., Badiger , M. V. , Rajm ohan an, P. R . , Gan apath y,S . a nd Ma s he l ka r , R . A . , 1995, The p he nom e na o f a nom a l -

ous r e t a r da t i on a nd e nha nc e m e n t i n po l ym e r d i s s o lu t ion :role of d i sengagement dynamics . Chem. Engn9 Sci. 50

2557-2569.Devot ta , I . , and Mashelkar , R . A. , Communicated, Role of

t he r m odyna m i c a nd k i ne t i c f a c t o r s i n po l ym e r d i s s o l u -t ion. Chem. Engng Commun.

Dev ot ta , I ., Premna th , V. , Badiger , M. V. , Rajmoh anan , P. R .Ganapathy, S . and Mashelkar , R . A. , 1994b, Dynamics ofmobi l i sa t ion of swel l ing di ssolving polymer ic sys tem.Mac r omol e c u l e s 27, 532-539.

Herm an, M. F. and Ed wards , S . F . , 1990, Rep ta t ion mod elfor polymer d i ssolut ion. Mac r omol e c u l e s 23, 3662-3670.

Kulka rni , M . G. and Ma shelkar , R . A., 1983, A uni fieda ppr oa c h o f t r a ns po r t phe nom e na i n po l ym e r i c m e d i a - - l :diffusion in polymeric solut ions, gels and melts. Chem.

Engng Sci . 38, 925-939.Lee , P . I. and Peppas , N . A . , 1987, Pred ic t ion of polyme r

dissolu t ion in swellable con trol led release systems. J . Con -trol led Rel . 6, 207-215.

Lele , A . K. , Badiger , M. V. , Hi rve , M. M. and Mashelkar ,R . A ., 1995, The r m odyna m i c s o f hyd r oge n - bonde d po l y -me r g e l - solven t sys tems. Chem Engng Sci. 50 , 3535-3545.

Manjkow, J . , Papanu, J . S . , Hess , D . W. , Soong, D. S. andBel l, A . T., 1987, Inf luence of process ing and mo lecularpa r a m e t e r s on t he d i ss o l u t ion r a t e o f PM M A t h i n f il m s. J .Electrochem. Soc. 134, 2003-2007.

Ou ano , A. C., 1982, Dis solu t ion kinet ics of polym ers: effectof res idual solvent content , In Mac r omol e c u l a r So l u t i on

Edited b y Se ym our, R. B. and Stahi , G. A.) , pp. 208-217.Pergamon Press , U .S.A.

Pan ayiotou , C . and Sanchez , C . , 1991, Hyd roge n bon ding inf lu ids : an equat ion of s ta te approach. J . Phys . Chem. 9 5

10,090 10,097.Pa pan u, J . S., Hess, D. W ., Soane, D. S. and Bell , A. T., 1989a,

D i s s o l u t ion o f t h in PM M A f il m s in ke t one s , b i na r yke t one / a l c oho l m i x t u r es , a nd hyd r oxy ke t ones . J . Elec tro-

chem. Soc. 136, 3077-3083.Papanu, J . S. , Soane, D. S., Bell , A. T. and Hess, D. W.,

1989b, Transpor t models for swel l ing and di ssolut ion ofth in p olym er f ilms . J . Appl . Polym. Sc i . 38, 859-885.

Peppas , N . A. , Wu, J . C . and von Meerwal l , E. D. , 1994,Ma t he m a t i c a l m ode l i ng a nd e xpe r i m e n t a l c ha r a c t e r i z a -t ion of polymer d i ssolut ion. Mac r omol e c u l e s 27,5626-5638.

Ranade , V . V. and Mash elkar, R. A., 1995, Convec tive diffusion

from a dissolving polymer particle. A. I .Ch.E.J . 41, 666-676.Tu, Y. and O uan o, A. C . , 1977, M odel for the k inemat ics of

polymer d i ssolut ion. I B M J . Re s . De v . 21, 131-142.Zie linski , J . M. an d Dud a, J . L. , 1992, Predic t ing poly -

me r/solv ent diffusion coefficients using free volu metheory. A . I . C h . E . J . 38, 405-415.