chemical constituents of euphorbia kansui

3
Chemical constituents of Euphorbia kansui Qing Peng a , Guoyu Li b, c , Yueping Ma a, d , Jian Huang a, d , Xiuyan Wei a, d , Jinhui Wang a, b, c, d, * a School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China b School of Pharmacy, Shihezi University, Shihezi 832002, PR China c Key Laboratory of Phytomedicine Resources & Modernization of TCM of Ministry of Education, Shihezi 832002, PR China d Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China article info Article history: Received 1 September 2011 Accepted 26 February 2012 Available online 28 March 2012 Keywords: Euphorbia kansui Euphorbiaceae Chalcones Flavanones Diterpenoids Triterpenoids abstract Phytochemical investigation of the dried roots of Euphorbia kansui resulted in the isolation of three avonoids (13), three diterpenoids (46) and ve triterprnoids (711). Among them, three compounds (13) were rstly isolated from the family Euphorbiaceae. Others were reported in the genus Euphorbia, in which three compounds (811) were rstly isolated from the E. kansui. The chemotaxonomic signicance of these compounds was summarized. Ó 2012 Elsevier Ltd. All rights reserved. 1. Subject and source The genus Euphorbia belongs to the family Euphorbiaceae with about 2000 species, mainly distributed in tropical and subtropical regions of the world. The records show 32 species in genus Euphorbia are used as medicine in Dictionary of Chinese Traditional Drugs. The dried roots of Euphorbia kansui have been used as a herbal remedy for edema, ascites and cancers, locally known as Gan suiin Chinese Traditional Medicine (Dictionary of Chinese Traditional Drugs, 1977). The dried roots of E. kansui were collected from Shanxi Province, P. R. China, and identied by Prof. Jincai Lu (Shenyang Pharmaceutical University). A voucher specimen (20100605) has been deposited in the Herbarium of the Shenyang Phar- maceutical University. 2. Previous work Previous phytochemical investigations on the genus Euphorbia have demonstrated the presence of several types of compounds including diterpenoids, triterpenoids, avonoids, steroids, and phenolic derivatives. A lot of chemical compounds with activities showed above have already been isolated from E. kansui and identied, including diterpenoids (Uemura et al., 1974), triterpenoids (Wang et al., 2003), and phenolic derivatives (Ding and Jia, 1992). However, there are no reports in the isolation of avonoids from E. kansui. * Corresponding author. School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China. Tel.: þ86 024 23986479. E-mail address: [email protected] (J. Wang). Contents lists available at SciVerse ScienceDirect Biochemical Systematics and Ecology journal homepage: www.elsevier.com/locate/biochemsyseco 0305-1978/$ see front matter Ó 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.bse.2012.02.021 Biochemical Systematics and Ecology 43 (2012) 6466

Upload: qing-peng

Post on 25-Aug-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chemical constituents of Euphorbia kansui

Biochemical Systematics and Ecology 43 (2012) 64–66

Contents lists available at SciVerse ScienceDirect

Biochemical Systematics and Ecology

journal homepage: www.elsevier .com/locate/biochemsyseco

Chemical constituents of Euphorbia kansui

Qing Peng a, Guoyu Li b,c, Yueping Ma a,d, Jian Huang a,d, Xiuyan Wei a,d, Jinhui Wang a,b,c,d,*

a School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR Chinab School of Pharmacy, Shihezi University, Shihezi 832002, PR ChinacKey Laboratory of Phytomedicine Resources & Modernization of TCM of Ministry of Education, Shihezi 832002, PR ChinadKey Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China

a r t i c l e i n f o

Article history:Received 1 September 2011Accepted 26 February 2012Available online 28 March 2012

Keywords:Euphorbia kansuiEuphorbiaceaeChalconesFlavanonesDiterpenoidsTriterpenoids

* Corresponding author. School of Traditional ChinE-mail address: [email protected] (J. Wan

0305-1978/$ – see front matter � 2012 Elsevier Ltddoi:10.1016/j.bse.2012.02.021

a b s t r a c t

Phytochemical investigation of the dried roots of Euphorbia kansui resulted in the isolationof three flavonoids (1–3), three diterpenoids (4–6) and five triterprnoids (7–11). Amongthem, three compounds (1–3) were firstly isolated from the family Euphorbiaceae. Otherswere reported in the genus Euphorbia, in which three compounds (8–11) were firstlyisolated from the E. kansui. The chemotaxonomic significance of these compounds wassummarized.

� 2012 Elsevier Ltd. All rights reserved.

1. Subject and source

The genus Euphorbia belongs to the family Euphorbiaceae with about 2000 species, mainly distributed in tropicaland subtropical regions of the world. The records show 32 species in genus Euphorbia are used as medicine inDictionary of Chinese Traditional Drugs. The dried roots of Euphorbia kansui have been used as a herbal remedy foredema, ascites and cancers, locally known as “Gan sui” in Chinese Traditional Medicine (Dictionary of ChineseTraditional Drugs, 1977).

The dried roots of E. kansui were collected from Shanxi Province, P. R. China, and identified by Prof. Jincai Lu (ShenyangPharmaceutical University). A voucher specimen (20100605) has been deposited in the Herbarium of the Shenyang Phar-maceutical University.

2. Previous work

Previous phytochemical investigations on the genus Euphorbia have demonstrated the presence of several types ofcompounds including diterpenoids, triterpenoids, flavonoids, steroids, and phenolic derivatives. A lot of chemical compoundswith activities showed above have already been isolated from E. kansui and identified, including diterpenoids (Uemura et al.,1974), triterpenoids (Wang et al., 2003), and phenolic derivatives (Ding and Jia, 1992). However, there are no reports in theisolation of flavonoids from E. kansui.

ese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China. Tel.: þ86 024 23986479.g).

. All rights reserved.

Page 2: Chemical constituents of Euphorbia kansui

Q. Peng et al. / Biochemical Systematics and Ecology 43 (2012) 64–66 65

3. Present study

Dry roots of E. kansui (5.0 kg) were refluxed three times with 95% EtOH and concentrated under reduced pressure to givea crude extract (323 g). The extract suspended in H2O was subjected to a HPD100 macroporous resin gel column, eluting withH2O, 65% EtOH and 90% EtOH, successively to give three different polar parts. The 90% EtOH portion (57.5 g) was subjected tosilica gel column chromatography (CC) with a gradient of petroleum ether/acetone (100:1–100:100) to give fractions 1–12.Compound 6 (15.0mg), 7 (13.1 mg), 8 (5.4 mg) and 9 (8.2 mg) were isolated from fraction 2, respectively, by repeated silica gelCC eluted with petroleum ether/EtOAc/acetone and recrystallization. Fraction 3 was subjected to Sephadex LH-20 CC elutedwith CHCl3/MeOH (1:1) to afford 2 (33.2 mg), whilst fraction 6 contained 1 (9.5 mg) and 3 (11.7 mg). Fraction 4 repeatedlyapplied to silica gel CC and ODS CC, and purified by preparative reverse phase high pressure liquid chromatography (RP-HPLC)to yield 4 (38.0 mg) and 5 (73.5 mg). In the same manner, 10 (48.5 mg) and 11 (7.5 mg) were obtained from fraction 7.

The UV, ESI-TOF-MS, 1 D-, 2 D- NMR spectra of compounds 1–11 (Fig. 1) were measured, and comparison with theliterature data revealed the following identities: 20,40-dihydroxy-60-methoxy-30-menthylchalcone (1) (Anjaneyulu and Raju,1984), 20,40-dihydroxy-60-methoxy-30,50-dimenthylchalcone (2) (Malterud et al., 1977), (2S)-7-hydroxy-5-methoxy-6,8-dimenthylflavanone (3) (Mitscher et al., 1973), 5-O-benzoyl-3b-hydroxy-20-deoxyingenol (4) (Uemura et al., 1974), 3-O-benzoyl-3b-hydroxy-20-deoxyingenol (5) (Uemura et al., 1974), 4-O-acetyl-5-O-benzoyl-3b-hydroxy-20-deoxyingenol (6) (Li

O

H3C

HO

OH

OCH3

R

O

OOCH3

H3C

HO

CH3

1 R = H 3

2 R = CH3

O

R1R2

HHR3

HO

4 R1 = OH, R2 = OH, R3 = OBz 7

5 R1 = OBz, R2 = OH, R3 = OH

6 R1 = OH, R2 = OAc, R3 = OBz

HO

R R

HO

8 R = CH3 9 R = CH3

10 R = COOH 11 R = COOH

Fig. 1. Structures of compounds 1–11.

Page 3: Chemical constituents of Euphorbia kansui

Q. Peng et al. / Biochemical Systematics and Ecology 43 (2012) 64–6666

et al., 2008), euphol (7) (Gewali et al., 1990), a-amyrin (8) (Mahato and Kundu, 1994), b-amyrin (9) (Tanaka and Matsunaga,1989), oleanolic acid (10) (Ikuta and Itokawa, 1988), and ursolic acid (11) (Deng et al., 1999).

4. Chemotaxonomic significance

In the present study, two chalcones (1 and 2), one flavanone (3), three diterpenoids (4–6) and five triterpenoids (7–11)were obtained from the dry roots of E. kansui (Fig. 1).

Compound 7 is a common component in genus Euphorbia, as well as in E. kansui (Zheng et al., 1998). Compounds 8 and 9have been found inmany species of genus Euphorbia, and the co-occurrence of 8 and 9 has been reported for Euphorbia trigona(Anjaneyulu and Rao, 1985). Particularly compounds 10 and 11 are more restricted in their distribution and their presencehave been note in a few Euphorbia species. Previous research obtained that oleanolic acid (10) was isolated from Euphorbiaparalias (Khafagy et al., 1976), Euphorbia dracunculoides Lam (Chawla et al., 1982), Euphorbia abyssinica Gmel (El-Fiky et al.,2008), Euphorbia chrysocoma (Jiang et al., 2009), and ursolic acid (11) was from E. paralias (Khafagy et al., 1976), E. chrys-ocoma (Shi et al., 2005), Euphorbia hirta (Mallavadhani and Narasimhan, 2009). The pentacyclic triterpenoids (8–11) describedhere for the first time in E. kansui. The existence of these triterpenoids may indicate a close relationship with the members ofthe genus Euphorbia on their chemical composition.

Compound 4–6, three diterpenoids, which have not been reported in any other species of Euphorbia, have been shown tobe good taxonomicmarkers for E. kansui. Compound 4 has been previously isolated from E. kansui (Uemura et al., 1974), whichcan convert to compounds 6 through acetylation of 4-OH. Compounds 5 and 6 have been reported in E. kansui (Uemura et al.,1974) and E. kansui Preparata (Li et al., 2008). The present phytochemical investigation on E. kansui was in a good agreementwith other reports.

Compounds 1–3, belonging to uncommon C-methylated flavonoids, reported from the family Euphorbiaceae for the firsttime. Previously these two chalcones and one flavanonewere frequently isolated from the familiesMyrtaceae andMyricaceae(Malterud et al., 1977; Wollenweber et al., 1985; Zhang et al., 1990; Le et al., 1997). It is noteworthy that the occurrence ofcompounds 1–3 as major components in E. kansui may indicate other similarities in the chemistry of the families Euphor-biaceae, Myrtaceae and Myricaceae. In terms of chemotaxonomy, the compounds 1–6 may sever as the specific makers of E.kansui from Shanxi Province, P. R. China.

Acknowledgements

This work was financially supported by the Fok Ying Tung Education Foundation (No. 101040) & National Major SpecialScience and Technology Project (2010ZX09401-304-104A).

References

Anjaneyulu, A.S.R., Raju, S.N., 1984. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry 23B, 1010.Anjaneyulu, V., Rao, G.S., 1985. Indian Journal of Pharmaceutical Sciences 47, 194.Chawla, H.M., Chakrabarty, K., Chibber, S.S., Kalia, A.N., Chaudhary, N.C., 1982. Science and Culture 48, 203.Deng, J.Z., Starck, S.R., Hecht, S.M., 1999. Journal of Natural Products 62, 1624.“Dictionary of Chinese Traditional Drugs”, vol. 1, Shanghai Science and Technology Press, Shanghai, 1977, 573.Ding, Y.L., Jia, Z.J., 1992. Phytochemistry 31, 1435.El-Fiky, F., Asres, K., Gibbons, S., Hammoda, H., Badr, J., Umer, S., 2008. Natural Product Communications 3, 1505.Gewali, M.B., Hattori, M., Tezuka, Y., Kikuchi, T., Namba, T., 1990. Phytochemistry 29, 1625.Ikuta, A., Itokawa, H., 1988. Phytochemistry 27, 2813.Jiang, C.Y., Mu, S.Z., Deng, B., Ge, Y.H., Zhang, J.X., Hao, X.J., 2009. Journal of Chinese Medicinal Materials 32, 1390.Khafagy, S.M., Gharbo, S.A., Abdel Salam, N.A., 1976. Planta Medica 29, 301.Le, T.A.D., Nguyen, X.D., Hoang, V.L., 1997. Tap Chi Hoa Hoc 35, 47.Li, C.F., Wang, J.H., Cong, Y., Li, X., 2008. Journal of Asian Natural Products Research 10, 101.Mahato, S.B., Kundu, A.P., 1994. Phytochemistry 37, 1517.Mallavadhani, U.V., Narasimhan, K., 2009. Natural Product Research 23 (7), 644–651.Malterud, K.E., Anthonsen, T., Lorentzen, G.B., 1977. Phytochemistry 16, 1805.Mitscher, L.A., Wu, W.N., Beal, J.L., 1973. Lloydia 36, 422.Shi, H.M., Long, B.S., Cui, X.M., Min, Z.D., 2005. Journal of Asian Natural Products Research 7, 857.Tanaka, R., Matsunaga, S., 1989. Phytochemistry 28, 1699.Uemura, D., Ohwaki, H., Hirata, Y., Chen, Y.P., Hsu, H. Yen, 1974. Tetrahedron Letters 29, 2527.Wang, L.Y., Wang, N.L., Yao, X.S., Miyata, S., Kitanaka, S., 2003. Journal of Natural Products 66, 630.Wollenweber, E., Kohorst, G., Mann, K., Bell, J.M., 1985. Journal of Plant Physiology 117, 423.Zhang, F.X., Liu, M.F., Lu, R.R., 1990. Zhiwu Xuebao 32, 469.Zheng, W.F., Cui, Z., Zhu, Q., 1998. Planta Medica 64, 754.