chemical aspects of ecology in relation to agriculture

96
Publication 1015 July 1957 CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE by Hubert Martin Research Monograph 1 Science Service Laboratory, University Sub Post Office London, Ontario SCIENCE SERVICE CANADA DEPARTMENT OF AGRICULTURE Price $3.00 Cat. No. A43-1015 Available from the Queen's Printer, Ottawa, Canada 2M-22893-7:57 91760-1

Upload: others

Post on 03-Feb-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Publication 1015 July 1957

CHEMICAL ASPECTS OF ECOLOGY

IN RELATION TO AGRICULTURE

by Hubert Martin

Research Monograph 1

Science Service Laboratory, University Sub Post Office

London, Ontario

SCIENCE SERVICE

CANADA DEPARTMENT OF AGRICULTURE

Price $3.00 Cat. No. A43-1015

Available from the Queen's Printer, Ottawa, Canada2M-22893-7:5791760-1

Page 2: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

EDMOND CLOUTIER, C.M.G.. O.A., D.S.P.QUEEN'S PRINTER AND CONTROLLER OF STATIONERY

OTTAWA, 1958

Page 3: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

CONTENTSCHAPTER PAGE

1. Introduction 5

2. The production of phytotoxins by higher plants 6

3. Higher plants vs. insects: being mainly concerned with the chemicaldefenses of plants against insects 22

4. Higher plants vs. fungi: the chemical defenses of plants against fungal attack 33

5. Higher plants vs. bacteria: being mainly concerned with the rhizosphere 38

6. The reaction of higher plants to insect attack 40

7. Fungi vs. higher plants: the role of phytotoxins in plant pathology 43

8. Fungi vs. fungi: the chemical basis of biological control 53

9. The production of insecticides and insect attractants by insects and microorganisms 67

10. Bacteria vs. higher plants 73

11. The ecological chemistry of bacteria 77

Author index 88

Subject index 93

3

Page 4: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE
Page 5: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Chapter 1

INTRODUCTION

In 1950, the Canada Department of Agriculture established, on the campus of the University of

Western Ontario,  a  laboratory whose main  task  is  the  study  of  the  ecological  consequences  of  the

widespread and continued use, in agriculture, of chemicals of such biological activity that they serve for the

control of the pests, diseases, and weeds of crops.  In conjunction with that study,  it was necessary to

examine  the  available  information  on  the  biologically  active  chemicals  already  present  in  the  crop

environment and involved in the interplay of host plant, pest, pathogen, and weed. A knowledge of these

chemicals is prerequisite to a study of the effects of the exotic chemical introduced into that environment

as insecticide, fungicide, or herbicide.

The science and practice of crop husbandry reduces ultimately to the proper utilization of natural

resources for the protection of the crop from factors, biological or otherwise, that tend to depress yield. The

interplay of the biological factors is frequently regarded as a competition and at one time it was held that

competition between  individual plants of  the crop was solely  for nutrient,  light, and water. But many

examples are now known of the production of biologically active diffusates from the roots of growing plants.

The attack of most, if not all, fungal and bacterial pathogens involves the production of phytotoxins. The

specificity  so often  shown by  insects  in  their  range of host plants  is often  susceptible  to biochemical

explanation. Moreover, soil fertility is the resultant of a complex interplay of soil fauna and microflora, and

it is known that many soil organisms are capable of producing metabolic products of such intense biological

activity that they are termed antibiotics. Antibiosis and symbiosis are therefore of basic  importance  in

agriculture for they control the detail of the ecological community of the crop.

The purpose of this report is to review and, as far as possible, classify and correlate information

concerning the significance and nature of the chemical factors involved in this antibiosis and symbiosis. It

is convenient to catalogue this information into chapters based on the main biological components of the

crop environment—higher plants, insects, fungi, bacteria—in their intra‐ and inter‐group relationships.

5

Page 6: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Chapter 2

THE PRODUCTION OF PHYTOTOXINS BY HIGHER PLANTS

Competition for the available light, air, water, and nutrient is the predominant factor limiting plant

populations, whether the plants are growing as crops in temperate climates, as communities of different

species in grassland or forest, or under natural conditions. Climate and soil factors determined by  climate

and geology will decide the natural vegetation. It is usually accepted that these factors are sufficient to

account  for  the  numbers  and  species  of  the  plant  community,  for  plant  associations,  and  for  their

interactions. "Competition is purely a physical process . . . Two plants, no matter how close, do not compete

with each other as long as the water content, the nutrient material, the heat and light are in excess of the

needs of both." This was Clements' statement in 1907 (25).

So downright a dictum reflects the doubts current at that time on the possibility that plants may by

other means affect the growth of their competitors. Alternative factors had been sought not only because

of the suspicion that nature abhors simplicity but because of the many mechanisms, such as excretion of

toxins, by which a particular plant species could secure an advantage over rival species. The operation of

such  processes  had  frequently  been  suspected  by  early  natural  historians.  John  Evelyn,  in  his  paper

presented to the Royal Society on April 29, 1675, wrote (and I quote from p. 23 of his discourse entitled

"Terra" published as an appendix to "Silva", 5th ed., London, 1729) :—"Moreover, Ground is sometimes

barren, and becomes unfruitful by the Vicinity of other Plants, sucking and detracting the Juice of the Earth

from one to another: For thus we see the Reed and Fern will not be made to dwell together; Hemlock and

Rue are said to be inimicous; the Almond and the Palm, which are seldom fruitful but in Conjugation; and

perhaps there are Effluvia, or certain inconspicuous Streams of dusty Seeds, which not only impregnate

Places where never grew any before, but issue likewise from one to another, as in our Junipers and Cypress

I observe, flowering about April; which are Trees of Consort, and thrive not well alone. The Ficus never keeps

her Fruit so well, as when planted with the Caprific. By what Irradiations the Myrtle thrives so with the Fig;

the Vine affects the Elm and Olive (which is at Antipathy with the Oak, and imparts also such a Bitterness

to the Mould, as kills Lettuce and other subnascent Plants) is hard to say; and why some affect to live in

Crouds, other in Solitude:"

Evelyn was not unmindful of the infertility which results from exhaustion of nutrients, for in the same

lecture (loc. cit., p. 29) he says: "All Plants do not easily become Denizons in all Places: I might add to this

the Niceness of their Palates, and Fondness to their own Homes, and to  live some  in Consort, some  in

Solitude, some on dry Banks, some in watery Puddles, and some as it were in the very Air, and fiery Soils;

nay, some which are found to destroy the vegetable Virtue where they grow; for such are said to be Woad,

Hemp, the Scythian Lamb (see page 11) , etc. and if it be true and constant, all our inbibitions of Salts and

Composts signify little to Earth pre‐impregnated with a Salt or Virtue different from what the Plant does

naturally delight in, some obscure Footsteps of which every Ploughman seems to discover, which makes him

change the Crop in some Places yearly: For the first, second and third Burden of the same Grain, especially

Wheat, will exhaust that which is its proper Aliment ... ".

6

Page 7: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Evelyn refers in the final sentence of this quotation to the practice of crop rotation, and perhaps the

first  scientific approach  to  the  reasons  for  the  success of  this practice  is due  to de Candolle. He was

impressed by  the evidence he  accumulated  that  the  roots of many plant  species excrete  substances

obnoxious to other plants. In Book 5, Chapter 15, S‐5, of his great work, "Physiologie Végétale" (Paris, 1832)

he wrote on page 1474: "MM. de Humboldt et Plenck ont eu l'idée ingénieuse de chercher dans ce fait [plant

excretions] la cause des attractions et des répulsions de certaines plantes. Ainsi, si, comme on l'admet assez

généralement, le cirse des champs nuit à l'avoine, l'euphorbe et la scabieuse au lin, l'érigeron acre et l'ivraie

au froment, etc., cela pourrait être dû à ce que ces plantes suintent par leurs racines quelque chose de

nuisible à la végétation des autres: si, au contraire, la salicaire se plaît auprès du saule, la truffe auprès du

chêne ou du charme, etc., c'est que peut‐être elles tirent parti de quelque excrétion des racines de ces

végétaux." And, later, on page 1496, he wrote: "Ainsi, un pêcher gâte le sol pour lui‐même, à ce point que,

si, sans changer la terre, on replante un pêcher dans un terrain où il en a déjà vécu un autre auparavant, le

second languit et meurt, tandis que tout autre arbre peut y vivre."

It is not surprising, therefore, that in his chapter on Crop Rotation he assigned great importance to

the role of root excretions, and stated that the theory of crop rotation rests on the fundamental fact that

plants  thrive  poorly  on  soil  that  has  just  been  cropped with  the  same  species,  genus,  or  family. He

distinguished  between  "l'épuisement  du  sol',  which  is  the  improverishment  of  the  soil  arising  as  a

non‐specific  consequence  of  the  crop  on  vegetation  in  general,  and  "l'effritement  du  sol',  a  specific

corruption of the soil by dangerous materials such as root excretions. De Candolle foresaw that,  if this

theory is correct, it may also explain the favorable effect that leguminous crops may exert on succeeding

cereal crops.

The refutation of de Candolle's hypothesis of "l'effritement du sol' as the only explanation for the

success of crop rotation was easy. Boussingault, in 1838, found in his pot experiments that peas and clover,

unlike wheat, apparently acquire nitrogen from the air. The presence of the nodules on the roots of legumes

had long been recognized, and Malpighi had, in 1679, described them in his Anatomia Plantarum as galls

caused by insects. Lackmann (50) recognized that the nodules contain "vibro‐like" organisms. The conclusive

answer was obtained by Hellriegel whose work was published, with Wilfarth (40) as co‐author, in 1888. The

"favourable root excretion" became the nitrogen‐fixing activity of bacteria, species of the genus Rhizobium,

when growing in symbiosis with the legume.

An example of similar specificity, but from the opposite side, is the evil effect that barberry exerts

on wheat—an effect known from the earliest days. De Candolle devoted a whole section of his book to this

topic, but did not include it among the examples on which he based his root excretion hypothesis. Being

apparently unaware of the demonstration by Schoeler in 1818 of the connection between barberry and

wheat  rusts, he dismissed  the possibility  that  the aecidiospore  from barberry could,  falling on wheat,

produce "la rouille", the cause of which he knew as "l'Uredo". He favored rather the idea that the pollen of

the barberry in some way rendered the wheat flower sterile, and outlined several tests of this hypothesis

concerning the influence of one plant upon another. But it was unnecessary to follow up his suggestions,

because De Bary in 1856 established the existence of heteroecism in the rust fungi.

7

Page 8: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Returning to the general hypothesis of crop rotation, the next development was due mostly to Justus

von Liebig (52). He applied his ideas on the mineral nutrition of plants with such success that a general

acceptance followed his view that the merit of crop rotation was its balanced utilization of the reserves of

inorganic plant nutrients. Support for this idea was early supplied by the work of Daubeny (27), but from

time to time doubts have since been mooted that Liebig's hypothesis is not a complete explanation.

In the first decade of the 20th century, the United States Department of Agriculture was faced with

the problem of  the  continually decreasing yield of wheat—even when apparently well cultivated and

manured. It was often the sole crop of the prairies. Milton Whitney, Chief of the Bureau of Soils, wrote in

1909 (90) : "We know that plants do emit organic substances which are deleterious to themselves". To

demonstrate his point he took a small pot holding a pound of soil and in it grew six wheat plants. After three

weeks growth he cut the plants at soil level and sowed six more wheat grains. The second crop gave but half

the yield of the first plants. Moreover, he cited the following experiment made at Cornell. At one end of a

long box corn was planted, at the other end weeds. If a partition was placed between corn and weeds both

grew  normally,  but  in  the  absence  of  a  partition,  and when  the  roots  of  the  crops were  allowed  to

intertwine, the corn refused to grow. Whitney went on, "The reason we keep weeds out of crops, especially

during the early period of growth, is not that they affect the moisture content, although they may do so, nor

is it that they take up plant food, but that their presence is obnoxious and apparently poisonous to the

crop".

Support for Whitney's statements was forthcoming from the work of Schreiner and his colleagues

of  the Bureau of  Soils  (77) who had  isolated,  from unproductive  soils,  a  range of phytotoxic organic

compounds. These compounds included protein degradation products, a pentosan, several coumarins and,

in particular, a dihydroxystearic acid. These compounds were thought to arise not only from the growing

crop, but from plant remains by microbial action. Whatever the source, Cameron (23) wrote: "It is beyond

dispute, however, by reason of a large and increasing weight of evidence, much of it direct experiment, that,

as a result of the growing of plants, soils and the soil water do contain organic substances harmful to the

plant or organism eliminating them; harmful, innocuous or even stimulating to other plants or organisms".

The views of the Bureau of Soils were never widely accepted; they were at once contested by Russell

(74). He pointed out that the assessment of phytotoxicity by water‐culture techniques, as used  in the

American experiments, may be misleading—for  if these techniques are applied to soil, sorption by soil

colloids might rapidly remove compounds that proved toxic in water culture. The efficiency of the colloidal

matter of soil in removing, by adsorption, biologically active compounds from the soil solution is a factor that

reappears continually in ecological chemistry. Clearly the significance of this factor will depend on the nature

of the chemical and the type of soil under study; thus a ready adsorption of surface‐active or volatile

compounds could be expected. A strong degree of adsorption would also be expected in a muck soil rich in

organic matter and, indeed, as the workers of the Bureau of Soils showed, the effects of toxin may often be

mitigated by a suitable manuring. A particular answer to Russell's contention is, however, provided by the

work of Skinner (78). He showed that aldehydes, including formaldehyde, salicylal‐dehyde, and vanillin, are

toxic  to plants  growing  in  culture  solutions,  that  vanillin  and  salicylaldehyde occurred  in  soils of  low

productivity, and that their harmful effects are reduced by liming or by phosphate application. Moreover,

8

Page 9: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

when these aldehydes are applied to soil  in quite heavy amounts of 200‐400  lb. per acre, toxic effects

appeared in plants grown in seven of the twelve soils treated. From the seven soils the aldehyde could be

recovered at the end of the growing period, whereas none could be recovered from the "good" soil in which

the plants remained healthy. Decomposition, and not adsorption, seems to be the reason for the removal

of the toxin.

Russell and others have advanced alternative explanations for the reduction of yield that may follow

continuous cropping. It was shown that the plowing in of stubble, particularly of sorghum, immediately

reduces the nitrogen available to the crop; Hartland and his colleagues at Rhode Island (40) associated the

lowered productivity of an unsuccessful rotation with change of soil acidity. Soil sickness could often be

explained by  the accumulation of disease  favored by monoculture. Similarly,  in one‐crop  successions,

particular weeds will become more difficult to eradicate and control; the formation of a plow "hard pan"

may interfere with soil drainage and aeration. Loehwing (54) reviewed the literature of the problem up to

1937, which he summarizes with the statement that many authorities accept the conviction of Russell "that

there is no evidence of plant excretions conferring toxic properties on the soil". And Russell's words had

weight, for in his hands was the control of plots of long years of continuous cropping at the Rothamsted and

Woburn Experimental Stations.

The experience of continuous cropping at Rothamsted, Woburn, and elsewhere, has shown that

except  for  leguminous crops  it  is unnecessary  to accept de Candolle's  toxin hypothesis  to explain  the

benefits of crop rotation. Ripley (72) who, in his report of long‐term Canadian work on crop rotation, gave

a full review of the earlier work on toxin hypotheses, found no need to use these ideas in discussing the

results of the Canadian work.

Although the testing of an apparently unnecessary hypothesis is unattractive to most scientists,

Mann and Barnes (55‐59) of the Woburn Experimental Station have continued this study and it is pertinent

to review their results in some detail. The prevalent annual weeds of barley grown continuously at the

Station since 1877 are spurry (Spergula arvensis L.) and scentless may‐weed (Matricaria inodora L.) . They

concluded that the effect of these weeds on barley was the result only of competition either for root space

or for nutrient when nitrogen is not present in excess. Chickweed (Stellaria media (L.) Cyrillo) reduced barley

yields  though  barley  had  little  effect  on  chick‐weed—a  differentiation  explained  by  the more  rapid

development of chickweed roots. The roots of these species intertwine freely, and there is no evidence of

any specific effect. But when the weed is a grass, results are otherwise. The presence of the twitch grass

Holcus mollis L. halved the growth of barley when the plants were grown so thinly that competition for root

space was abolished; under like conditions, barley reduced by about 75 per cent the growth of the twitch

grass. Mann and Barnes wrote: "there seems no doubt of the effect of one plant on the other even though

they are grown in the presence of ample supplies of water, plant food, etc., and under conditions when no

competition for root space can occur". Continuing their experiments using another twitch grass Agrostis

gigantea Roth. they concluded that the injurious effect of one grass on another seems to be proved, and

that the effect varies from one grass to another and seems to be a specific property of each grass.

An earlier report of the excretion of toxic material by growing couch grass was given by Ostvald (66).

9

Page 10: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Dried and ground roots of Agropyron repens (L.) Beauv. were extracted with water and the extract, after

autoclave sterilization, was found to  inhibit the germination of "seeds" of dandelion (Taraxacum). The

improved extraction by aqueous ammonia indicated that the toxic substance is acidic; it is also soluble in

water and alcohol but practically insoluble in light petroleum. Ostwald reported that its effects on rape, oats,

and peas are similar to those produced by phytohormones—stimulating at low concentrations and inhibiting

at high concentrations.

Mention of the Woburn Experimental Station brings to mind the earlier work of Pickering (68‐70)

who, at the same Station, sought an explanation for the poor condition of young fruit trees when grass was

allowed to grow around them. The general result of the presence of the grass was to stop healthy growth,

the first symptoms being the light color and unhealthy appearance of the leaves. Although he recognized

these symptoms as those of nitrogen deficiency, Pickering was not satisfied that this effect was explained

solely by competition, and for many years he sought other reasons. He was a worker of extreme caution,

as exemplified by the care with which he examined his criteria of tree vigor. He measured the length of the

new shoots and the size of the leaf, and he selected for drying and weighing the sixth leaf from the end of

each shoot; he weighed the leaf drop, determined the percentage dry weight and the dry matter of the

leaves, their nitrogen content and the total nitrogen of the crop. All these measurements led to the same

conclusion as did the weighing of the trees when the experiment was over.

First he dealt with the possibility that the grass robbed the young trees of nutrients. "The grass

affects the trees in such a way as to reduce the growth by 3/4 of the normal amount, even though food

material is there, ready for immediate absorption and in quantities 50 per cent greater than in the pots

without grass where the trees are flourishing". He concluded that an interference with soil aeration by the

grass cover was not the cause of tree injury, for young trees with roots denied access to air by being planted

in iron cylinders extending to the clay subsoil, and with the soil covered with two inches of cement made

more vigorous growth during the first two years than those planted in open soil and, even after ten years,

were better trees than those in unenclosed ground grassed down after planting. That the accumulation of

carbon dioxide in soil around the roots of trees in grass was not the cause was shown by the absence of

effect of applied carbon dioxide. The soil temperature 6 inches below the surface was lower during the day

in tilled soil than in grassed soil but higher at night; yet the difference in summer was on the average only

2‐3EF. less than the annual variations of temperature. Did the growth of the grass increase the alkalinity of

the soil? Yes, the addition of sodium bicarbonate to the soil slightly reduced tree vigor, but even very heavy

doses did not give "an effect at all comparable in magnitude with that produced by grass". Another possible

explanation was that the growth of the grass might somehow cause an increase in the fine soil fractions

which  occur  6‐12  inches  below  the  soil  and  thereby  interfere with  the  action  of  the  tree  roots.  But

sedimentation  analyses  of  tilled,  grassed,  and  alkali‐treated  soils  gave  no  differences  outside  the

experimental error. A process involving the bacterial numbers of the soil he ruled out by showing that the

grass effects appeared even when the trees were grown in sand. The presence of grass on the sand cultures

led to an increase in bacterial numbers but the number of bacteria present was below that of the tilled soil.

Pickering was aware of  the emphasis placed by  the Bureau of Soils on  the  symptoms of  toxin

production but was  reluctant  to accept  the  idea  that  roots, as distinct  from germinating  seeds, could

10

Page 11: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

excrete* any solid or  liquid "for their function seems to be confined to absorption of such matter as  is

presented to them in liquid form". Yet, how then could he account for the results of his experiments? In one,

for example, iron trays with perforated bottoms were so shaped that they could be fitted around the trunk

of apple or pear trees. Grass was grown in sand in the trays which were watered with nutrient solution once

a week and with water several times a week in amounts sufficient to keep the pots up to a given weight. The

trees with trunks surrounded had a vigor of 68 per cent that of those check trees grown in the absence of

grass. It is difficult to avoid the contention that by some means the grass caused the appearance of some

substance or other which is actively inimical to the growth of the trees. Yet how such substances arise is a

matter of conjecture.

The work of Pickering has been given in some detail for, when reconsidered in the light of these

results and those of the later work of Mann and Barnes at Woburn, the broad generalizations of Russell and

particularly the earlier conclusion of Clements appear to be weakened. It would seem unnecessary to go to

the extreme of Molisch (64) who coined the word "allelopathy" from the reciprocal influence of higher

plants. Molisch's experimental work consisted mainly of the growth of plants in an enclosed space in the

presence or absence of ripening apples or pears; the effects he observed are attributable to ethylene

produced by the ripening fruit. His other demonstrations of the effect of one growing plant upon another

were scanty, and scarcely justified the application of so general a term as "allelopathy". Yet the evidence

of Pickering and of Mann and Barnes that grasses excrete biologically active substances goes far to justify

the conclusion that allelopathy may extend well beyond Molisch's evidence.

What other specific examples are to be found? An early but somewhat mythical example was the

rootstock of the tree fern Cibotium Barometz J. Smith, which is the plant referred to as the Scythian Lamb

by Evelyn in the passage quoted on page 6. In an annotated edition of Evelyn's "Terra", published in 1778,

A. Hunter added the following footnote:—"This vegetable is called the Tartarian Lamb, from its resemblance

in shape  to  that animal.  It has  something  like  four  feet, and  its body  is covered with a kind of down.

Travellers report that it will suffer no vegetable to grow within a certain distance of its seat." Hunter referred

to Sir Hans Sloan's memoirs on this subject published in the Transactions of the Royal Society, No. 245, p.

461, and mentioned that Mr. Bell in his account of a journey undertaken in 1715 from St. Petersburg to

Isfahan reported that the more sensible and experienced among the Tartars treated the whole story as

fabulous.

Evelyn also refers to an older observation recorded by Pliny, that "the shade of walnut trees is poison

to all plants within its compass," which he refutes by citing the popularity of walnut as a field tree in the

wine‐growing district of Burgundy† . But incompatibility of black walnut (Juglans nigra L.) and butternut (J. 

____________* The choice of a word to describe the production of phytotoxic substances from the roots of growing plants seems to have

given most writers on the subject some difficulty. Doubtless all the earlier and many recent writers have used such termsas excretion,  secretion, exudation,  leachate,  lysate, diffusate, without attaching any  implication of  the nature of  thephysiology of the process. Of these words, exudation is perhaps the most objectionable, for it implies the existence of poresand a secreting mechanism.

†  Dr. P. 0. Ripley tells me that, authough walnut trees are grown extensively in the vineyard areas of Burgundy, the grapes arecertainly not grown in their shade.

11

Page 12: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

cinerea L.) in certain plant associations was reported in 1925 by Massey (61) and by Schneiderhan (76).Massey suggested that the deleterious effect of the walnut on deep‐rooted plants growing in its vicinity isdue  to  juglone, 5‐hydroxy‐1,4‐naphthoquinone. Davis  (28) and Gries  (37) gave evidence  in  support ofMassey. Gries showed that whereas juglone is present only in trace amounts in the inner root bark of walnutand in the green husk of the fruit, these regions are richer in hydrojuglone, a non‐phytotoxic compoundwhich is readily oxidized to juglone on exposure to air. Juglone was found by Gries to be so good a fungicidethat he tested the compound as a seed protestant, but it failed because of its phytotoxicity. As a foliagefungicide against black spot of roses, juglone was of promise and caused no damage to the cutinized stemand leaf surface.

A direct ecological significance  is granted by Deleuil  (29, 30)  to  toxic  root excretions of plants,  toaccount for the absence of annual plants from the heaths of Provence. The plants of these heaths aremembers of the Rosemarino‐Ericion association, and Deleuil showed that likely annual seedlings were killedwhen watered with leachates from these soils. The toxicity ("télétoxie") of leachings from the roots of theseplants  decreased  in  the  order:  Erica  multiflora,  L.,  Lithospermum  fruticosum,  L.,  Helianthemumlavandulae‐folium, Dunal, Andropogon pubescens, Willd., etc. Toxicity disappeared when the leachings wereheated to 50EC. and was accentuated in soils rich in calcium carbonate. Of the few annuals that survivedin these soils, most were either legumes or the semi‐parasitic species of Odontites. The toxic effects ofleach‐ings of the heath soil could be counteracted by watering with macerations of the leguminous rootnodules (30).

Since 1950 Guyot and his associates (4‐8, 38) at the Ecole Nationale d'Agriculture de Grignon havestudied the part played by root excretions in determining the regrowth of vegetation of fallow land or landout of cultivation. In the course of their work they recorded many examples of the inhibitory effect, on theseedling growth of annual plants, of decoctions of the fresh or ground roots of these plants. The waterextracts of the roots of mouse‐ear (Hieracium pilosella L.) or of soil taken from around the roots of this plantreduced the height of seedlings of various crop plants to around 73 and 90 per cent respectively of that ofthe crop watered with similar extracts of the grass Brachypodium pinnatum Beauv. Flax was extremelysusceptible to water extracts of the roots of many of the plants tested, from Hieracium spp. to the goldenrod Solidago virgaurea  L. Guyot  concluded  that his experimental data  confirm  the  reality of  the  rootexcretions  among  higher  plants:  "le  concept  de  la  fertilité  des  terres  n'est  pas  entièrement  d'ordrephysico‐chimique; it est, pour une bonne part, d'ordre essentiellement biologique . . .”

In his account of plant associations in the deserts of Southern California, Went (86) noted that, whereasmany desert shrubs such as Franseria dumosa Gray were surrounded by many species of annual plants, theshrub Encelia farinosa Gray seldom harbored these herbs. Gray and Bonner (35, 36) isolated from Encelialeaves a compound,  identified as 3‐acetyl‐6‐methoxybenzalde‐hyde, which was highly  toxic  to  tomatoseedlings growing in nutrient solution. As they also showed that the fallen leaves of Encelia a year or moreold yield toxic rain‐water leachings, they suggested that the leaf‐produced toxin may be responsible for theabsence of annual plants under the bushes of the shrub. Following up this work, Bennett and Bonner (10)examined other desert shrubs for the presence of phytotoxic compounds and found them in Thamnosmamontana Torr. and Form. and three other species. Three crystalline furocoumarins were isolated from leavesof the former shrub, all phytotoxic to tomato seedlings.

12

Page 13: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Gray  and  Bonner's  suggestion  that  the  presence  of  3‐acetyl‐6‐methoxy‐benzaldehyde may  haveecological significance was criticized by Muller (65) on the grounds that the leaves of Franseria dumosa yieldaqueous extracts highly toxic to tomato seedlings growing in water culture. Yet this shrub shelters a richvariety of desert annuals, plants that are not to be found on bare ground except where there is organicdebris. Muller considered that the organic debris is necessary for the growing of the annual plants, and thatthe intricately branched crown of Franseria accumulates such debris, whereas none collects around thesingle root crown of Encelia. In partial resolution of this conflict, he suggests that the failure of the toxinsto be effective under Franseria may be due to absorption by the colloids of the organic debris or to theactivity of its microflora.

Bonner's opinion that the toxins eluted from Encelia leaves had significance was doubtless influencedby the earlier work of his group on the rubber‐producing guayule Parthenium argentatum Gray. In thenursery the closely planted seedlings showed so striking an "edge effect" that Bonner and Galston (14, 15)sought  the  cause. Nutrient  solutions  leached  through guayule plants  inhibited  the growth of guayuleseedlings but had no effect on tomato plants. From the leaching of 20,000 roots of guayule plants theyisolated 1.6 g  of a crystalline toxic material which was shown to be trans‐cinnamic acid. As little as 1 p.p.m.of this compound gave a significant inhibition of guayule plants, whereas tomato seedlings were at least onehundred times less sensitive. The rapid breakdown of cinnamic acid by the soil microflora would reduce anyecological significance the compound may have.

The  cinnamic acids have  since provided a  classical example of  the  influence of  stereoisomers onphysiological  activity.  Cis‐cinnamic  acid was  found  by Haagen‐Smit  and Went  (39)  to  have  auxin‐likeproperties. Van Overbeek, Blondeau, and Horne (85) demonstrated that the trans isomer acts as competitiveinhibitor of  the natural auxin  indoleacetic acid and of other growth‐active  compounds  such as 2,4‐D,naphthaleneacetic acid and cis‐cinnamic acid.

Among other examples of the production of specific compounds toxic to neighboring plants is that ofwormwood  (Artemisia  absinthium  L.),  from  the  glandular  leaf  hairs  of  which  Bode  (13)  isolated  awater‐soluble derivative  inhibitory  to  the growth of certain weeds. No  such  inhibiting compound wasproduced by A. vulgaris L., an observation confirmed by Funke (33). Bode concluded that the phytotoxin wasa glucoside, but no further work on its nature appears to have been published.

If we turn now to the production of phytotoxins not by living plants but from the decomposing plantmaterial, an early example is provided by Benedict (9). He examined the reasons for the dying out, in spiteof  good management, of old  stands of  the brome grass Bromus  inermis  Leyss., and  showed  that  theleachings of dried brome grass roots inhibited the growth of grass seedlings. The nature of the inhibitor isunknown. The suggestion by Stiven (80) that the roots of the grass Trachypogon plumosus Nees give rise toa substance that inhibited the growth of weed seedlings was verified by Roux (73) , who found an inhibitionof  germination  and  a  browning  of  seedling  roots  of  the  Kakiebos  (marigold)  Tagetes  minuta.  Thestubble‐mulch studies of McCalla and Duley (62) revealed that water extracts of sweet clover hay depressedthe germination and growth of maize and, because of  the similarity  to  the effects produced by dilutesolutions of coumarin, they regarded the latter compound as a likely cause of the inhibition.

These examples are quoted because the evidence of the presence of a toxic component in the leachingsplaces them apart  from the general case of green manuring. The plowing‐in of non‐leguminous crops,

13

Page 14: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

especially if rich in carbohydrates, may adversely affect subsequent crops by reason of the fact that theincrease  in numbers of microorganisms engaged  in  the decomposition of  the plant  residues  leads  todepletion of the nitrogen supplies immediately available to the succeeding crop.

The difficulty of establishing young peach trees in old peach orchards, referred to by de Candolle (seep. 7), becomes of practical importance when it is uneconomical to abandon the old site for peach growing,or when the old orchard has to be renovated. The peach replant problem has therefore had special studyin southwestern Ontario, reported by Koch (48) . The observations of Upshall and Ruhnke (84) that, whenan old peach orchard was used as a fruit tree nursery it was possible to tell the site of the peach trees grownsix years previously by the poor growth of cherry, pear, and plum tree stocks, indicates that the apparentphytotoxic effect is not confined to peach. Nutritional defects in soil of the former peach tree sites and thepresence of greater arsenical residues from sprays applied to the former trees were not demonstrable.Pathological reasons had not been found though, following a report by Johansen (44) that peach replantfailures were  infested with meadow nematodes  (Pratylenchus  spp.), a prevalence of various eelwormspecies has been found in old peach soil (48). An earlier suggestion of Proebsting and Gilmore (71) was thatone of the causes of tree failure is a phytotoxin produced from root residues of old peach trees. Patrick (61)concluded that this toxic factor is produced by microbial action from amygdalin, a cyanogenetic glucosidepresent  in amounts as high as 5 per cent of  the dry weight of peach roots. The enzymic hydrolysis ofamygdalin produces hydrogen  cyanide  and benzaldehyde;  the  former  is  known  to be phytotoxic butpresumably would be rapidly lost by diffusion; the latter would readily be converted to benzoic acid which,like other aromatic carboxylic acids such as the cinnamic acids mentioned above, would be suspected ofphytotoxicity.

The phytotoxicity of hydrogen cyanide is considered by Lebeau and Dickson (51) to be responsible forthe damage caused by an unidentified fungal pathogen, a low temperature basidiomycete, to alfalfa andother  forage plants  in the disease known as winter crown rot or snow mold. Snow cover seems to benecessary for the disease to develop and Cormack (26) reported that the extent of damage is related to thespeed of thaw, the amount of rot being greater when the snow disappears slowly. Lebeau and Dickson foundthat the fungus produces hydrogen cyanide when grown on synthetic media, and the amount formed wasgreater at low temperatures around 4EC, falling off sharply at 16 to 20EC.  This example should then perhapsbe regarded as one of antibiotic production by fungi, but it is included at this point because of relevance andbecause hydrogen cyanide production is greater in the presence of alfalfa crop tissue or of soybean meal.

Hydrogen cyanide again appears as the toxic agent in Timonin's work on the varieties of flax resistantand susceptible to the wilt caused by Fusariurn Bolley (82, 83) . The nutrient solutions in which the flaxplants were grown under aseptic conditions derived hydrogen cyanide from the resistant varieties, whereassusceptible varieties yielded but a trace. Timonin found that the solution from resistant varieties inhibitedthe growth of F. culmorum (W. G. Smith) Sacc. and Helminthosporium sativum Pamm. King & Bakke. butstimulated the growth of Trichoderma viride (Pers.) Fr.  He concluded that the excretion of hydrogen cyanideby wilt‐resistant flax influenced the activity of the soil fungi so that the pathogenic forms are suppressed.

Among the parasitic flowering plants the broom rapes (Orobanchaceae) are remarkable in that theirseeds germinate only when they are adjacent to the roots of their host plants. Lindley (53), in 1846, reportedthat this condition had been earlier recorded by Vaucher of Geneva. The phenomenon has been widelyinvestigated since the earlier work of Koch (47) and is of topical interest because of the recent discovery of

14

Page 15: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

maize in North Carolina parasitized by a species of Striga. Following up the observations of Saunders (75),of Barcinsky (2) , and of Chabrolin (24) that the seeds of Striga lutea Lour., of Orobanche cumana Wallr. andof O. speciosa respectively would germinate only if stimulated by leachings of the roots of their host plants,a group of workers of Leeds and Cambridge Universities (16‐20) have examined the effects of the percolatesfrom growing sorghum, linseed, and other plants on the germination of S. hermontica Benth. and of O. minorSm. It was found that the activity factor could be removed from the percolates by adsorption on activatedcharcoal from which the compounds responsible could be eluted with aqueous acetone.

By this treatment of leachings from seedlings of Sorghum vulgare Pers., Brown, Johnson, Robinson, andTodd (19) found that the stimulant to Striga seeds contained carbohydrates including free pentoses. Testsof a number of the sugars showed that D‐xyloketose was a powerful stimulant, active at concentrations of1 x 10‐6 mg/ml. Chromatographic studies (20), however, showed that the germination factor may be complexand that its most effective component is neither a simple sugar nor an amino acid.

A chromatographic study (18) of the factors recovered from leachings of linseed which stimulate thegrowth of seeds of O. minor led to the conclusion that the active compounds were akin to those derivedfrom sorghum, though none of the sugars tested were found to be active. Purification by countercurrentextraction (17) failed to yield the factor in a pure state but provided information on its chemical properties.The factor approximates in ultimate analysis to C11H16O4; its infrared spectrum indicates the presence of ahydroxyl group, two ester or 8‐lactone groups, a methyl group and a double bond. The similarity of physicaland chemical properties suggests that the compounds active on Striga and on Orobanche have features incommon, and indeed that such properties are shared by the factors associated with the stimulating effectof the host plant root extracts that encourage the emergence of the larva of the potato eelworm from itscysts.

The  cyst‐forming  nematodes  of  the  genus  Heterodera  are  remarkable  in  that  the  female  afterfertilization retains the eggs within her body, which degenerates to form a cyst highly resistant to droughtand to the attack of other soil organisms. The host plant range of the various species of Heterodera  isgenerally limited, and in the more highly specialized forms the larvae will emerge from the cysts only whenthese are stimulated by the root diffusates of  the host plant. This phenomenon was  first observed byBaunacke  (3)  in both the beet eelworm H. schachtii Schmidt and the potato eelworm H.  rostochiensisWollenw. The stimulant effective on the latter is present in leachings from growing solanaceous plants, andin the absence of the stimulant the cysts remain dormant. Cysts of the cabbage eelworm H. cruciferaeFranklin were found by Winslow (91) to hatch freely in leachings from hosts in the genus Brassica but notin those of other cruciferous plants, though the latter caused high larval emergence from the cysts of thebeet eelworm.

This selectivity of action is powerful evidence of the excretion from the growing host plant of a chemicalor chemicals each specifically active  in stimulating emergence from cysts of the appropriate species ofeelworm.

The economic importance of the cyst‐forming eelworms and the difficulty of their control by chemicalor cultural methods has enhanced interest in the problem of elucidating the nature of those stimulatoryexcretions. Despite prolonged research at Cambridge and at the Cornell Agricultural Experiment Station, theresponsible chemicals have not yet been identified. The material from the leachings of growing tomato

15

Page 16: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

plants and effective on cysts of the potato root eelworm, recovered by chromatographic methods and byfractionation of the brucine salt, was named eclipic acid by the Cambridge workers (21, 22, 60). On theassumption  that  the acid  isolated by  these workers contains but minor amounts of  impurities,  it wasdeduced that it had a molecular weight of about 300, an equivalent of 250‐290, and a 7‐lactone group ofwhich the hydroxyl group is not tertiary. On this and other evidence it was inferred that eclipic acid is offormula C19H2608, which  is  in  reasonable accord with  the molecular weight and will accommodate  theanticipated carboxyl, lactone, and two hydroxy groups of which one has acidic properties. Parallel tests ofthe activity of compounds that satisfy these requirements revealed that anhydrotetronic acid stimulatedemergence from cysts and that the larvae that emerge behave as do those released by eclipic acid. Althoughthe concentrations required of anhydrotetronic acid were above those required of the more potent samplesof eclipic acid, the former compound has been used for the artificial stimulation of larval emergence byBishop (12) .

A more subtle method by which the stimulatory root excretion may be utilized for the practical controlof eelworms was tried by Hijner (43). He showed that root diffusates of the wild beets Beta patellaris Moq.,B. webbiana Moq. and B. procumbens Lange were as active as those of sugar beet in stimulating emergencefor cysts of the beet eelworm H. schachtii, but that the larvae were incapable of reaching maturity in thesehosts. The planting of B. patellaris on heavily infested soil in May reduced in five months by about 90 percent the content of viable cysts in that soil. Jones (45) had previously shown that H. schachtii was incapableof developing in swine cress Coronopus squamatus (Forsch.) Aschers, and Winslow (91) found that leachingsfrom swine cress effectively induced emergence from cysts of H. schachtii. Jones (46) reported that lines ofSolanum andigenum resistant to the potato root eelworm all produced a root diffusate but slightly lessactive than that of susceptible potato varieties. Resistance, therefore, appears to be associated with thepoor development of the larvae on the resistant host. Whether or not their failure to develop is due tomalnutrition or to a toxic agent is beside the point, for there is no line of division between malnutrition (asdistinct from starvation) and toxication.

This evidence of the existence, in root diffusates, of highly potent and selective materials effective, inthe  latter  case,  in  stimulating emergence  from eelworm  cysts  and,  in  the  former  case,  in permittinggermination of seeds of parasitic flowering plants, encourages a more extensive search of the literature onthe factors influencing seed germination.

As a general case, the seed of plants although capable of germination do not germinate while still withinthe fruit or pod, except when it is exposed to unnatural conditions—as in the refrigerator. One explanationof this is the presence of an inhibitor in the fruit. Koeckemann (49) postulated the presence, in the pulp ofapples, of germination inhibitors to which he gave the general name "Blastocholines". Though Tetjurev (81)concluded that the blastocho‐lines were merely fruit acids such as maleic and citric acids, the term hassurvived. Moewus, Moewus, and Schader (63) examined the germination and seedling growth of cress andwheat, and demonstrated that blastocholine was present in thirty‐three genera of fruits from sixteen widelyspread orders of plants. Nor are such inhibitors confined to the fleshy fruits—Evenari (32) gave an extensivelist of plants capable of producing germination inhibitors in seed coat, in leaves, and in other plant parts.

A  remarkable example  is derived  from Went's work  (87, 88) on  the biotic  factors  influencing  thegermination  of  seeds  of  desert  plants  in  the  deserts  of  Southern  California.  He  traced  three  causalmechanisms: firstly, the mechanical abrasion by silt and sand in the runoff after heavy rain; secondly, the

16

Page 17: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

leaching from soil of water‐soluble salts by heavy rains (for the seeds of many of the desert varieties wouldnot  germinate  in  even  a  slight  concentration  of  inorganic  salts  in  the  soil);  thirdly,  the  removal  ofwater‐soluble inhibitors from the seed by the action of the rain (for if the leached seeds are placed in theirown diffusates germination is inhibited).

It is apparent that the inhibitory mechanism, whereby the germination of the seed is delayed until theenvironment  is  favorable,  has  additional  phytosociological  significance  if  the  inhibitory  compound  iseffective  against  the  seeds  of  other  plant  species.  Evenari  (32)  reviewed  the  chemical  data  of  theblastocholines identified before 1949, and prominent on the list are the organic acids of fruit juices, and theglycosides and their hydrolytic products, for example, the cyanogenetic glycosides of the Prunacea andPomaceae, and the mustard oils of the cruciferous seeds. In his examination of the root excretions of oatsby fluorescent and ultraviolet light, Eberhardt (31) established the presence of two glycosides, one of whichhe identified as the glycoside of scopoletin; scopoletin and an unidentified non‐glycoside were also present.The pronounced activity of scopoletin and other coumarin derivatives in plant growth is well established(see 34) by way, as Andreae (1) showed, of their effects on the reactions of the phytohormone indoleaceticacid. Eberhardt considered, however, that as the fluorescent coumarin derivatives which he found to beexcreted from oat roots are decomposed rapidly in natural soil, their ecological significance is not important.

The inhibitory compounds listed by Evenari are generally phytotoxic, but many examples of specificactivity are to be found—a feature that adds scientific interest to their study. Went, Juhren, and Juhren (89)found that leachings from growing barley inhibited the germination of seeds of Amaranthus hybridus L. andChenopodium album L., both known by the popular name of pigweed, whereas leachings from growingtobacco plants inhibited seeds of A. hybridus but not of C. album.

It would be misleading to conclude this chapter without further reference to the importance of theactions of the natural auxin, 3‐indoleacetic acid, on the germination and growth of plants. These reactionsprovide ample scope for the explanation, not only of the dormancy of the seed or bud, but of the action ofnatural inhibitors. The suppression of the development of lateral buds during the growth of the apical budsof shoots is now thought to be an inhibition by the auxin coming from the terminal bud. The sprouting ofshoots  of  potato  tubers  at  the  close  of  the  dormant  period,  or  when  the  tubers  are  treated  withdormancy‐breaking chemicals such as ethylene chlorohydrin, was shown by Hemberg (41, 42) to be due tothe disappearance of  large amounts of growth‐inhibitory substances  that had been  in  the peel duringdormancy. The nature of their inhibition and its relationship to the content of free and bound auxin has notyet been elucidated. Bentley and Bickle (11) adduced evidence that the neutral growth inhibitor isolatedby Stewart (79) may be 3‐indolylacetonitrile.

17

Page 18: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

References

1. Andreae, W. A. Effect of scopoletin on indoleacetic acid metabolism. Nature 170: 83‐84. 1952.2. Barcinsky, R. C.R. Acad. Sci. U.R.S.S. 1:343. 1934. Quoted by (18).3. Baunacke, W.  Untersuchungen  zur  Biologie  und  Bekämpfung  der  Rubennema‐toden  Heterodera

schachtii Schmidt. Arb. Biol. Abt. Anst. Reichsanst. Berlin 11:185‐288. 1922.4. Becker, Y., L. Guyot, M. Massenot, and J. Montégut. Sur la présence d'excrétats racinaires toxiques dans

le sol de certains groupements végétaux spontanés. C.R. Acad. Agr. France: 689‐697. 1950.5. Becker, Y., L. Guyot, M. Massenot, and J. Montégut. Sur la présence d'excrétats radiculaires toxiques

dans le sol de la pelouse herbeuse à Brachypodium pinnatum du nord de la France. C.R. Acad. Sci.Paris 231:165‐167. 1950.

6. Becker, Y., and L. Guyot. Sur les toxines racinaires des sols incultes. C.R. Acad. Sci. Paris 232:105‐107.1951.

7. Becker,  Y.,  and  L. Guyot.  Sur  une  particularité  fonctionnelle  des  exsudats  racinaires  de  certainsvégétaux. C.R. Acad. Sci. Paris 232:1585‐1587. 1951.

8. Becker, Y., L. Guyot, and J. Montégut. Sur quelques incidences phytosociologiques du problème desexcrétions racinaires. C.R. Acad. Sci. Paris 232:2472‐2474. 1951.

9. Benedict, H. M. The inhibitory effect of dead roots on the growth of brome‐grass. J. Am. Soc. Agron.33:1108‐1109. 1941.

10. Bennett, E. L., and J. Bonner. Isolation of plant growth inhibitors from Thamnosma montana. Am. J. Bot.40:29‐33. 1953.

11. Bentley, J. A., and A. S. Bickle. Studies on plant growth hormones. II. Further biological properties of3‐indolylacetonitrile. J. Expt. Bot. 3:406‐423. 1952.

12. Bishop, D. The emergence of larvae of Heterodera rostochiensis under conditions of constant and ofalternating temperature. Ann. Appl. Biol. 43:525‐532. 1955.

13. Bode, N. R. Ueber die Blattausscheidung des Wermuts und ihre Wirkung auf andere Pflanzen. Planta30:566‐589. 1939.

14. Bonner, J. Relation of toxic substances to the growth of guayule in soil. Bot. Gaz. 107: 343‐351. 1946.15. Bonner, J., and A. W. Galston. Toxic substances from the culture media of guayule which may inhibit

growth. Bot. Gaz. 106:185‐198. 1944.16. Brown, R., A. D. Greenwood, A. W. Johnson, and A. G. Long. The stimulant involved in the germination

of Orobanche minor Sm. Biochem. J. 48:559‐564. 1951.17. Brown, R., A. D. Greenwood, A. W.  Johnson, A. R. Lansdown, A. G. Long, and N. Sunderland. The

Orobanche  germination  factor.  3. Concentration of  the  factor by  counter‐current distribution.Biochem. J. 52:571‐574. 1952.

18. Brown, R., A. D. Greenwood, A. W. Johnson, A. G. Long, and G. J. Tyler. The stimulant involved in thegermination  of Orobanche minor  Sm.  2.  Chromatographic  purification  of  crude  concentrates.Biochem. J. 48:564‐568. 1951.

19. Brown, R., A. W. Johnson, E. Robinson, and A. R. Todd. Stimulants involved in germination of Strigahermonthica. Proc. Roy. Soc. B 136:1‐12. 1949.

20. Brown,  R.,  A.  W.  Johnson,  E.  Robinson,  and  G.  J.  Tyler.  The  Striga  germination  factor.  2.Chromatographic purification of crude concentrates. Biochem. J. 50:596‐600. 1952.

21. Calam, C. T., H. Raistrick, and A. R. Todd. The potato eelworm hatching factor. I. The preparation ofconcentrates of the hatching factor and a method of bioassay. Biochem. J. 45:513‐519. 1949.

18

Page 19: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

22. Calam, C. T., A. R. Todd, and W. S. Waring. The potato eelworm hatching factor. 2. Purification of thefactor by alkaloid salt fractionation. Anhydro‐tetronic acid as an artificial hatching agent. Biochem.J. 45‐520‐524. 1949.

23. Cameron, F. K. The soil solution. Chem. Pub. Co., Easton, Pa. 1911.24. Chabrolin, C. La germination des graines de l'Orobanche speciosa. C.R. Acad. Sei. Paris 206:1990‐1992.

1938.25. Clements, F. E. Plant physiology and ecology, p. 252. Henry Holt & Co., New York. 1907.26. Cormack, M. W. Winter crown rot or snow mold of alfalfa, clover, and grasses in Alberta. I. Occurrence,

parasitism and spread of pathogen. Can. J. Res. 26 C:71‐85. 1948.27. Daubeny, C. G. B. On the rotation of crops and on the quality of inorganic matters abstracted from the

soil by various plants. Phil. Trans.: 179‐253. 1845.28. Davis, E. The toxic principle of Juglans Nigra L. as identified with synthetic juglone, and its toxic effects

on tomato and alfalfa plants. Am. J. Bot. 15:620. 1928.29. Deleuil, G. Mise en évidence de substances toxique pour  les thérophytes dans  les associations du

Rosmarino‐Ericion. C.R. Acad. Sci. Paris 230:1362‐1364. 1950.30. Deleuil, G. Explication de la presence de certains thérophytes rencontrés parfois dans les associations

der Rosmarino‐Ericion. C.R. Acad. Sci. Paris 232:2476‐2477. 1951.31. Eberhardt, F. Ueber fluoreszierende Verbindungen in der Wurzel des Hafers. Z. Bot. 43:405‐422. 1955.32. Evenari, M. Germination inhibitors. Bot. Rev. 15:153‐194. 1949.33. Funke, G. The influence of Artemisia absinthium on neighbouring plants. Blumea 5:281‐293. 1943.34. Goodwin, R. H., and C. Taves. The effect of coumarin derivatives on the growth of Avena roots. Am. J.

Bot. 37:224‐231. 1950.35. Gray,  R.,  and  J.  Bonner.  Structure  determination  and  synthesis  of  a  plant  growth  inhibitor,

3‐acetyl‐6‐methoxybenzaldehyde,  found  in  the  leaves  of  Encelia  farinosa.  J.  Am.  Chem.  Soc.70:1249‐1253. 1948.

36. Gray, R., and J. Bonner. An inhibitor of plant growth from the leaves of Encelia farinosa. Am. J. Bot.35:52‐57. 1948.

37. Gries, G. A. Juglone‐the active agent in walnut toxicity. In 34th Ann. Rept. Northern Nut Growers Assoc.,pp. 52‐55. 1943.

38. Guyot, L. Le cycle de la piloselle. Ann. l'ecole nat. d'Agr. Montepellier:29. 1954.39. Haagen‐Smit, A. J., and F. W. Went. A physiological analysis of a growth substance. Proc. K. Akad.

Wetenschap. Amsterdam 38:852‐857. 1935.40. Hartland, B. (L.) How some crops affect succeeding crops. J. Am. Soc. Agron. 19:255‐259. 1927.40A.   Hellriegel,  H.,  and  H. Wilfarth. Untersuchungen  über  die  Stickstoffnahrung  der  Gramineen und

Leguminosen. Z. Ver. Rübenzucher‐Ind. Deut. Reich (Supplement) . 1888.41. Hemberg, T. Wachstumhemmende und wachstumfördernde Stoffe bei der Kartoffel. Arkiv. Bot. 331 B:

No. 2. 1946.42. Hemberg, T. Studies on the occurrence of free and bound auxins and of growth‐inhibiting substances

in the potato tuber. Physiol. Plant. 7:312‐322. 1954.43. Hijner, J. A. De Gevoeligheid van Wilde Bieten voor het Bietencystenaaltie (Heterodera schachtii)  .

Medel. Inst. Rationale Suikerproduct No. 1. 1952.44. Johansen, F. D. A preliminary report on the incidence of two types of plant parasitic nematodes on

peaches in Connecticut. Storrs Agr. Exp. Sta. Inf. 10. 1950.45. Jones, F. G. W. Observations on the beet eelworm and other cyst‐forming species of Heterodera. Ann.

Appl. Biol. 37:407‐440. 1950.

19

Page 20: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

46. Jones,  F.  G. W.  First  steps  in  breeding  for  resistance  to  potato‐root  eelworm.  Ann.  Appl.  Biol.41:348‐353. 1954.

47. Koch, L. Die Entwicklungs Geschichte des Orobanchen. Heidelberg. 1887.48. Koch, L. W. The peach replant problem in Ontario. I. Symptomatology and distribution. Can. J. Bot.

33:450‐460. 1955.49. Koeckemann, A. Veber eine keimungshemmende Substanz in fleischigen Früchten. Ber. Deut. Bot. Ges.

52:523‐526. 1934.50. Lackmann,  J. Ueber Knoelchen der Leguminosen. Landw. Mitt. Z. K. Lehranst. Vers. Sta. Bonn 20:

837‐854. 1858. In Biedermann's Zentralbl. 1891.51. Lebeau, J. B., and J. G. Dickson. Physiology and nature of disease development in winter crown rot of

alfalfa. Phytopathology 45:667‐673. 1955.52. Liebig,  J. von. Chemistry  in  its application to agriculture and physiology. 1st Ed. 1840; Principles of

agricultural chemistry. 1855.53. Lindley, J. The vegetable kingdom, p. 610. Bradbury and Evans, London. 1846.54. Loehwing, W. F. Root interactions of plants. Bot. Rev. 3:195‐239. 1937.55. Mann, H. H., and T. W. Barnes. The competition between barley and certain weeds under controlled

conditions. Ann. Appl. Biol. 32:15‐22. 1945.56. Mann, H. H., and T. W. Barnes. The competition between barley and certain weeds under controlled

conditions. II. Competition with Holcus mollis. Ann. Appl. Biol. 34:252‐266. 1947.57. Mann, H. H., and T. W. Barnes. The competition between barley and certain weeds under controlled

conditions. III. Competition with Agrostis gigantea. Ann. Appl. Biol. 36:273‐281. 1949.58. Mann, H. H., and T. W. Barnes. The competition between barley and certain weeds under controlled

conditions. IV. Competition with Stellaria media. Ann. Appl. Biol. 37:139‐148. 1950.59. Mann, H. H., and T. W. Barnes. The competition between barley and certain weeds under controlled

conditions. V. Competition with clover considered as a weed. Ann. Appl. Biol. 39:111‐119. 1952.60. Marrian, D. H., P. B. Russell, A. R. Todd, and W. S. Waring. The potato eelworm hatching factor. 3.

Concentration of the factor by chromatography. Observations on the nature of eclipic acid. Biochem.J. 45:524‐528. 1949.

61. Massey, A. B. Antagonism of the walnuts (Juglans Nigra L. and J. cinerea L.) in certain plant associations.Phytopathology 15:773‐784. 1925.

62. McCalla,  T. M.,  and  F.  L.  Duley.  Stubble mulch  studies:  Effect  of  sweet  clover  extract  on  corngermination. Science 108:163. 1948.

63. Moewus, F., L. Moewus, and E. Schader. Vorkommen and Bedeutung von Blastokolinen in fleischigenFrüchten. Z. Naturf or. 6b:261‐270. 1951.

64. Molisch, H. Der Einfluss einer Pflanze auf die andere. Allelopathie, Jena. 1937.65. Muller, C. H. The association of desert annuals with shrubs. Am. J. Bot. 40:53‐60. 1953.66. Ostvald, H. Toxic exudates from the roots of Agropyron repens. J. Ecol. 36:192‐193. 1948.67. Patrick, Z. A. The peach replant problem in Ontario. II. Toxic substances from microbial decomposition

products of peach root residues. Can. J. Bot. 33:461‐486. 1955.68. Pickering, S. U., and Duke of Bedford. The effect of one crop on another. J. Agr. Sci. 6:136‐151. 1914.69. Pickering, S. U., and Duke of Bedford. The effect of one plant on another. Ann. Bot. 31:181‐187. 1917.70.  Pickering, S. U., and Duke of Bedford. Science and fruit growing. MacMillan & Co., London. 1919.71. Proebsting, E. L., and A. E. Gilmore. The relation of peach root toxicity to the reestablishment of peach

orchards. Proc. Am. Soc. Hort. Sci. 38:21‐26. 1941.72. Ripley, P. O. The influence of crops upon those which follow. Sci. Agr. 21:522‐583. 1941.

20

Page 21: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

73. Roux, E. R. The effect of antibiotics produced by Trachypogon plumosus on the germination of seedsof Kakiebos (Tagetes minuta) . S. Afr. J. Sci. 49:334. 1953.

74. Russell, E. J. The soil and the plant‐a review of some recent American hypotheses. Sci. Prog. 6:135‐152.1911.

75. Saunders, A. R. Studies in phanerogamic parasites with special reference to Striga lutea. Dept. Agr. S.Africa, Sci. Bull. 128. 1933.

76. Schneiderhan,  F.  J.  The  black  walnut  (Juglans  nigra  L.)  as  a  cause  of  death  to  apple  trees.Phytopathology 17:529‐540. 1927.

77. Schreiner, O., and H. S. Reed. Certain organic constituents of soil in relation to soil fertility. U.S.D.A. Bur.Soils Bull. 47. 1907.

78. Skinner, J. J. Soil aldehydes. A scientific study of a new class of soil constituents unfavorable to crops,their  occurrence,  properties  and  elimination  in  practical  agriculture.  J.  Franklin  Inst.  Phil.186:165‐186; 289‐316; 449‐480; 547‐584; 723‐741. 1918.

79. Stewart, W.S. A plant growth inhibitor and plant growth inhibition. Bot. Gaz. 101:91‐108. 1939.80. Stiven, G. Production of antibiotic substances by the roots of a grass (Trachypogon plumosus (H.B.K.)

Nees) and of Pentanisia variabilis (E. Mey.) Harv. (Rubiacae). Nature 170:712‐713. 1952.81. Tetjurev, W. A. Ueber das sogenannte "Blastokolin". Planta 32:211‐226. 1941.82. Timonin, M. I. Microbial activity as influenced by root excretions. Chron. Bot. 6:440. 1941.83. Timonin, M. I. The interactions of higher plants and soil microorganisms. III. Effects of by‐products of

plant growth on the activity of fungi and actinomycetes. Soil Sci. 52:395‐410. 1941.84. Upshall, W. H., and G. N. Ruhnke. Growth of fruit tree stocks as influenced by a previous crop of peach

trees. Sci. Agr. 16:16‐20. 1935.85. Van Overbeek,  J.,  R.  Blondeau,  and  V.  Horne.  Trans‐cinnamic  acid  as  an  anti‐auxin.  Am.  J.  Bot.

38:589‐595. 1951.86. Went, F. W. The dependence of certain annual plants on shrubs in Southern Californian deserts. Bull.

Torrey Bot. Club 69:100‐114. 1942.87. Went, F. W. Ecology of desert plants. II. Effect of rain and temperature on germination and growth.

Ecology 30:1‐13. 1949.88.  Went, F. W. The role of environment on weed growth. In Proc. 7th Ann. Meeting N.C. Weed Control

Conf.:2‐5. 1950.89. Went,  F. W., G.  Juhren,  and M. C.  Juhren.  Fire  and  biotic  factors  affecting  germination.  Ecology

33:351‐364. 1952.90. Whitney, M. Soil fertility. U.S.D.A. Bur. Soils Farm Bull. 257: 1909.91. Winslow, R. D. The hatching responses of some root eelworm of the genus Heterodera. Ann. Appl. Biol.

43:19‐36. 1955.

21

Page 22: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Chapter 3

HIGHER PLANTS vs. INSECTS:

Being Mainly Concerned with the Chemical Defenses of Plants against Insects

Of the herbivorous animals, the phytophagous insects and mites exhibit in the most marked degree thephenomenon of host selection. Among higher animals examples such as the koala Phascolarctus cinereus,with its diet limited to eucalyptus leaves, are rare. Among insects it is a frequent rule that each species isrestricted to but a few species of the plants of its environment; indeed, in the case of many insects, insectdamage to a particular crop may be reduced by the growing of varieties of that crop plant that the insectis unable or unwilling to attack.

The development and use of  insect‐resistant varieties of crop plants was  reviewed  in a  thoroughmanner by R. H. Painter in his book "Insect Resistance in Crop Plants" published in 1951. It is thereforeunnecessary here to cite successful examples of that practice except when the cause of resistance is thoughtto be chemical. On  the other hand  the examples cited below have been gleaned, not only  from crophusbandry, but also from the broader fields of chemotropism if they relate to possible mechanisms involvedin host selection by phytophagous insects.

Host selection, if it implies that the insect is capable of a purposeful choice, is an unfortunate name todescribe  the  restriction  to but a  few host plants of  the phytophagous  insect.  In general, no  choice  isinvolved. With the peach aphid Myzus persicae Sulz, which thrives in its viviparous stages on many, speciesof host plant, the ovipara can live only on the peach and a few other Prunus spp. Broadbent (4) concludedthat the alatae of this aphid find the peach tree only by chance but, having found it, remain on it crawlinguntil they find a suitable leaf. If a choice is made it is in most cases by the gravid female parent, for thefeeble larva newly emerged from the egg must either starve or feed on the host tissue that happens to benear its mouth parts. The egg‐laying female is, on the other hand, equipped with powers of locomotion andwith highly developed sense organs.

The so‐called Hopkins Host Selection Principle* (27) which, to quote from Dethier (12)  , "states  inessence that an oligophagous or polyphagous insect prefers to oviposit on the food upon which it fed as alarva" provides no mechanism whereby this "larval memory" can become operative, but the most plausiblehypothesis is of an olfactory response. Certainly there are abundant examples of the extreme sensitivity ofmany species of male moths to the attractive chemicals arising from female moths (see p. 67). Moreover,there is ample proof that chemotropism is involved among the hymenoptera parasitic on other insects

__________* Although this principle has been named after A. D. Hopkins, Craighead (7) pointed out that the same idea, though with

Lamarckian implications, had been put forward as early as 1864 by Walsh (59) in the following terms: "We might infera priori that when from peculiar circumstances a Phytophagic Variety, including both the sexes, has fed for a greatmany generations upon one particular plant of the number inhabited by the species to which it belongs, it would belikely to transmit to its descendants in the imago state a tendency to select that particular plant upon which to depositits eggs."

22

Page 23: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

on other insects, among insects infesting man and stock, and among sapropha‐gous insects whose larvaefeed on decaying or fermenting organic matter. Examples from these groups have already been reviewedby Dethier (12) .

The factors determining the choice of host plant for oviposition by phytophagous insects are less clearlyknown. McColloch (44) concluded that the odor of the silk of Indian corn may be of importance in attractingadults of the corn earworm (Chloridea obsoleta F.), and he secured egg‐laying on twine soaked with freshcorn silk juice. Lipp (40), noting the presence of garlic in turf destroyed by the Japanese beetle (Popilliajaponica Newm.), exposed dishes containing dilute alcoholic solutions of allyl sulphide, or of alcohol alone,and found that the beetle laid numbers of eggs in the sod adjacent to the allyl sulphide dishes.

Although olfaction may be the mechanism by which the female is attracted to her host plant, otherresponses may determine the site of oviposition. Thus Crombie (8) obtained olfactory responses of thelesser grain borer (Rhyzopertha dominica F.) to maize and cereals, and considered that the sense of touchwas used to find a suitable place to lay the eggs. It may be noted that Crombiecould detect no preferenceby the beetles for oviposition or feeding on the food on which they were fed as larvae. No other record hasbeen  found  of  the  experimental  study  of  the Hopkins Host  Selection  Principle—perhaps  because  ofdifficulties associated with the rearing, to egg‐laying stages, of larva fed on a plant not its natural host.

A number of shorter‐term experiments are reviewed by Dethier and Chadwick (15) , and the generalconclusion is that, if it is possible for insects to become accustomed to abnormal food, this "conditioning"is lost within a few hours. The term "conditioning" may be most easily explained by an example. Thorpe andJones (55) showed that the ichneumonid Nemeritis canescens Gray, normally is parasitic on larvae of themeal moth Ephestia kuehniella Zell., which it finds by means of a chemical stimulus detected by receptorson its antennae. If larvae of the small wax moth (Achroia grisella F.) are contaminated with the smell ofEphestia, the parasite will oviposit on this new host and will develop normally. 

Nemeritis reared on Ephestia showed no reaction to Achroia, but those reared on Achroia, when givena choice of the two hosts, showed a conditioned attraction to Achroia which reduced from 85 per cent to65.8 per cent the number choosing Ephestia. A recent example is given by Montieth (47) reporting on Drinobohemica Mesn., a dipterous parasite of several species of sawflies each preferring different coniferous hostplants. He showed that the choice of the parasite was influenced, not only by olfactory responses to thefoliage upon which the host was feeding and to the host, but also by chemotactile responses to the hostitself. Continuous breeding of  the parasites  in different  sawfly  species  led  to  changes  in  the order ofpreference of the offspring when compared with the preference of the parents; but such changes were notcumulative and did not persist. Those sawfly hosts selected most frequently by the parental parasites werealso selected most frequently by the offspring, nor was any preference developed for the food plant of thehost on which the parasites developed. Montieth concluded that "conditioning" is of little importance asa reason for the evolution of the biological races of D. bohemica which parasitize different host sawflies.

On the other hand, much is known of the factors determining the range of plants acceptable as foodby phytophagous insects. Clearly, we are not here concerned with the coincidence of distribution of hostplant and pest as determined by soil and climatic conditions; our purpose is the discussion of the chemicalfactors that determine whether or not the plant will serve as a host for the insect.

23

Page 24: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Dethier (13) found it convenient to differentiate three stages in the process by which the insect infestsits host plant: (i) the finding of the plant, (ii) the initiation of biting, and (iii) continued feeding. If the feedingstage of the insect pest has not already been brought to its host plant by ovipositional stimuli, it may reachthe host through reason of vision, light, gravity, or moisture; but chemotropism is probably the importantcause. That this is the case for foraging insects such as bees was shown by the early work of von Frisch (24),who trained honey bees to select, from other sugar solutions, the solution flavored with an essential oil. Theolfactometer studies of Mclndoo (45) and of Folsom (22) showed that the Mexican boll weevil Anthonomusgrandis  Boh.  is  attracted  to  the  cotton  plant  by  odors, which  Folsom  ascribed  to  ammonia  and  totrimethylamine.

It is not always easy, in the interpretation of early work on this subject, to distinguish between thefactors attracting the insect to its host and those responsible for its feeding—in anthropomorphic terms,to distinguish smell and taste. When a reaction is obtained to a non‐volatile compound, however, it couldhardly be regarded as olfactory and must presumably be a gustatory response.

Advantage has been taken, in studies of the gustatory responses of insects, of the extension of theproboscis with which many butterflies and flies respond to the contact of their tarsi with sugar solutions.By using this reaction of blowflies Phormia regina Meigen whose antennae and labella had been removedto eliminate response to odor, Chadwick and Dethier (5, 6, 14, 16) were able to trace with accuracy therelationship of molecular structure and chemoreception of homologous series of alcohols and glycols, ofaliphatic acids, aldehydes, and ketones.

The first recorded attempts to induce insects to feed on plants other than their known hosts are thoseof Grevillius (25) , who showed that larvae of the brown tail moth Euproctis chrysorrhaea L. taken fromchickweed would feed on other plants, if the latter were smeared with a paste prepared from chickweed.Verschaffelt in 1910 (58) observed that the larvae of the cabbage butterflies Pieris brassicae L. and P. rapaeL. fed only on plants containing mustard oil glycosides. He induced the larvae to feed on other plants bytreating their  leaves with preparations containing the glycosides or the mustard oils. Thorsteinson (57)extended Verschaffelt's line of attack to the larvae of the diamondback moth (Plutella maculipennis Curt.)and showed that the addition of sinigrin, sinalbin or glucocheirolin made pea leaf powder an attractive foodto  these caterpillars. The gustatory stimulus was  reduced when  the glycosides were  first subjected  toenzymic hydrolysis, an indication that the mustard oils themselves do not induce prolonged feeding, eventhough they produce a marked olfactory response.

Another example of differentiation between olfactory and gustatory stimulation appears in the feedinghabits of wireworms (Agriotes spp.). Falconer (20) concluded that wireworms have no means of locatingtheir food. Thorpe et al. (56) could not obtain responses of wireworms in the olfactometer, but found thatcontact with various carbohydrates, triolein, or animal proteins elicited a biting response. The larva wasparticularly sensitive to asparagine and related amines. Thorpe and his colleagues suggested that suchprotein‐degradation products set free in the soil by the roots would keep the wireworms in the vicinity ofthe roots and thereby provide a food‐finding process. This suggestion is an adequate explanation of thesuccessful use of trap crops for wireworm control.

The converse of attractivity is repellency and, though in theory, it is possible to distinguish between atrue repellent and one that masks an attractive odor, no clear‐cut difference has been found in practice. Nor

24

Page 25: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

can examples be found of ovipositing insects being dissuaded from depositing their eggs by host plant odors,though there are examples among insects parasitic on other insect species of a chemotropic avoidance ofoviposition. Thus Salt (53) showed that females of Trichogramma evanescens Westw. are deterred fromoviposition on a parasitized host by volatile substances secreted by the original egg‐laying female. This andother cases led Flanders (21) to consider odor of paramount importance in the stimulation or repression ofreproduction among parasitic insects. Moreover, there are several instances of high practical significanceof compounds repellent to mosquitoes and biting flies though, with the exception of oil of citronella andrelated terpenes, the repellents used for the protection of man and stock are synthetic compounds, suchas  dimethyl  phthalate  and  2‐ethyl‐1,3‐hexanediol,  suitable  for  application  to  human  skin,  butoxy‐polypropylene glycol for protection of dairy cattle, and N,N,‐diethyl toluamide for the treatment of clothing.

From the agricultural point of view the examples of deterrent action as a reason for the avoidance byinsects of certain possible host plants are of great significance, for many of the known cases of crop varietiesresistant to insect attack are due to these reactions. Many such cases can be attributed to physical factorsthat render the resistant variety an unsuitable host, features such as the longer hairs of the varieties ofcotton that are resistant to the jassid Empoasca facialis Jac. Parnell, King, and Ruston (49) established a closeand consistent correlation between the degree of hairiness of the under‐surface of the cotton leaf and thedegree of resistance to the jassid. Not so, however, with the related jassid E. devastans Dist., for Husain andLal (28) found that not all hairy Indian varieties of cotton were resistant to this insect. Most of the importedAmerican cotton varieties were susceptible, whereas native Indian varieties had a degree of resistance,which seemed to arise through a reduced response of the plant to the phytotoxic insect saliva.

In some Balkan countries another mechanical example is found in the old practice of ridding an infestedhouse of bedbugs by strewing leaves of French bean Phaseolus vulgaris L. on the floor (51) . The leaves ofthis bean variety have hooked epidermal hairs, which entrap not only the bedbug but other pests such asthe aphis Myzus persicae (46) and Aphis craccivora Koch (30).

The control of insect pests by the use of resistant varieties of crop plants is so attractive and economicala method of crop protection that it has received wide study. Whether or not it would be feasible, in caseswhere resistance is due to the presence of toxic or deterrent substances, to apply such substances to theprotection of susceptible varieties is a question that has not yet been put to practical test; but the ecologicalsignificance of such substances is obvious. In some cases, the substance might act in a mechanical fashionas, for example, the gummy material exuded from tomato leaves that protects the tomato from infestationby M. persicae (46). Leaves of Solanum polyadenium exude a substance that so impedes the movement ofaphids that this plant  is resistant to aphid attack (54). This species of Solanum has been used as genicmaterial  in  the breeding of potato  varieties  that, by being  resistant  to  aphids, become  less  liable  toinfestation by aphid‐borne virus diseases.

Similarly, there are Solanum species resistant to the Colorado potato beetle Leptinotarsa decemlineataSay.; and the work of incorporating the genes causing this resistance into the potato is in active progressin many European countries invaded by the beetle in the past decade. Kuhn and Löw (33) have given anaccount of the work that they and their colleagues have carried out at Heidelberg on the nature of thisresistance. The  leaves of Solanum demissum are eaten by beetles but not by  larvae;  the  leaves of S.chacoense are refused by both beetle and larva. This difference was found to be due, in part at least, toalkaloidal glycosides present in the leaves. The deterrent nature of these alkaloids was established, after

25

Page 26: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

their isolation and crystallization, by spraying the pure alkaloid in gelatin solution on the potato leaves andobserving the reactions of the beetles or larvae placed on the sprayed leaves. The favored method, however,was by infiltration: the leaves of the potato plant were placed in solutions of glycoside to be tested, and thewhole was evacuated to remove air from the leaves; when the vacuum was broken the solution was takenup by the leaves in amounts that could be weighed. The treated leaves were then offered as sole source offood to larva or beetle, and the fate of the insect was determined after a period of ten days.

The  only  alkaloidal  glycoside  previously  found  in  the  leaves  of  S.  tuberosum  L.  is  solanine,  firstdiscovered  in 1822  in the  leaves of S. nigrum L. and S. dulcamera L. On hydrolysis this glycoside yieldssolanidine, the structure of which is given on p. 35. Kuhn and his associates isolated six glycosides from S.tuberosum. These glycosides  include  three solanines: α‐solanine, which appears  to be  identical  to  thepreviously‐described solanine, is a trisaccharide, the sugars being galactose attached to the hydroxyl ofcarbon 3 of solanidine, then glucose and then rhamnose; 13‐solanine, which lacks rhamnose; and γ‐solanine,which, lacking both rhamnose and glucose, is the galactoside of solanidine. The ß‐ and γ‐solanines eithermay be intermediates in the bio‐synthesis of α‐solanine or may arise by metabolic breakdown or as artefactsin the isolation of the alkaloids. In addition to these three solanines the Heidelberg workers isolated fromS. tuberosum small amounts of three other glycosides, which they  found to constitute almost half theglycoside content of S. chacoense. They were unable to isolate the aglycone of α chaconine, for it appearsto lose readily one mole of water giving solanidine, which is the aglycone of both ß‐ and γ‐chaconines: thethree chaconines followed the pattern of the solanines, giving on hydrolysis:

α‐chaconine: solanidine + glucose + rhamnose + rhamnose; ß‐chaconine: solanidine + glucose+ rhamnose;γ‐chaconine: solanidine + glucose.

The larvae are unaffected by amounts of α‐solanine, α‐ and ß‐chaconine well above those present in potatoleaves; hence the cause of the resistance of S. chacoense is still unknown.

The main alkaloidal glycoside recovered by Kuhn and his colleagues from leaves of S. demissum, theleaves of which are eaten by the larvae but not by the beetles of L. decemlineata, was named demissine.On hydrolysis it proved to be the tetrasaccharide. From preliminary chromatographic studies they concludedthat  the  sugar  component  is  probably  identical  to  that  of  tomatin  (an  antibiotic  first  isolated  fromLycopersicum pimpinel lifolium Dunal, and which is described on p. 34), for it is toxic to certain fungi andbacteria. Tomatin has since been isolated from several species of Lycopersicum, including the tomato, andwas found by Kuhn et al. to be active against the larva of the Colorado beetle. The resistance of S. demissumto the larva is therefore ascribed to the content (up to 0.5 per cent) of tomatin.

The relative freedom of soybean plant from insect infestation, at least in the United States of America,and of soybean products from attack by stored insect pests, was attributed by Lipke, Fraenkel, and Liener(39) to the presence of a heat‐labile substance, probably protein in character, that interferes with digestionof protein by the insect. This antiproteolytic toxin has not been further characterized, but it is distinct fromsoyin (38)  , which  is held responsible for the poor nutritive value to vertebrates of untreated soybeanprotein.

Although, in these examples, the repellent compounds present in the tissue of the resistant host arenot only deterrent but are actually toxic to the insect, it does not follow that the presence of an insecticidalcompound will confer insect resistance to the host plant. Nicotine for example is a potent aphicide, yet the

26

Page 27: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

presence of nicotine and allied alkaloids in tobacco does not seem to protect that plant from aphids andwhite fly, insects that may easily be killed by the application of nicotine, either in a well‐wetting spray or asa fumigant. The suggestion that the  insect fails to  ingest nicotine from the tobacco  leaves by an artfuldisposition of its stylet seems an unsatisfactory explanation, for the insects consume large amounts of sap,and it seems likely that the sap would contain the alkaloids. The grafting experiments of Dawson (11) andof Hieke (26) reveal that, when tomato is grafted on stocks of Nicotiana tabacum L., the tomato leavesaccumulate nicotine. The simplest explanation of these grafting results is that the biosynthesis of nicotineoccurs in the tobacco roots, from which it is translocated to the leaves and should therefore reach thesap‐feeding insect. But the results of other grafting experiments to determine the site of biosynthesis of thealkaloids do not always support this simple hypothesis. As this subject has been recently reviewed by James(29) it need not be pursued here.

It may be argued that nutritional factors alone suffice to explain host plant specificity. This topic waswell discussed in a symposium at the 9th International Congress of Entomology and there Fraenkel (23)reviewed the nutritional value of green plants for insects. He concluded that, as green leaves are excellentsources of all the food materials that insects appear to require, host plant specificity is determined by thepresence or absence of odd chemical substances such as glucosides, essential oils, alkaloids, and tannins.He admitted that this was an extreme view, and pointed out that little is known of the food requisites ofphytophagous  insects  or  of  the  effect  of  chemical  changes  in  the  composition  of  the  leaves  on  thedevelopment of insects.

In the studies of Auclair and Maltais, nutritional factors seem to provide an adequate explanation ofthe degree of attack on different pea varieties by  the aphid Acyrthosiphon pisum Harris. Maltais  (41)established a correlation between the total water‐soluble‐ and amino‐nitrogen of the tissue of pea varietiesand their susceptibility to attack by this aphid. Auclair (2) narrowed the basis for this correlation: he foundthat the amino acids arginine, threonine and valine, known to be essential for growth, are present in muchhigher amounts  in  susceptible  than  in  resistant varieties—non‐essential amino acids,  such as alanine,glutamic acid and proline, being present in about equal amounts in resistant and susceptible pea varieties.

On account of their life history, many aphid species make suitable test animals for the study of theeffects  of  nutrition  and  environmental  factors  on  behavior  and  fecundity.  The  apterous  alienicolaereproduce so rapidly that they are mainly responsible for the summer infestation of the host plant. Davidson(9) and Lathrop (34) found that, in this stage, the length of time between birth and the production of thefirst brood varied  inversely as  the  temperature. Evans  (19)  found  that, on plants grown under normalconditions of sunlight, the rate of reproduction in the cabbage aphid Brevicoryne brassicae L. was controlledby the nitrogen content of the host plant.

Sooner or  later winged  forms appear among  the alienicolae, and  it has been  suggested  that  theproduction of winged forms is due to overcrowding and starvation (1) , or to overcrowding even in thepresence of abundant food (50) . Rivnay (52) did not find that overcrowding caused winged developmentbut considered that loss of water, rather than the amount of nutrient, effected the appearance of wingedforms, which followed a reduced water intake or an exposure to a low atmospheric humidity, or when theaphids were feeding on the older mature leaves—which presumably had a lower water percentage than theyounger and more succulent growing tips. Evans (19) showed that the proportion of winged forms of B.brassicae was greatly increased as the protein content of the host plant fell below 0.2 per cent protein

27

Page 28: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

nitrogen, though wide variation in the carbohydrate content of the plant had no effect on the productionof winged  forms.  It would  appear,  from  the  diversity  of  the  results  in  this  limited  evidence,  that  anexplanation of the influence of environmental and host plant factors on the life history of the insect, on anutritional basis, is not going to be simple.

An earlier hypothesis, that day  length  is responsible, was advanced by Marcovitch (42, 43) on theevidence that the males and sexuparae of three aphid species appeared earlier in the growing season oftheir hosts if the latter were exposed to short days for about seven weeks. Conversely, he found that theappearance of migratory forms of A. sorbi Kalt. (=Anuraphis roseus Baker) on its winter host was associatedwith the increased day length of the spring months. This hypothesis is supported by the observations ofDavidson (10) on Aphis rumicis L. and of Wilson (61) . The latter worker studied A. chloris Koch, whose hostrange is apparently restricted to the genus Hypericum and whose life history seems to be governed solelyby the environmental factors of temperature and day length. Given high temperatures and many hoursexposure to  light the aphid remained parthenogenetic;  low temperatures and short exposures to  lightcaused the appearance of oviparous forms. Kenten (31) obtained like results in her studies on the pea aphidAcyrthosiphon pisum, for sexual forms were produced at temperatures below 20EC. only by those parentaphids that had received a photoperiod of 8 hr/24 hr during their nymphal period; parents, held at 25‐26Eand at 29‐30EC., and receiving a photoperiod of 16 hr/24 hr during their nymphal period, produced nosexual forms.

The mechanism of this phenomenon is unknown, but Davidson (10) assumed that the initial effect ofphotoperiod is on the host plant: day length, by affecting photosynthesis, would affect the carbohydratecontent of the sap, and thereby affect the nutrition of the aphid. Since Davidson's time, however, thesignificance of day  length or photoperiod on  the physiological processes of plants, and particularly offlowering, has been exposed. It is now generally accepted that photoperiodism is a hormonal phenomenon,whether due to a specific chemical such as the hypothetical "florigen" or to a specific inhibition affectingthe auxin mechanism. It would accordingly be simple to suppose that the effect of photoperiod on theaphid's life history is likely to be associated with a phytohormone, but for evidence derived from studies ofdiapause in certain leaf‐eating insects.

Diapause in insects is a stage of arrested development which, in some species, can be brought aboutby exposure to adverse environmental conditions, but which cannot be broken merely by an improvementin these conditions. In other species it will occur even under favorable environmental conditions —a factwhich adds difficulty to the use of such insects as experimental animals. Dickson and Sanders (17, 18) metthese difficulties in rearing the Oriental fruit moth (Grapholitha molesta Busck.) and found that, by exposingthe apples on which the larvae were feeding to long days of 15 hours or more per day, the number of larvaeentering diapause was reduced from about 98 per cent to 5 per cent or less, a rise of temperature from 70Eto 80EF, having a much smaller effect. Way and Hopkins (60) obtained a similar striking effect on the numberof pupae of the tomato moth Diataraxia oleracea L. entering diapause when the larvae and the leaves onwhich they were feeding were exposed to day lengths greater than 15 hours. The light intensity, if abovea certain minimum, had no influence—though, when the larvae were reared in darkness, diapause wasprevented  by  high  temperatures  (30‐34EC). Way  and Hopkins  tested whether  or  not  the  effect wasproduced by a photo‐periodic response of the host plant by feeding the larvae under long photoperiod onleaves, changed twice each day, from plants growing under short photo‐period. As the resulting pupae didnot enter diapause, they concluded that the photoperiod effect was exerted directly on the larvae. The work

28

Page 29: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

of Lees (35, 36) on the phytophagous mite Metatetranychus ulmi Koch led to a similar conclusion. This mitedevelops from two types of egg: "summer" eggs laid on the leaves of the host plant, which develop withoutinterruption; "winter" eggs laid on the bark, which hatch only after an intervening period of diapause. Leesfound that whether the female lays eggs of the "summer" type or of the "winter" type is determined bynutrition, photoperiod, and temperature. If, for instance, the leaves of the host plant are so heavily infestedthat they "bronze", Kuenen (32) observed that the mites lay "winter" eggs at an early date. With days 0‐13hours  long  and  temperatures  at  about  15EC,  Lees  found  only  "winter"  eggs were  laid,  though  hightemperatures of 25EC tend to eliminate diapause even with short photoperiod. At continuous illuminationonly "summer" eggs are laid. The recurrent transferring of mites showed that on long‐day host plants mitesliving under short‐day conditions gave "winter" eggs, whereas on short‐day host plants mites living underlong‐day conditions laid "summer" eggs. Lees therefore concluded that the mites are influenced directly byday length, and not indirectly by the effect of photo‐period on the host plant.

A precedent for belief that the photoperiod effect on insects is direct may be found in the experimentsof Baker (3) with larvae of seven species of mosquito. He concluded that the shortening day is the dominantfactor in initiating a rest period in the autumn, and the lengthening day in bringing about larval activity inthe spring.

The  remarkable  effect  of  day  length  on  the  activity  of migratory  birds  and  poultry  is  now wellestablished. Indeed, Parker and his colleagues (48) have suggested that the photoreaction that controlsflowering in plants is the same as that which controls the plumage cycle of birds, the production of wingsby aphids and the prevention of diapause in some insects, and which regulates the hair cycles of certainanimals. In all of these reactions the effective wavelengths (around 6250D) are similar; and the evidencesuggests that the controlling process involves slow reactions occurring in the dark period. Lees (37) pointedout, however, that the photoperiodic mechanism in arthropods differs fundamentally from that of plantsin that with arthropods, slow timing reactions take place during both the dark and light periods. It wouldtherefore appear that photoperiodism in phytophagous insects is not dependent on the formation of aphysiological active chemical in the host plant.

The hormonal control of diapause and of metamorphosis in insects is now established; as the existenceof the active chemicals has been demonstrated, it should not be long before their isolation and identificationis accomplished. The mechanism whereby photoperiod affects  the production and  reactions of  thesehormones may then become apparent.

29

Page 30: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

References

1. Ackerman, L. The physiological basis of wing production in the grain aphid. J. Expt. Zool. 44:1‐61. 1926.2. Auclair, J. L. Amino acids in insects. Can. Ent. 85:63‐68. 1953.3. Baker, F. C. The effect of photoperiodism on resting treehole mosquito larvae. Can. Ent. 47:149‐153.

1935.4. Broadbent, L. The growing and overwintering of Myzus persicae Sulz. on Prunus species. Ann. Appl. Biol.

36:334‐340. 1949.5. Chadwick, L. E., and V. G. Dethier. The relationship between chemical structure and the response of

blowflies to tarsal stimulation by aliphatic acids. J. Gen. Physiol. 30:255‐262. 1947.6. Chadwick, L. E., and V. G. Dethier. Stimulation of tarsal responses of the blowfly by aliphatic aldehydes

and ketones. J. Gen. Physiol. 32:445‐452. 1949.7. Craighead, F. C. The host selection principle as advanced by Walsh. Can. Ent. 55:76‐79. 1923.8. Crombie, A. C. On oviposition, olfactory conditioning and host selection in Rhizopertha dominica Fab.

(Insecta, Coleoptera). J. Expt. Biol. 18:62‐79. 1941.9. Davidson, J. Biological studies of Aphis rumicis L. Factors affecting the infestation of Vicia faba with

Aphis rumicis. Ann. Appl. Biol. 12:472‐507. 1925.10. Davidson, J. On the occurrence of the parthogenetic and sexual forms in Aphis rumicis L., with special

reference to the influence of environmental factors. Ann. Appl. Biol. 16:104‐134. 1929.11. Dawson, R. F. Accumulation of nicotine in reciprocal grafts of tomato and tobacco. Am. J. Bot. 29:66‐71.

1942.12. Dethier, V. G. Chemical insect attractants and repellents. Blakiston Co., Philadelphia. 1947.13. Dethier, V. G. Host plant perception in phytophagous insects. Trans. IX Int. Congr. Ent. (1951) 2:81‐89.

1953.14. Dethier, V. G., and L. E. Chadwick. Rejection thresholds of the blowfly for a series of aliphatic alcohols.

J. Gen. Physiol. 30:247‐253. 1947.15. Dethier, V. G., and L. E. Chadwick. Chemoreception in insects. Physiol. Rev. 28:220‐254. 1948.16. Dethier, V. G., and L. E. Chadwick. The stimulating effect of glycols and their polymers on the tarsal

receptors of blowflies. J. Gen. Physiol. 32:139‐151. 1948.17. Dickson, R. C., and E.  Sanders.  Factors  inducing diapause  in  the oriental  fruit moth.  J. Econ. Ent.

38:605‐606. 1945.18. Dickson, R. C. Factors governing the induction of diapause in the oriental fruit moth. Ann. Ent. Soc. Am.

42:511‐537. 1949.19. Evans, A. C. Physiological relationships between  insects and their host plants. 1. The effect of the

chemical composition of the plant on reproduction and production of winged forms in Brevicorynebrassicae L. (Aphididae). Ann. Appl. Biol. 25:558‐572. 1938.

20. Falconer, D. S. On the movement of wireworms of the genus Agriotes Esch. (Coleoptera, Elateridae) onthe surface of the soil and their sensitivity to light. J. Expt. Biol. 21:33‐38. 1945.

21. Flanders, S. F. Olfactory responses of parasitic Hymenoptera in relation to their mass production. J.Econ. Ent. 37:711‐712. 1944.

22. Folsom, J. W. A chemotropometer. J. Econ. Ent. 24:827‐833. 1931.23. Fraenkel, G. The nutritional value of green plants for insects. Trans. IX Int. Congr. Ent. (1951) 2:90‐100.

1953.24. Frisch, K. von. Ueber den Sitz des Geruchsinnes bei Insecten. Zool. Jahrb. 38:449‐514. 1921.25. Grevillius, A. Y. Zur Kenntnis der Biologie des Goldafters (Euproctis chrysorrhoea (L.)) Bot. Cent. Bieheft.

30

Page 31: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

18:222‐322. 1905.26. Hieke, K. Plants physiological studies of the alkaloids. II. The formation of alkaloid in grafted pieces in

widely diverse grafts of Solanaceae. Planta 33:185. 1942.27. Hopkins, A. D.  In discussion of C. Gordon Hewitt's paper  "Insect behaviour as a  factor  in applied

entomology". J. Econ. Ent. 10:81‐94. 1917.28. Husain, M. A., and K. B. Lal. The bionomics of Empoasca devastans Distant on some varieties of cotton

in the Punjab. Ind. J. Ent. 2:123‐136. 194029. James, W. O. Alkaloids in the plant. In The alkaloids, ed. by R. H. F. Manske and H. L. Holmes, 15‐90.

Academic Press Inc., New York. 1950.30. Johnson, B. The injurious effects of the hooked epidermal hairs of French beans (Phaseolus vulgaris L.)

on Aphis craccivora Koch. Bull. Ent. Res. 44:779‐788. 1953.31. Kenten, J. The effect of photoperiod and temperature on, reproduction in Acyrthosiphon pisum (Harris)

and on the forms produced. Bull. Ent. Res. 46: 599‐624. 1955.32. Kuenen, D. J. Het fruitspint en zijn bestrijding. Meded. Landbvoor‐dienst, den Haag, No. 44. 1946.33. Kuhn, R., and I. Löw. Resistance factors against Leptinotarsa decemlineata Say, isolated from the leaves

of wild Solanum species. In Origins of resistance to toxic agents, pp. 122‐132. Academic Press, Inc.,New York. 1955.

34. Lathrop, F. H. Influence of temperature and evaporation upon the development of Aphis pomi DeGeer.J. Agr. Res. 23:969‐987. 1923.

35. Lees, A. D. Environmental factors controlling the evocation and termination of diapause in the fruit treered spider mite Metatetranychus ulmi Koch (Acarina: Tetranychidae) . Ann. Appl. Biol. 40:449‐486.1953.

36. Lees, A. D.  The  significance of  light  and dark phases  in  the photoperiodic  control of diapause  inMetatetranychus ulmi Koch. Ann. Appl. Biol. 40:487‐497. 1953.

37. Lees, A. D. The physiology of diapause in arthropods. Cambridge Univ. Press. 1955.38. Liener, I. E., and M. J. Pallansch. Purification of a toxic substance from defatted soy bean flour. J. Biol.

Chem. 197:29‐36. 1952.39. Lipke, H., G. S. Fraenkel, and I. E. Liener. Growth inhibitors. Effect of soy bean inhibitors on growth of

Tribolium confusum. J. Agr. Food Chem. 2:410‐414. 1954.40. Lipp, J. W. Notes on experiments on ovipositional chemotropism. J. Econ. Ent. 22:823‐824. 1929.41. Maltais, J. B. The nitrogen content of different varieties of peas as a factor affecting infestations by

Macrosiphum pisi (Kltb) (Homoptera: Aphididae) . A preliminary report. Can. Ent. 83:29‐33. 1951.42. Marcovitch, S. Plant lice and light exposure. Science 58:537‐538. 1923.43. Marcovitch, S. The migration of the Aphididae and the appearance of the sexual forms as affected by

the relative length of daily light exposure. J. Agr. Res. 27:513‐522. 1924.44. McColloch, J. W. The attraction of Chloridea obsoleta Fabr. to the corn plant. J. Econ. Ent. 15:333‐339.

1922.45. Mclndoo, N. E. Senses of the cotton boll weevil. An attempt to explain how plants attract insects by

smell. J. Agr. Res. 33:1095‐1141. 1926.46. McKinney, K. B. Physical characteristics on the foliage of beans and tomatoes that tend to control some

small insect pests. J. Econ. Ent. 31:640‐631. 1938.47. Montieth,  L. G.  Host  preferences  of  Drino  bohemia Mesn.  (Diptera:  Tachinidae), with  particular

reference to olfactory responses. Can. Ent. 87:509‐530. 1955.

31

Page 32: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

48. Parker, M. W., S. B. Hendricks, H. A. Borthwick, and C. E. Jenner. Photo periodic responses of plants andanimals. Nature 169:242‐243. 1952.

49. Parnell, F. R., H. E. King, and D. F. Ruston. Jassid resistance and hairiness of the cotton plant. Bull. Ent.Res. 39:539‐575. 1949.

50. Reinhard, H. J. The influence of parentage, nutrition, temperature and crowding on wing productionin Aphis gossypii Glover. Texas Agr. Expt. Sta. Bull. 353: 1927.

51. Richardson, H. H. The action of bean leaves against the bed bug. J. Econ. Ent; 36:543‐545. 1943.52. Rivnay, E. Moisture as a factor affecting wing development in aphids. Bull. Ent. Res. 28:173‐179. 1937.53. Salt, G. The sense used by Trichogramma to distinguish between parasitized and unparasitized hosts.

Proc. Roy. Soc. 120B:253‐291. 1937.54. Stringer, A. A note on the resistance of Solanum polyadenium to aphids. Ann. Rept. Long Ashton Res.

Sta.:88‐89. 1946.55. Thorpe, W. H., and F. G. W. Jones. Olfactory conditioning in a parasitic insect and its relation to the

problem of host selection. Proc. Roy. Soc. 124B:56‐81. 1937.56. Thorpe, W. H., A. C. Crombie, R. Hill, and J. H. Darrah. The behaviour of wireworms  in response to

chemical stimulation. J. Expt. Biol. 23:234‐266. 1947.57. Thorsteinson, A. J. The chemotactic responses that determine host specificity in an oligophagous insect

(Plutella maculipennis (Curt.) (Lepidoptera). Can. J. Zool. 31:52‐72. 1953.58. Verschaffelt, E. The cause determining the selection of food in some herbivorous insects. Proc. K. Akad.

Wetensch. Amsterdam 13:536‐542. 1910.59. Walsh, B. D. On phytophagic varieties and phytophagic species. Proc. Ent. Soc. Philadelphia 3:403‐420;

4:194‐216. 1864.60. Way, M. J., and B. A. Hopkins. The  influence of photoperiod and temperature on the  induction of

diapause in Diataraxia oleracea L. (Lepidoptera). J. Expt. Biol. 27:365‐376. 1950.61. Wilson, F. Some experiments on the influence of environment upon the form of Aphis chioris Koch

(Aphididae). Trans. Roy. Ent. Soc. London 87:165‐180. 1938.

32

Page 33: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Chapter 4

HIGHER PLANTS vs. FUNGI:

The Chemical Defenses of Plants Against Fungal Attack

In general, it may be said that there is no evidence that the normal plants are able to attract or repelpathogenic or mycorrhizal fungi, though an exception may emerge in the immediate neighborhood of theplant roots. This exception  is discussed further  in the succeeding section dealing with the rhizosphere.Moreover, there is little evidence that the host plant has any influence either on the germination of thefungus spore or of the growth of the fungus prior to the establishment of infection except by the plant's non‐specific metabolic products—carbon dioxide (5) or nutrients exosmosed into moisture on the leaf surface(1) .

Gäumann (9) has classified the various mechanisms by which higher plants may prevent invasion bypathogenic fungi, and may resist or  limit attack by fungi—whether pathogenic or mycorrhizal. Broadlyspeaking, the most successful of the plant defenses is the rapid death of the tissues adjacent to the site ofthe  infection,  whereby  those  pathogenic  fungi  which  are  so  specialized  that  they  cannot  survivesaprophytically are deprived of nutrient. The death of the adjacent plant tissue is presumably due to thetoxins produced and, as it seems reasonable to assume that the associated chemical is a fungal rather thana plant product, a discussion of the nature of these toxins is reserved for the chapter on the interactions offungi and higher plants (pp. 43‐52).

A second type of mechanism, the formation of a protective barrier, whether it be suberized tissue orgum, may more logically be regarded as a reaction of the plant itself. Gum formation is, in those plantscapable of it, a general reaction to tissue damage and is to a large extent independent of the cause of injury.It is perhaps significant that many plant gums and resins contain terpenes or aromatic derivatives of markedfungicidal and bacteriocidal properties.

The colorimetric reactions of hydroxyaromatic compounds such as the phenols permit their readydetection by histochemical techniques. The frequent presence of such compounds in plant tissue promptedthe suggestion that they function as anti‐fungal compounds. Dufrénoy and his colleagues (3, 4) consideredthat the accumulation of such phenolic compounds in plant cells adjacent to those invaded by pathogenicfungi is evidence of a defense mechanism. Newton and Anderson (18) attributed the resistance of certainwheat varieties to rust to the presence of phenols; Gäumann (9) was skeptical, for these phenols occur inthe tissues of susceptible as well as of resistant varieties.

A clear‐cut example is due to Walker and his associates (11, 19) , who showed that the resistance ofonions to Colletotrichum circinans (Berk.) Vogl. is a genetic factor linked to scale color and that the resistantprinciple  resides  in  the phenolic substances, mainly protocatechuic acid and catechol, associated withpigment metabolism. Because the resistant variety is attacked by the fungus if the dried outer scales of theonion are removed, it would appear that the inhibitory phenols are either present in the living tissue in somenon‐toxic form or do not come into contact with the invading pathogen. When, however, the outer scales

33

Page 34: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

become desiccated the toxic phenols are liberated or become available for the protection of the living scalesof the resistant onion.

The  resistance of  rye  to Fusarium nivale  (Fr.) Ces. was  traced by Virtanen and Hietala  (23)  to  theproduction of 2 (3) ‐benzoxazolinone, which they recovered in amounts up to 0.01 per cent from fresh ryeseedlings.

A further example of a plant‐produced fungicide is tomatin. Irving, Fontaine, and Doolittle (12) isolatedfrom  tomato  leaves a material which  they named  lycopersicin,  toxic  to certain pathogenic  fungi. Thissubstance, isolated in crystalline condition from Lycopersicum pimpinellifolium and since recovered fromother tomato species by Kuhn and his associates (14, 15) and by Fontaine et al. (8) , was renamed tomatin.It is a glycoside, being a tetrasaccharide of the aglycone tomatidine, for which structure I was proposed byKuhn, Löw, and Trischmann (16, 17) .

Although tomatin effectively inhibits the growth of Fusarium lycopersici Sacc. in pure culture (12) andhas been described by Gäumann (10) as a preformed resistance factor, no direct evidence has been foundthat it is associated with the resistance of certain tomato varieties to Fusarium wilt; indeed, Irving, Fontaine,and Doolittle (12) recovered it from susceptible varieties. But it is a compound of interest because of itsclose relationship to demissidine (II) and solanidine (III) , the aglycones of the glycosides with which Kuhnand his colleagues associated the resistance of Solanum spp. to the Colorado potato beetle (see p. 26).

The heartwood of many timber trees is resistant to fungal decay. In part this greater durability oversapwood is due to the absence of organic materials such as starch and fats readily broken down by microbialenzymes. From the heartwood of many conifers, however, strong antifungal compounds have been isolated.Pinosylvin  (3,5‐dihydroxytransstilbene),  for  example,  is  some  5  to  50  times  as  toxic  as  phenol  towood‐rotting  fungi  (20); and  the pinosylvin  resins, detected by  the blood‐red  coloration produced bybisdiazotized benzidrine, are present  in the heartwood of many pines. Schmitz (quoted by Sowder, 22)

34

Page 35: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

isolated, by acetone and alcohol extraction, a fungicidal resin which he considered a cause of the unusualdurability of the timber of the western red cedar (Thuja plicata Donn) . This tree, chosen by the Pacific CoastIndians for their totem poles not only because of size but because of durability, contains in its heartwooda  remarkable  series  of  antifungal  phenols  (6).  These  are  the  thujaplicins,  the  α‐,  ß‐  and  γ‐isopropylderivatives of tropolone (2 ‐hydroxycyclohepta‐ 2,4,6 ‐trienone ).

35

Page 36: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

The fungicidal action of these three compounds on blueing and decay fungi was shown by Rennerfelt(21)  to  be  about  as  high  as  that  of  sodium  pentachlorophenate.  The  chemistry  of  these  and  otherconstituents  of  heartwood  of  conifers  have  been  reviewed  by  Erdtman  (7) who  also  discusses  theirphysiological and taxonomic significance.

Another stilbene derivative, 2,3',4,5'‐tetrahydroxystilbene, was isolated by Barnes and Gerber (2) fromthe heartwood of the Osage orange, Toxylon pomiferum Raf. The toxicity of this compound to a cellulolyticfungus was such that it was considered responsible for the decay resistance of this timber.

References

1. Arens, K. Die kutikuläre Exkretion des Laubblattes. Jahrb. Wiss. Bot. 80:248‐300. 1934.2. Barnes, R. A., and N. N. Gerber. The antifungal agent from Osage Orange wood. J. Am. Chem. Soc.

77:3259‐3262. 1955.3. Dufrénoy, J. Réaction de cellures à la pénétration de suçoirs. Phytopath. Z. 1:527‐531. 1929.4. Dufrénoy, J., and G. Gavis. Etude cytologique de laitues infectées par Sclerotinia libertiana. Rev. Path.

Veg. Ent. Agr. 15:300‐308. 1928.5. Durrell, L. W. Basisporium dry rot of corn. Iowa Agr. Expt. Sta. Res. Bull. 84:139‐160. 1925.6. Erdtman, H., and  J. Gripenberg. Antibiotic substances  from  the heartwood of Thuja plicata Donn.

Nature 161:719. 1948.7. Erdtman,  H.  Chemistry  of  some  heartwood  constituents  of  conifers  and  their  physiological  and

taxonomic significance. In Progress in organic chemistry. 1:22‐63. Academic Press Inc., New York.1952.

8. Fontaine, T. D., G. W. Irving, R. Ma, J. B. Poole, and S. P. Doolittle. Isolation and partial characterizationof  crystalline  tomatin,  an  antibiotic  agent  from  the  tomato  plant.  Arch.  Biochem.  Biophys.18:467‐475. 1948.

9. Gäumann, E. Pflanzliche Infektionslehre. 2nd Ed. Birkhauser. Basel. 1951. English trans. by W. B. Brierley.Principles of plant infection. London. 1950.

10. Gäumann, E. Some problems of pathological wilting in plants. Adv. Enzymol. 11:401‐437. 1951.11. Hatfield, W. C.,  J. C. Walker, and  J. H. Owen. Antibiotic substances  in onion  in  relation  to disease

resistance. J. Agr. Res. 77:115‐135. 1948.12. Irving, G. W., T. D. Fontaine, and S. P. Doolittle. Lycopersicin, a fungistatic agent from the tomato plant.

Science 102:9‐11. 1945.13. Irving, G. W., T. D. Fontaine, and S. P. Doolittle. Partial antibiotic spectrum of tomatin, an antibiotic

agent from the tomato plant. J. Bact. 52:601‐607. 1946.14. Kuhn, R., and I. Löw. Notiz über ein Alkaloid‐glycosid aus den Blättern einer Wildtomate. Chem. Ber.

81:552‐553. 1948.15. Kuhn, R., I. Löw, and A. Gauhe. Über das Alkaloid‐glycosid von Lycopersicin esculentum var. pruniforme

und seine Wirking auf die Larven des Kartoffelkäfers. Chem. Ber. 83:448‐452. 1950.16. Kuhn, R., I. Löw, and H. Trischmann. Ueberführung von Tomatidin in Demis‐sidin. Angew. Chem. 64:397.

1952.17. Kuhn,  R.,  I.  Löw,  and  H.  Trischmann.  Abbau  von  Tomatidin  zum  Tigegeninlac‐ton.  Chem.  Ber.

85:416‐424. 1952.18. Newton,  R.,  and  J.  A.  Anderson.  Studies  on  the  nature  of  rust  resistance  in wheat.  IV.  Phenolic

compounds of the wheat plant. Can. J. Res. 1:86‐99. 1929.

36

Page 37: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

19. Owen, J. H., J. C. Walker, and M. A. Stahmann. Pungency, color and moisture supply  in relation todisease resistance in the onion. Phytopathology 40:292‐297. 1950.

20. Rennerfelt,  E. Die  toxizität der  Phenolischen  inhaltstoffe des Keiferkernholzes  gegenuber  einigenFäulnispilzen. Svensk. Bot. Tid. 37:83‐92. 1943.

21. Rennerfelt, E. Investigations on thujaplicin, a fungicidal substance in the heartwood of Thuja plicata D.Don. Physiol. Plant. 1:245‐254. 1948.

22. Sowder, A. M. Toxicity of water‐soluble extractives and relative durability of water‐treated wood flourof Western Red Cedar. Ind. Eng. Chem. 21:981‐984. 1929.

23. Virtanen, A. I., and P. K. Hietala. 2 (3) ‐Benzoxazolinone, an anti‐fusarium factor in rye seedlings. ActaChem. Scand. 9:1543‐1544. 1955.

37

Page 38: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Chapter 5

HIGHER PLANTS vs. BACTERIA: 

Being Mainly Concerned with the Rhizosphere

The influence of plant roots on soil microorganisms was recognized as long ago as 1904 when Hiltner(2) coined the term "rhizosphere" for the region around the plant roots that supports a microbial populationwhich differs both quantitatively and qualitatively from that of the bulk of the soil. The nature of the floraof the rhizosphere is in part determined by the crop plant, as was shown by Wallace and Lochhead (12) , andindicates a preferential stimulation of those bacteria that require amino acids for maximum growth (4).

The source of the nutrient responsible for the greater bacterial numbers of the rhizosphere may rangefrom excretory products of the living roots to the products of autolysis and breakdown of dead roots or ofthe sloughed‐off root fragments. That dead roots are not the responsible source is indicated by the resultsof Vozniakovskaia, reported by Lochhead (5) , who found much larger numbers of microorganisms in therhizosphere of living roots than in that of dead roots, the latter number being hardly different from that ofthe control soil. Rovira (10, 11) tried to find out whether the source of this root "exudate" was true excretionor the product of autolysis of sloughed‐off cells. 

He found that although the amount of cell debris from both oats and peas is doubled between 14 and15 days after germination,  the amount of material soluble  in acetone  (containing 10 per cent of 10 Nhydrochloric acid) is only increased by half. He concluded that as the plant ages the true root excretionbecomes less important than the cast‐off cell material in its influence on the rhizosphere population. Noconfirmation has been found of the early report of Roberts (9) that root hairs are able to burst, releasingthe cell contents, and then resume their normal appearance.

On the other hand there  is ample evidence that amino acids and even nucleosides are present  innutrient solution in which plants are growing. Lyon and Wilson (6) recovered a relatively high amount oforganic matter. West (13) found thiamin and biotin in sterile nutrient solution in which flax seedlings weregrowing. These vitamins are essential for the growth of microorganisms of widely separated groups, e.g.,Micrococcus  aureus  Zopf.,  of  medical  importance,  and  Rhizobium  trifolii  Dangeard,  of  agriculturalimportance. Nutman (7) used the color reactions which bentonite gives with certain amino compounds, withvitamin A and with carotinoids to examine the nature of the root exudate. 

The roots of clover growing on agar slopes containing bentonite yielded color when supplied withnitrate but no color was produced by oats, rye grass, or radish. Fries and Forsman (1) , employing the specificreactions of nutritionally deficient Ophiostoma mutants and ultraviolet absorption, made a chromatographicexamination of these compounds in the exudate from peas and the roots of pea seedlings, which revealedthe presence of amino acid and nucleic acid derivatives. Most of the latter consisted of compounds of highmolecular weight, mononucleotides and possibly polynucleotides; free purines and pyrimidonucleosideswere present in only small amounts. For these tests Fries and Forsman generally used excised roots for, inexperiments with the whole seedlings, the technique did not permit a distinction between exudate from

38

Page 39: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

roots and from cotyledons.

Other early evidence of the release from plant roots of materials nutritive to bacteria is summarizedby  Katznelson,  Rouatt,  and  Payne  (3).  These  workers  showed,  by  chromatographic  methods,  thatappreciable quantities of amino acid and detectable amounts of reducing compounds such as glucose areliberated from a variety of plants. Larger amounts appeared from plants grown in soil that was allowed todry  until  the  plants wilted  and was  then  remoistened.  Rovira  (10)  identified  no  less  than  22  aminocompounds from pea root after 21 days growth, and 14 from oats, the proportions of the various aminoacids differing between peas and oats. Fructose and glucose were excreted only during the first 10 days ofgrowth. A perfusion technique was used by Parkinson (8) to demonstrate the excretion of amino acids fromoats growing under sterile conditions.

References

1.  Fries, N., and B. Forsman. Quantitative determination of certain nucleic acid derivatives in pea rootexudate. Physiol. Plant. 4:410‐420. 1951.

2.  Hiltner, L. Veber neuere Erfahrungen and Probleme auf dem Gebiete der Bodenbakteriologie unterbesonderer Berücksichtigung der Gründüngung and Brache. Arb. Deut. Landw. Ges. 98:59‐78. 1904.

3.  Katznelson, H., J. W. Rouatt, and T. M. B. Payne. The liberation of amino acids and reducing compoundsby plant roots. Plant and Soil 7:35‐48. 1955.

4.  Lochhead, A. G., and R. H. Thexton. Qualitative studies of soil microorganisms. VII. The "rhizosphereeffect" in relation to the amino acid nutrition of bacteria. Can. J. Res. 25:20‐26. 1947.

5.  Lochhead, A. G. Soil microbiology. Ann. Rev. Microbiol. 6:185‐206. 1952.6.  Lyon, T. L., and P. K. Wilson. Liberation of organic matter by roots of growing plants. Cornell Agr. Expt.

Sta. Mem. 40. 1921.7.  Nutman, P. S. Colour reactions between clay minerals and root secretions. Nature 167:288. 1951.8.  Parkinson, D. Liberation of amino‐acids by oat seedlings. Nature 176:35‐36. 1955.9.  Roberts, E. A. The epidermal cells of roots. Bot. Gaz. 42:488. 1916.10.  Rovira, A. D. Plant root excretions in relation to the rhizosphere effect. I. The nature of root exudate

from oats and peas. Plant and Soil 7:178‐194. 1956.11.  Rovira, A. D. Plant root excretions in relation to the rhizosphere effect. II. A study of the properties of

the root exudate and its effect on the growth of microorganisms isolated from the rhizosphere andcontrol soil. Plant and Soil 7:195‐208. 1956.

12.  Wallace, R. H., and A. G. Lochhead. Qualitative studies of soil microorganisms. VIII. Influence of variouscrop plants in the nutritional groups of soil bacteria. Soil Sci. 67:63‐69. 1949.

13.  West, P. M. Excretion of biotin and thiamin by roots of higher plants. Nature 144:1050. 1939.

39

Page 40: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Chapter 6

THE REACTION OF HIGHER PLANTS TO INSECT ATTACK

Gall formation and other abnormalities in the growth of higher plants induced by the attack of insectsand mites are often so startling and conspicuous that a rich scientific literature might be expected. Yet infact their study has, with the exception of gall formation, not progressed far beyond descriptional stages.Accordingly this chapter will be of limited scope and of necessity confined mainly to the work of a fewinvestigators on the reactions leading to gall formation.

A first step in this discussion must be the exclusion of the three‐component system of insect, host plant,and virus, which is involved in the insect transmission of the virus diseases of plants. Information on thebiochemical responses of the plant to virus infection is at present meagre and will perhaps not becomesubstantially greater till the nature of the plant viruses is more clearly established. Although it is now knownthat the properties of a number of these viruses are those of a nucleoprotein, it would be premature to treatthem all as ecological chemicals.

Further, in this discussion of the reactions of the plant to insect attack, it is convenient to assume thatthe toxins or active chemicals that are involved are derived solely from the insect. This assumption servesas a reason for allocating to Chapter 3 those chemicals of probable plant origin that determine host rangeor host resistance, separating them from those toxins that seem more directly to be products of insectmetabolism and are the probable cause of the reactions of the plant to insect attack. An example or two willsuffice to clarify the position, and to illustrate the hazards of the assumption.

A characteristic feature of the apple infested with the rosy aphid Anuraphis roseus is the cluster ofdistorted small fruitlets developing from the infested flower truss. Every flower of the truss produces anapple, most of which are parthenocarpic.  It  is well established that seedless fruit may be produced onseveral types of crop plant by the application of synthetic growth substances such as a‐naphthylacetic acid,but no one has yet succeeded in producing parthenocarpic apples by this means. The nearest to success wasSwarbrick (13, 14), who sprayed a frost‐damaged plot of the varieties Miller's Seedlings and Cox's Orangewith a mixture of growth substances and obtained, on the Miller's Seedling trees, a crop of small apples eventhough their cores were destroyed by the frost. But as Luckwill (8) pointed out, this fruit may have beenpollinated before it was affected by the frost; and it is therefore doubtful whether it provides a true exampleof parthenocarpic induction. The rosy apple aphis, however, never seems to fail to produce parthenocarpyin  the  blossom  it  attacks,  and  it  seems  logical  to  suppose  that  the  auxin  level  necessary  for  fruitdevelopment is produced by the host plant as a consequence of a stimulus provided by the insect.

"Big Bud" of black currant is the result of the infestation of the bud by the gall mite Phytoptus ribis(Westw.) Nalepa, but the abnormal growth is again presumably the consequence of a disturbance of theplant auxin mechanism.  In the red and white currant, however, the attack of the mite rapidly kills thebud—an  indication of  toxin production.  In both examples, rosy aphis and big bud,  the  intervention of

40

Page 41: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

physiologically active chemicals produced by the host plant is due to an initial stimulus which is providedby the pest.

Turning  now  to  gall  formation  as  a  result  of  insect  or mite  attack,  two  types  of  gall  have  beendifferentiated.  In  some  cases,  as  with  the  gall midges,  a  well‐defined  gall  is  produced  with  tissuedifferentiation as complete as that of the normal plant tissue. Such galls Küster (6) named "prosoplasmas,"distinguishing them from the "kataplasmas," which are galls less highly differentiated than the plant tissuesfrom which they are derived. Prosoplasmic galls tend to be highly specific, and the insect responsible canbe foretold from the nature of the gall. The high degree of growth differentiation indicates a most intimateand ordered sequence of the reactions by both the host plant and the  larva sheltering within the gall.Attempts to produce such galls by the injection of preparations of the causative insect or by chemicals havenot been successful. 

Boysen Jensen (3) for example, was not able to produce on beech leaves the highly specialized gall thatis the result of the attack of the gall midge Mikiola fagi Hart., but he obtained tumorous growth on leavestreated with lanolin on which the larva had been placed. He concluded that gall formation is caused by theability of the larva to produce, in an orderly fashion and at definite places on leaf or in gall, substancessimilar to growth substances, which induce gall formation and which control its organization.

The opinion that the less highly differentiated kataplasmic galls are produced as a result of chemicalstimulus goes back  to Malpighi who, according  to Schlectendahl  (12), considered  that  the gall‐formerinjected at oviposition a poison  that upset  the plant metabolism and organization  thereby producingmalformation. This toxin hypothesis was accepted by many investigators listed by Beck (2) . Among the morecritical experimental studies is that by Beck himself on gall formation on goldenrod (Solidago spp.) by thelarva of the moth Gnorimoschema gallaesolidaginis Riley. He found that the development of the gall couldbe curtailed by limiting the area fed upon by the larva, and that the substances stimulating growth of theplant tissue would diffuse into normal stems grafted to the developing galls. 

Anatomical changes in normal stem could be induced by a silky substance excreted by the feedinglarvae, but continuous deposition of this substance over the surface of the larval chamber was necessaryfor the formation of typical galls. Martin (9) produced stem galls on sugar cane by inoculation with extractsof the leafhopper Draeculacephala mollipes Say., of Peregrinus maidis Ashm. or of the mealy bug Trionymussacchari Ckll. Galls developed even when the extracts of the first two insects were autoclaved, showing thatthe toxins responsible are heat‐stable. The symptoms they produced apart from gall formation, namely,strong growth from adventitious buds, resemble those of a disarranged auxin balance in the host plant.

A remarkable account is given by Lewis and Walton (7) of the process by which the cone gall of witchhazel (Hamamelis virginica L.) is initiated by the aphid Hormaphis hamamelidis Fitch. They observed thatminute drops of a substance were secreted from glands opening into the stylar canal, and that crystalloidsappear in this substance and pass into the nucleolus of the plant cells there to split up and to pass at mitosisto the daughter nuclei. A continued injection of the substance by the aphid is necessary for gall formationto proceed, but Lewis and Walton considered  that  the  injected substance  is  responsible  for  the  rapidmultiplication and re‐differentiation of the natural cells of the young leaf into cells of the gall tissues. Thenature of the substance, apart from its staining reactions, which appear to be those of a nucleoprotein, isnot discussed, but Lewis (in litt., Jan. 12, 1956) has not yet excluded the possibility that a virus is involved.

41

Page 42: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

A heat‐labile chemical  is  involved  in gall production on chestnut oak by  the pit‐making oak  scaleAsterolecanium variolosum Ratzeburg for although Parr (11) obtained 90 per cent success in inducing gallformation by the injection of extracts of the salivary glands of the insect, none were produced by the extractheated  to 60EC, nor were galls produced by  the  injection of  indoleacetic acid. For  these  reasons Parrconcluded that the toxins are enzyme‐like.

Several investigators have concluded that the enzymes of gall larva are factors in gall formation. Anexample is due to Beck (1) , who identified amylase, invertase, and a protease, in the excreta of maggotsof the stem borer Eurosta solidaginis on goldenrod; and he considered that the proteolytic enzymes and anelevated pH are of importance for gall formation by this insect. Other examples are cited by Newcomb (10),who approached the problem of gall formation by a study of the metabolism of gall and normal tissue, fora common feature of many insect galls is the high content of polyhydroxyphenols or their condensationproducts such as tannins.

The reactions of the host plant to insect attack, even in cases where gall formation is not involved, areoften so startling, as in the wilts produced by certain mealy bugs and froghoppers or the catfacing of fruitby some capsids and pentatomids, that their study would provide interesting problems for the biochemist.As an extensive review of the subject matter by Carter (4, 5) is available, there is no need to discuss herefurther examples of the observational work widely reported in the entomological literature.

References

1. Beck, E. G. A study of the Solidago gall caused by Eurosta solidaginis (Abstr.) Am. J. Bot. 33:228. 1946.2. Beck, E. G. The nature of the stimulus in the 'Solidago' gall induced by the larva of Gnorimoschema

gallaesolidaginis. Brookhaven Symp. Biol. 6:235‐251. 1953.3. Boysen Jensen, P. Formation of galls by Mikiola fagi. Physiol. Plant 1:95‐108. 19484. Carter, W. Injuries to plants caused by insect toxins. Bot. Rev. 5:273‐326. 1939.5. Carter, W. Injuries to plants caused by insect toxins. II. Bot. Rev. 18:680‐721. 1952.6. Küster, E. Die Gallen der Pflanzen. Leipzig. 1911.7. Lewis, I. F., and L. Walton. Initiation of the cone gall of witch hazel. Science. 106:419‐420. 1947.8. Luckwill, L. C. Plant hormone research at Long Ashton. In Science and fruit, pp. 110‐119. Univ. Bristol.

1953.9. Martin, J. P. Stem galls of sugar cane induced with an insect extract. Science. 96:39. 1942.10. Newcomb, E. H. Comparative studies on metabolism in insect galls. In Plant growth substances, ed. by

F. Skoog, pp. 417‐427. Univ. Wisconsin Press, Madison. 1951.11. Parr, T. Asterocelanium variolosum Ratzeburg, a gall‐forming coccid, and its effects upon the host trees.

Yale Univ., School of Forestry, Bull. 46. 1940.12. Schlectendahl, D. F. C. Malphighi's Abhandlung "Die varis Plantarum Tumoribus et Excrescentii". Bot.

Z. 24:217‐225. 1866.13. Swarbrick, T. Use of growth‐promoting substances  in the prevention of apple drop following frost.

Nature 156:691. 1945.14. Swarbrick, T. A review of recent advances of growth‐promoting substances in horticulture. Hort. Educ.

Assoc. Occ. Pub. Sci. Hort. 5:27‐39. 1947.

42

Page 43: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Chapter 7

FUNGI vs. HIGHER PLANTS:

The Role of Phytotoxins in Plant Pathology

"Microorganisms  responsible  for disease act by virtue of  the  toxins  they produce." This sweepinggeneralization of Gäumann (21) rests, however, mainly on the evidence of human and animal pathology.Its extension to phytopathology indicates a vast territory for exploration in ecological chemistry, for thefungi predominate among the phytopathogens and as yet little is known of the chemical nature of the toxinsinvolved in the interactions of host plant and pathogenic fungus. And it is doubtful whether there will yetbe general agreement with Gäumann's statement that the phytotoxin is produced by the pathogen thatcauses the host to become diseased. It is certainly safer at this stage to regard the phytotoxin as the productof interaction of host and pathogen, though it is already known that the latter may be capable of excretingtoxins into the culture medium in which it is grown.

The search for antibiotics among the metabolic products of fungi growing in culture media has led tothe isolation of many active compounds and, even in 1951, Brian (2) was able to list about one hundred.There is, however, no need here to catalogue all the biologically active products of fungal metabolism; it willsuffice to select those known to be produced by phytopathogenic fungi and which, when injected into orapplied  to  the host plant, produce  symptoms  similar  to  those produced  in  the diseased plant by  thepathogen. To certain of these compounds, Dimond and Waggoner (18) applied the term "vivotoxin," defined"as a substance produced  in the  infected host by the pathogen and/or  its host, which functions  in theproduction of disease but  is not  itself the  initial  inciting agent of the disease." The  final phrase of thisdefinition is required to differentiate a virus and a vivotoxin, for the former can be regarded as the initialinciting agent, even though a vivotoxin may be involved in its interaction with its host.

The  subject  of  the  fungus‐produced  phytotoxins  has  a  brief  history. Whereas  the  significance  ofbacterial toxins in animal pathology was promptly established mainly because the toxin is an antigen andproduces demonstrable antibodies in the animal, this criterion was not available in the case of the fungaldiseases of plants. For the fungal toxins are not antigenic and as late as 1936 many authorities, includingBrown (8) , doubted whether toxin production in vivo had any significance in phytopathology.

The development of the idea that toxins are involved in the etiology of the plant diseases caused byfungi has been well discussed by Brian (3). To his review may be added reference to the more recent workof Forsyth (19a) and of Ludwig and his students (30) . Forsyth observed that viable uredio‐spores of the rustfungus Puccinia graminis Pers. var. tritici Erikss. & Henn held in a closed container germinated and grewpoorly in comparison with similar spores in an open container. On the basis of ultraviolet absorption data,he deduced that the self‐inhibitor was trimethylethylene, which he found to inhibit germination at vaporconcentration of 200 p.p.m. Forsyth suggested that the trimethylethylene produced within the host planttissue by the metabolism of the fungus was a phytotoxic factor associated with host resistance.

43

Page 44: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Ludwig et al. (30) demonstrated that the induction of the seedling blight phase of barley inoculated withHelminthosporium sativum is associated with ‐the production by the fungus of toxic substances that are notonly prerequisite for the infection of the host tissue by the pathogen, but that may predispose the roots andbasal parts of the plants to attack by other microorganisms not normally regarded as pathogens.

Turning now to the consideration of those phytotoxins which have received detailed study, the first,alphabetically, is alternaric acid.

Alternaric Acid:

Alternaria solani (Ell. & Mart.) Jones & Grout causes early blight of solanaceous plants, a disease inwhich a collapse of the plant tissue precedes the actual infection of that tissue by the fungus. For this reasona diffusible toxin was thought to be involved and, in 1949, Brian and his colleagues (4) reported the isolation,from liquid media cultures of the fungus, of a substance, alternaric acid, which, when added to nutrientsolution  in which tomato, pea, cabbage, and other plants were growing, produced a severe wilt of theplants. Darpoux, Faivre‐Amiot, and Roux (14) also obtained a biologically active material, which they namedalternarin, from cultures of a strain of A. solani. The same authors, with Ridé (15) , described alternarin asa hard colorless gum but slightly soluble  in water and retaining some activity even after autoclaving at120EC. They obtained no damage to tomato plants sprayed with a solution containing 100 mg alternarin perliter, but they recorded the inhibiting effect of alternarin on the growth of a number of pathogenic fungi.

Alternaric acid was also isolated by Pound (35) . The chemical study of Grove (25) showed it to be adibasic acid of formula C21H30O8, and of m.p. 138EC. forming a monohydrate of m.p. 135EC. It contained onecarboxyl  group  whereas  the  second  acid  group  appeared  to  be  a  ß‐dicarbonyl  grouping,  for  achloroform‐soluble  copper  complex  is  formed.  Little  further  on  its molecular  structure  has  yet  beenpublished.

Although alternaric acid is able, at extreme dilutions, to produce in tomato many of the symptoms ofearly blight, there is doubt whether it can be held responsible for the whole symptom syndrome. Othertoxins  are  almost  certainly  involved  and were  isolated  by  the  French workers. Moreover  Brian  andco‐workers (5) found that only two of twelve strains of A. solani produced alternaric acid, and that these twostrains were  the  least pathogenic.  It would,  therefore, be expected  that  the etiology of  the disease  iscomplicated, sufficiently to mask a direct correlation between severity of symptoms and the ability of thepathogen to produce toxin in nutrient culture.

Diaporthin:

The sweet chestnut Castanea dentata (Marsh.) Borkh. was virtually eliminated from North America bythe blight caused by Endothia parasitica (Murr.) And. This fungus was shown by Bazzigher (1) to producein culture a substance, named diaporthin, which was toxic not only to the European species of chestnut C.sativa Miller but to several other species of higher plants and which induced a wilt of tomato. The chemistryof diaporthin is being studied by A. Boller, but no details of this work have yet been published.

44

Page 45: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Fusaric Acid:

In early work on the biochemistry of the "Bakanae" disease of rice (see below), Yabuta, Kambe, andHayashi  (55)  isolated  from  cultures of  the  fungus  a  growth‐restraining  substance, which  they namedfusarinic acid, and which they showed was probably a butylpicolinic acid. Unlike gibberellic acid (see below),which produces elongated growth, fusaric acid (as it is now called) was found by Yabuta and Hayashi (54)to be extremely phytotoxic. Confirmation of its structure as 3‐n‐butylpyridine‐6‐carboxylic acid was obtainedby Tamari (42), who synthesized 3‐butylpyridine, and showed that it was identical to fusarinin obtained bythe decarboxylation of fusaric acid.

Fusaric acid was also identified by Gäumann, Naef‐Roth, and Kobel (23, 24) among the several toxinsproduced by Fusarium  lycopersici.  A characteristic of its phytotoxic effect on the tomato, cotton, and otherplants was an intercostal necrosis of the foliage. The inhibition of growth of rice seedlings by fusaric acid wasattributed by Tamari and Kaji  (43) to an  inadequate synthesis of  iron‐ and copper‐containing enzymescaused by the immobilization of these metals as chelated compounds.

Gibberellins:

A symptom, unusual in the physiological consequences of fungal attack on plants, is the stimulation ofgrowth induced in vigorously growing plants by certain spp. of Fusarium. Seedling rice plants, if not tooseverely infected by Gibberella fujikuroi (Saw.) Wollenw., the conidial stage of which is known as Fusariummoniliforme Sheld., become etiolated and grow taller than those not infected. An infected crop thereforepresents the appearance of uneven germination and growth, a characteristic of the "bakanae" (elongation)disease of rice. The increased height is due to a greater length of stem inter‐node; but in maize and othercereals, as well as rice, De Haan (16) found that there is also an increase in leaf growth and in the productionof dry matter.

The observation of Kurosawa (27) that the bakanae effect can be produced by watering rice seedlingswith  the cell‐free  filtrate  from  liquid cultures of G.  fujikuroi was quickly confirmed by other  Japaneseworkers, and two active principles, gibberellins A and B, were isolated by Yabuta and Hayashi (52) from thecrude amorphous powder that they prepared from the culture media. Gibberellin A crystallized from ligroinethyl acetate in long prisms of m.p. 194‐196E; gibberellin B in short prisms melting with decomposition at245‐246EC. In later work Yabuta and his colleagues (56) apparently reversed the lettering; gibberellin Abeing assigned to a substance crystallizing in short colorless columns insoluble in benzene and decomposingat 242‐244E, [α]D +36.1 and of molecular weight corresponding to C22H26O7; gibberellin B to the compoundsoluble  in  benzene  and  giving  long  columns melting  at  197‐199E,  [α]D‐82.3  and  of molecular weightcorresponding to C19H22O3. Gibberellin A was more potent than gibberellin B in inducing the elongation ofrice seedlings and was readily converted to gibberellin B by the action of dilute acids.

The interesting effect of gibberellin on plant growth prompted a repetition of the Japanese work bothin Great Britain and in the United States. In the former country, Curtis and Cross (13) reported yields, up to180 mg/L from Raulin‐Thom medium containing sucrose as carbon source, of an active principle which theypurified by adding an equal volume of  light petroleum to a solution  in boiling ethyl acetate, obtainingcrystals decomposing at 233‐235E and of rotation [α]D44 +82E. As the crystals were of a monobasic acid ofmolecular weight C19H22O6 the compound was named gibberellic acid, which was shown to be not identical

45

Page 46: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

to gibberellin A.

In the United States, Stodola and his colleagues (41) recovered from 160 U.S. gallons of a mediumcontaining mineral salts and 11/4 ‐ 1

1/2 per cent glucose, up to 12 grams of crude crystalline gibberellin whichwas a mixture of gibberellin A ([α]D+36E) and a compound (C19H22O6, [α]D+92E) which they named gibberellinX. The identity of the latter product with gibberellic acid was established by Cross (12) .

Under mild conditions of acid hydrolysis gibberellic acid was found by Cross to yield allogibberic acid(C18H20O3, m.p. 200.5‐203E, [α]D‐80E). Under these conditions gibberellin A forms gibberellin B, which Crossfound to have an infrared spectrum identical to that of allogibberic acid. This acid is isomeric and closelyrelated to gibberic acid, which is a main product of the hydrolysis of gibberellic acid by boiling mineral acid.Cross showed that gibberic acid is a tetracyclic keto‐acid containing an aromatic ring. The hydrogenationof gibberellic acid and of the two gibberic acids yields a hydrocarbon, gibberene and a ketone, gibberone,as shown by Yabuta and his co‐workers (57). These compounds were shown by Mulholland and Ward (32)to be 1,7‐dimethylfluorene and 1,7‐dimethylfluorenone respectively.

From these reactions Cross and his colleagues (12a) deduced that gibberellic acid is of structure IVthough the points of attachment of the lactone group are in doubt.

The physiological effects of gibberellin treatment on seedling plants are similar to the effects of thepathogen on rice seedlings. Brian et al. (6) showed that, in treated wheat plants, stem internodes are longerand the leaves longer, narrower, and paler than those of untreated plants. Pea seedlings developed longerinternodes, but the  leaves were of a size similar to those of control plants.  In contradistinction to theJapanese workers  (58), who  found  little  difference  in  the  total weight of  treated  and untreated  riceseedlings, Brian and his colleagues (6) found treated plants had a greater dry weight, particularly of shoot,than the control plants. They attributed this increase to a greater carbon assimilation, for it was in partreflected in a greater content of soluble carbohydrates, particularly of glucose. The longer internodes of thetreated plants is in part explained by a lengthening of the cell of the stem internodes; and though Yabuta

46

Page 47: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

and Hayashi (53) considered that cell multiplication increased following treatment, neither they nor Brianand his colleagues provided evidence on this matter. In peas, however, the latter investigators found theincrease  in cell  length sufficient to account for the greater  internode  length. In this respect, therefore,gibberellic acid resembles indoleacetic acid. Yet neither the Japanese nor the British workers were able toobtain the typical auxin reaction of epinasty with gibberellic acid, which was also inactive in the standardAvena and Went pea tests. Brian and Hemming (7) do, however, record a curious effect in dwarf forms ofpeas, of broad beans (Vicia), and of French beans (Phaseolus). Suitable doses of gibberellic acid virtuallyeliminate the difference in growth rate between tall and dwarf varieties.

Clearly Gibberella fujikuroi produces metabolic products of extreme importance in the study of plantgrowth, a study which is all the more interesting because of the contrast between promotion of internodalgrowth by gibberellic acid and its suppression by maleic hydrazide.

Lycomarasmin:

One of the first chemical compounds to be isolated from the culture media of a fungal pathogen, andwhich is capable of producing disease symptoms in plants treated with it, was lycomarasmin. This substancewas recovered from cultures of Fusarium lycopersici Sacc. by Clauson‐Kaas and Gäumann (10), and wasnamed by them. Excised tomato leaves, when placed in a 0.02 per cent solution of lycomarasmin, acquiredsymptoms of the wilt characteristic of infection by F. lycopersici. Wilt developed more rapidly if a trace offerric iron was added with the lycomarasmin.

On hydrolysis lycomarasmin, a white powder melting with decomposition at 227‐229EC, yields glycine,ammonia, aspartic and probably pyruvic acid. It is therefore a peptide, and Woolley (51) deduced that itsstructure is N‐ (α‐ (α‐hydroxypropionic acid))‐glycylasparagine (V) . It readily chelates with ferric iron andwith copper. Gäumann (20) considered that the iron‐complex is the effective toxin in tomato, for it is aboutten times as toxic as lycomarasmin itself.

There are, however, a number of reasons for a search beyond lycomarasmin for the explanation of thesyndrome of Fusarium wilt. The iron‐lycomarasmin complex fails to produce with sufficient rapidity andcompleteness the full symptoms of the disease. Lycomarasmin has not been recovered from the diseasedplant, and it appears in the culture medium only after a time interval which, Dimond and Waggoner (17) ,suggested, indicates that it is a product of lysis rather than of active growing mycelium. Both wilt‐susceptibleand wilt‐resistant  varieties  of  tomato  are  equally  sensitive  to  lycomarasmin,  as  shown  by Gäumann,

47

Page 48: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Naef‐Roth and Miescher  (22).  Scheffer and Walker  (36)  could  find no differences  in disease  intensitybetween  normal  and  iron‐deficient  tomato,  though  such  differences  would  be  expected  if  theiron‐lycomarasmin complex were an important symptom producer. Moreover, the copper lycomarasmincomplex  is more  stable  than  the  iron  complex and  is much  less phytotoxic, whereas 8‐quinolinol willdecompose the iron‐lycomarasmin complex; yet neither copper nor 8‐quinolinol will alleviate the disease(Waggoner and Dimond, 44). For  these reasons  the role of  lycomarasmin as  the primary  factor  in  thepathology of tomato wilt is suspect.

Certainly F. lycopersici is able to produce, in artificial culture, biologically active compounds other thanlycomarasmin and the previously mentioned fusaric acid. Some of these biologically active compounds wereisolated by Plattner and Nager (34) and by Cook and his colleagues (11) from cultures of several species ofFusarium, but no evidence is given that these compounds are phytotoxic.

Pectolytic Enzymes:

The immediate cause of wilt in the diseased tomato was shown by Ludwig (29) to be a plugging of thevascular system. Scheffer and Walker (36) found that a similar plugging and a vascular browning typical ofthe diseased plants could be produced by placing tomato cuttings in dilute filtrates from young cultures ofthe pathogen. Winstead and Walker (48) continued this study and found that filtrates from cultures ofvarious wilt‐producing  species  of  Fusarium  had  relatively  high  pectin methylesterase  and  low  poly‐galacturonase activities, and all were capable of producing vascular browning and plugging  in cotton,tomato, cabbage, and pea plants. The role of the extracellular pectic enzymes of F. lycopersici was studiedby Waggoner and Dimond  (45)  , who were non‐committal on  their phytotoxic activity because of  thedifficulty of ensuring freedom of the enzymic preparation from contamination.

Evidence  supporting  the  idea  that pectic enzymes are  involved  in pathogenicity was obtained byScheffer, Gothoskar, Pierson, and Collins (37), who showed that the culture broth of Verticillium albo‐atrumReinke & Berth. contained much polygalacturonase but little pectin methylesterase. This pathogen likewiseproduces a wilt in the infected host plant which provides an interesting contrast to the Fusarium wilts.

There is, however, little doubt that these enzymes are involved in the physiology of fungal parasitism,a subject of many years' study by Brown and his students, and reviewed by Brown (8, 9) . Brian (3) acceptstentatively  that  the  vascular  plugging  is  due  directly  or  indirectly  to  the  reactions  of  the  pectinmethylesterase and glucosidases of the infecting fungus, and that wilt is the consequence of this vascularplugging. This hypothesis readily explains the marked similarity in symptoms of the various wilt diseases.

It  is  a  common  fate  of  those who  are  unhappy  until  they  have  erected  a  tidy  pigeonhole‐likeclassification to become entwined in the lines of distinction they seek to establish. Dimond and Waggoner(18) found no difficulty in classifying the extracellular enzymes as vivotoxins. The general acceptance ofenzymes such as the lecithinases of snake venom as toxins is perhaps associated with the drastic haemolysisproduced by extremely low doses. But when the enzyme is one whose function it is to assist in the breakingdown of large organic molecules to fragments that are more easily moved through membranes, a toxinclassification seems inappropriate. It would, for example, embrace the enzymes of the insectivorous plant,whereby  it digests  the entrapped  insect, and  the enzymes secreted  into  the alimentary canal,  for  thecontents of the gut are in a strict sense exterior to the animal. Such phenomena belong to the chemistry of

48

Page 49: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

digestion rather than to toxicology.

Yet the significance of the hydrolytic exoenzymes in the etiology of plant disease caused by fungi andbacteria is clear from the work, among others, of Brown and his students (8, 9) .

The hazards of  treating parasite and host as  if  the  results of  their  interaction were  separate andunrelated phenomena have already been stressed. These risks have been taken in this consideration of therelation of fungal pathogen and host plant because of the evidence that the toxin is a metabolic product ofthe pathogen.

The close resemblance, in so many cases, of disease symptoms and of effects produced by plant growthsubstances  is  a  certain  sign  that  one  result  of  the  pathogenic  attack  is  a  disturbance  of  the  growthmechanism of the host. In the case of tomato wilt, for example, a characteristic symptom first observed byWellman (46) is an epinasty, a typical plant response to ethylene and an early result of the application ofsynthetic growth substances such as 2,4‐D. Dimond and Waggoner (19) showed that ethylene is producedboth by F. lycopersici in culture and by the infected tomato plant, in amounts sufficient to account for theobserved epinasty. But ethylene is normally produced at least in small amounts, particularly by ripening fruit(see page 11), and may be liberated in much larger amounts by mechanically injured plants as shown byWilliamson (47) .

Evidence is forthcoming also that the natural auxin β‐indoleacetic acid is involved. This acid was isolatedby Wolf (49) from cultures from Ustilago zeae Unger, the cause of smut of maize, a prominent symptom ofwhich is a gross malformation of the ear resembling that produced by the direct application of indoleaceticacid. Other experimental demonstrations of the production of indoleacetic acid by fungi in artificial culture,particularly when  tryptophan  is added, are  summarized by Pilet  (33), who  showed  that  the  leaves ofEuphorbia  cyparissias  L.  parasitized  by  Uromyces  pisi Wint.  contained  about  a  hundred  times moreindoleacetic acid than healthy leaves. Wolf (50) quoted the review of Hirata, who showed that the auxincontents of leaves attacked by three different rust fungi were 1.6, 5.0 and 13.4 times that of comparablehealthy  tissues. Wolf  further  showed  that  the  cedar  apple  rust  fungus  Gymnosporangium  juniperi‐virginianae Schw. produced, in culture, concentrations of up to 1.1 X 10‐4M of indoleacetic acid, and hesuggested that the high  level of auxin found  in rust‐infected plant tissue may be attributed entirely toindoleacetic acid synthesis by the pathogen.

Yet another  factor  responsible  for  the close  resemblance between symptoms produced by  fungalpathogens and those produced by auxin accumulation may be a disturbance of the normal auxin metabolismof the host plant. The coffee leaf disease, caused by Omphalia flavida Maubl. & Rang., results in a severedefoliation which Sequeira and Steeves (38) ascribed to the ability of the fungus to produce in the plant, asin culture media, a heat‐labile, non‐dialysable, pH‐sensitive auxin‐inactivating substance. As this substanceis  inactivated by ascorbic acid and by cysteine, and  is sensitive  to cyanide and  to hydroxylamine,  it  isconsidered to be an oxidative enzyme. The authors suggest that it is responsible for the main pathogeniceffects of the fungus.

Mycorrhizal Relations:

Although many higher plants enter into mycorrhizal association with fungi, the phenomenon is still little

49

Page 50: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

understood. The profound modification of the plant roots by a profuse dichotomous branching of therootlets is strongly suggestive of the intervention of plant growth substances. MacDougall and Dufrénoy (31)showed  that  auxin  occurs  abundantly  in  the  fungal  hyphae  of  pine  mycorrhizae.  Slankis  (39,  40)demonstrated that the mycorrhizal fungi, Boletus variegatus and B. luteus, exuded a substance causing adichotomous branching of isolated pine roots, and that the auxins ß‐indoleacetic acid and α‐naphthylaceticacid exerted a similar effect on both isolated and intact pine roots. Hacskylo and Palmer (26) and Hacskylo(in litt. Mar. 20, 1956) also found that indoleacetic acid causes proliferation of the roots of pine and othertrees on which the mycorrhizal fungus is of the ectotrophic type, i.e., on which the fungus mycelia form amantle over the rootlets and rarely penetrate into the root cells. On the other hand, the roots of trees andshrubs with which the mycorrhizal association is of the endotrophic type, i.e., on which the fungal hyphaepenetrate  into  the  plant  cells,  do  not  proliferate  on  treatment with  indoleacetic  acid.  Levisohn  (28),however, obtained a forking of the roots of plants with intracellular (haustorial) mycorrhizal infection bywatering the seedlings with leachings from pots in which the seedlings had established mycorrhiza.

References

1. Bazzigher,  G.  Beitrag  zur  Kenntnis  der  Endothia  parasitica  (Murr.)  And.,  dem  Erreger  desKastaniensterbens. Phytopath. Z. 21:105‐132. 1954.

2. Brian, P. W. Antibiotics produced by fungi. Bot. Rev. 17:357‐430. 1951.3. Brian, P. W. The role of toxins in the etiology of plant diseases caused by fungi and bacteria. Symp. V.

Soc. Gen. Microbiol. 294‐319. 1955.4. Brian, P. W., P. J. Curtis, H. G. Hemming, C. H. Unwin, and J. M. Wright. Alternaric acid, a biologically

active metabolic product of the fungus Alternaria solani. Nature 164:534. 1949.5. Brian, P. W., G. W. Elson, H. G. Hemming, and J. M. Wright. The phytotoxic properties of alternaric acid

in relation to the etiology of plant diseases caused by Alternaria solani (Ell. & Mart.) Jones & Grout.Ann. Appl. Biol. 39:308‐321. 1952.

6. Brian, P. W., G. W. Elson, H. G. Hemming, and M. Radley. The plant‐growth‐promoting properties ofgibberellic acid, a metabolic product of the fungus Gibberella fujikuroi. J. Sci. Food Agr. 5:602‐612.1954.

7. Brian, P. W., and H. G. Hemming. The effect of gibberellic acid on shoot growth of pea seedlings.Physiol. Plant. 8:669‐681. 1955.

8. Brown, W. Physiology of host‐parasite relations. Bot. Rev. 2:236‐281. 1936.9. Brown, W. On the physiology of parasitism in plants. Ann. Appl. Biol. 43:325‐341. 1955.10. Clauson‐Kass, N., P. A. Plattner, and E. Gäumann. Veber ein Welkeerzeugendes Stoffwechselprodukt

von Fusarium lycopersici Sacc. Ber. Schweiz. Bot. Ges. 54:523‐528. 1944.11. Cook,  A. H.,  S.  F.  Cox,  and  T. H.  Farmer.  Production  of  antibiotics  by  fungi.  Part  IV.  Lateritiin‐I.

Lateritiin‐II. Avenacein, Sambucinin and Fructigenin. J. Chem. Soc. 1022‐1028. 1949.12. Cross, B. E. Gibberellic acid. Part I. J. Chem. Soc. 4670‐4676. 1954.12a.  Cross, B. E., J. F. Grove, J. MacMillan, and T. P. C. Mulholland. Gibberellic acid, Part IV. Chem. & Ind.

 :954‐955 195613. Curtis, P. J., and B. E. Cross. Gibberellic acid. A new metabolite from the culture filtrates of Gibberella

fujikuroi. Chem. & Ind. 1066. 1954.14. Darpoux, H., A. Faivre‐Amiot, and L. Roux. Sur un nouvel antibiotique, l'Alternarine, et sur quelques

autres  substances extraites des cultures d'une souche d'Alternaria solani. C. R. Acad. Sci. Paris230:993‐995. 1950.

50

Page 51: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

15. Darpoux, H., A. Faivre‐Amiot, M. Ridé, and L. Roux. Étude des propriétés antagonistes et de quelquesproduits du métabolisme d'une souche d'Alternaria solani (E. et M.) Jones et Grout. Ann. Inst. Nat.Rech. Agron, Ser. C. 3:423‐487. 1952.

16. De Haan, J. T. Untersuchungen über das Auftreten der Keimlings‐Fusariose bei Gerste, Hafer, Mais undReis. Phytopath. Z. 10:235‐305. 1937.

17. Dimond, A. E., and P. E. Waggoner. The physiology of lycomarasmin production by Fusarium oxysporumf. lycopersici Phytopathology 43:195‐199. 1953.

18. Dimond,  A.  E.,  and  P.  E.  Waggoner.  On  the  nature  and  role  of  vivotoxins  in  plant  disease.Phytopathology 43:229‐235. 1953.

19. Dimond, A. E., and P. E. Waggoner. The cause of epinastic symptoms in Fusarium wilt of tomatoes.Phytopathology 43:663‐669. 1953.

19a.  Forsyth, F. R. The nature of the inhibiting substance emitted by germinating urediospores of Puccinia graminis var. tritici. Can. J. Bot. 33:363‐373. 1951.

20. Gäumann, E. Some problems of pathological wilting in plants. Adv. Enzymol. 11:401‐437. 1951.21. Gäumann, E. Toxins and plant diseases. Endeavour 13:198‐204. 1954.22. Gäumann, E., St. Naef‐Roth, and G. Miescher. Untersuchungen ueber das Lycomarasmin. Phytopath.

Z. 16:257‐288. 1950.23. Gäumann, E., St. Naef‐Roth, and H. Kobel. L'acide  fusarique, une seconde  toxine de  flétrissement

produite par Fusarium lycopersici Sacc. C.R. Acad. Sci. Paris 234:173‐174. 1952.24. Gäumann, E., St. Naef‐Roth, and H. Kobel. Ueber Fusarinsäure ein zweites Welketoxin des Fusarium

lycopersici Sacc. Phytopath. Z. 20:1‐38. 1953.25. Grove, J. F. Alternaric acid. Part I. Purification and characterization. J. Chem. Soc. 4056‐4059. 1952.26. Hacskaylo, E.:, and J. G. Palmer. Arborist's News 20 (1)):81‐85. 1955.27. Kurosawa, E. Experimental studies on the nature of the substance excreted by "bakanae" fungus. Trans.

Nat. Hist. Soc. Formosa 16:213‐227. 1926.28. Levisohn, I. Forking in pine roots. Nature 169:715. 1952.29. Ludwig, R. A. Studies on the physiology of hadromycotic wilting in the tomato plant. Macdonald College

(McGill Univ.) Tech. Bull. 20. 1953.30. Ludwig, R. A., R. V. Clark, J. B. Julien, and D. B. Robinson. Studies on the seedling disease of barley

caused by Helminthosporium sativum P.K. & B. Can. J. Bot. 34:653‐673. 1956.31. MacDougall, D. T., and J. Dufrénoy. Mycorrhizal symbiosis in Aplectrum, Corallorhiza and Pinus. Plant

Physiol. 19:440‐465. 1944.32. Mulholland, T. P. C., and C. Ward. Gibberellic acid. II. The structure and synthesis of gibberene. J. Chem.

Soc. 4676‐4681. 1954.33. Pilet,  P.  E.  Etude  physiologique  du  parasitisme  de  l'Uromyces  pisi  Pers.)  de  By,  sur  l'Euphorbia

cyparissias L. Experientia 9:300‐302. 1953.34. Plattner, P. A., and U. Nager. Über die chemie des Enniatins. Experientia 3:325‐326. 1947.35. Pound, G. S., and M. A. Stahmann. The production of a  toxic material by Alternaria solani and  its

relation to the early blight disease of tomato. Phyto‐pathology 41:1104‐1114. 1951.36. Scheffer, R. P., and J. C. Walker. The physiology of Fusarium wilt of tomato. Phytopathology 43:116‐125.

1953.37. Scheffer, R. P., S. S. Gothoskar, C. F. Pierson, and R. P. Collins. Physiological aspects of Verticillium wilt.

Phytopathology, 46:83‐87. 1956.38. Sequeira, L., and T. A. Steeves. Auxin inactivation and its relation to leaf drop caused by the fungus

Omphalia flavida. Plant Physiol. 29:11‐16. 1954.

51

Page 52: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

39. Slankis, V. Einfluss von Exudaten von Boletus variegatus auf die dichotomische Verzweigung isolierterKiefernwurzeln. Physiol. Plant. 1:390‐400. 1948.

40. Slankis, V. Ueber den Einfluss vonβ‐Indolylessigsäure und anderen Wuchstof‐fen auf das Wachstrumvon Kiefernwurzeln. I. Symb. Bot. Ups. 34:539‐668. 1951.

41. Stodola, E. H., K. B. Raper, D. I. Fennell, H. F. Conway, V. E. Sohns, C. T. Langford, and R. W Jackson. Themicrobiological production of gibberellins A and X. Arch. Biochem. Biophys. 54:240‐245. 1954.

42. Tamari, K. Biochemical studies of bakanae fungus. XIX. Synthesis of fusarinin.* J. Agr. Chem. Soc. Japan22:16‐17. 1948.

43. Tamari, K., and J. Kaji. The mechanism of the growth‐inhibiting action of fusarinic acid on plants.* J.Biochem. Japan 41:143‐165. 1954.

44. Waggoner,  P.  E.,  and  A.  E.  Dimond.  Role  of  chelation  in  causing  and  inhibiting  the  toxicity  oflycomarasmin. Phytopathology 43:281‐284. 1953.

45. Waggoner, P. E., and A. E. Dimond. Production and role of extracellular pectic enzymes of Fusariumoxysporum f. lycopersici. Phytopathology 45:79‐87. 1955.

46. Wellman, F. L. Epinasty of tomato, one of the earliest symptoms of Fusarium wilt. Phytopathology31:281‐283. 1941.

47. Williamson,  C.  E.  Ethylene,  a  metabolic  product  of  diseased  or  injured  plants.  Phytopathology40:205‐208. 1950.

48. Winstead, N. N.,  and  J. C. Walker. Production of  vascular browning  by metabolites  from  severalpathogens. Phytopathology 44:153‐158. 1954.

49. Wolf, F. T. The production of indoleacetic acid by Ustilago zeae and its possible significance in tumorformation. Proc. Nat. Acad. Sci. Wash. 38:106‐111. 1952.

50. Wolf, F. T. The production of indoleacetic acid by the cedar apple rust fungus and its identification bypaper chromatography. Phytopath. Z. 26:219‐223. 1956.

51. Woolley, D. W. Studies on the structure of lycomarasmin. J. Biol. Chem. 176: 1291‐1298.52. Yabuta, T., and T. Hayashi. Biochemical studies of the "bakanae" fungus. (2). Isolation of gibberellin, a

metabolic product of Gibberella fujikuroi Wr. which promotes the growth of rice seedlings.* J. Agr.Chem. Soc. Japan, 15:257‐266. 1939.

53. Yabuta, T., and T. Hayashi. Biochemical studies of the "bakanae" fungus. III. Physiological action ofgibberellin on the plant.* J. Agr. Chem. Soc. Japan 15:403‐413. 1939.

54. Yabuta, T., and T. Hayashi. Biochemical studies of "bakanae" fungus of rice.* J. Imp. Agr. Expt. Sta.3:365‐400. 1940.

55. Yabuta, T., K. Kambe, and T. Hayashi. Biochemistry of the Bakanae‐fungus.  I. Fusarinic acid, a newproduct of the Bakanae‐fungus.* J. Agr. Chem. Soc. Japan 10:1059‐1068. 1934.

56. Yabuta, T., Y. Sumiki, K. Aso, T. Tamura, H. Igarashi, and K. Tamari. Biochemical studies of "bakanaefungus". X. The chemical constitution of gibberellin.* J. Agr. Chem. Soc. Japan 17:721‐730. 1941.

57. Yabuta, T., Y. Sumiki, K. Aso, T. Tamura, H. Igarashi, and K. Tamari. Biochemical studies of "bakanae"fungus. XII. The chemical constitution of gibberellin.* J. Agr. Chem. Soc. Japan 17:975‐984. 1941.

58. Yabuta, T., Y. Sumiki, K. Fukunaga, and M. Horiuchi. Biochemical studies of "bakanae" fungus. XXII.Chemical composition of rice seedlings treated with gibberellin. J. Agr. Chem. Soc. Japan, 22:396‐397.1948.

__________* Title translated from Japanese.

52

Page 53: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Chapter 8

FUNGI vs. FUNGI:

The Chemical Basis of Biological Control

A first explanation of the antagonistic effects of one fungus species upon a second is competition foressential nutrients. That this explanation may not be adequate became apparent when it was found thatthe application of nutrient, in the form of green manuring, was a method of controlling potato scab. Sanford(66) , in 1926, thought that the reduction in potato scab achieved by plowing in green rye was due to theinhibitory influence of certain predominant microorganisms on the development of Actinomyces scabies(Thaxt.) Skinner, the pathogen responsible  for potato scab.  In 1927 Millard and Taylor (53) confirmed,experimentally, that the enrichment of the organic matter of the soil encouraged the development offast‐growing saprophytic Actinomycetes and that the addition of the latter to soil infested with A. scabiessuppressed the development of potato scab.

An example from the fungi arose the following year, 1928, when Machacek (49) reported on his studiesof the association of phytopathogens. He found, in the storage rots of fruits and vegetables, that, thoughsaprophytic fungi may invade host tissue already attacked by a parasite fungus, it was rarely that two speciesof pathogenic fungi were found at the same time on the same host. By transferring the fungi to culturemedia, Machacek was able to distinguish between free association of two organisms and complete inhibitionof the growth of one by the other. Thus Penicillium expansum Link permitted the growth of Sclerotiniafructicola (Wint.) Rehm; Cladosporium fulvum Cooke stopped the growth of a species of Botrytis. Becausethis inhibition was not affected by the addition of fresh nutrient or a vegetable extract nor by neutralizationof the acidity of the medium, Machacek concluded that the surviving fungus produced some toxic substanceother than acid.

Vasudeva (71) employed apple tissue in place of nutrient media and found that the ability of Sclerotiniafructigena Aderh. & Ruhl. to rot apples is markedly reduced when Botrytis allii Munn was also present in theinoculum. A  like  reduction appeared when  the  living  fungus was  replaced by stale media  from B. alliicultures. She considered that this reduction in growth was akin to "staling," a term frequently applied at thattime to the weak growth of an old fungal or bacterial culture.

Turning now to the inter‐relationships of soil fungi, the idea, that factors other than competition fornutrient and the "staling" effect of their metabolic products are involved, was first emphasized by Sanfordand Broadfoot (67) . They found that the pathogenicity of Ophiobolus graminis Sacc., a fungus responsiblefor a footrot of wheat, may be strikingly suppressed by certain soil fungi and bacteria. As the reductioneffected by living cultures was more marked than that by the filtrates of old cultures, they concluded thatit was due to toxins produced by the living cultures.

Phytopathologists were by 1931 universally interested in the pathogenicity of mixtures of pathogens,and the plea by Fawcett  (28)  for more attention to this subject was quickly reinforced by the work ofWeindling (75) . He examined the methods by which the soil fungus Trichoderma lignorum (Tode) Harz

53

Page 54: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

suppressed the activities of several soil fungi pathogenic to citrus seedlings.

For historical completeness it may be mentioned that the greater dry rot resistance of timber that hadbecome waterlogged during transfer to the mill was attributed by Falck (27) to its infection by T. lignorumand T. viride. He suggested that the enzymes of Trichoderma are poisonous to wood‐destroying fungi.Weindling followed up his conjecture that the yellow crystals he observed in his cultures were active toxinsand, with Emerson (79), was able to announce the isolation of a potent fungicide, subsequently namedgliotoxin, the first of a large number of biologically active products of microorganisms now generally knownas antibiotics.

The  impetus  given  to  the  study  of  antibiotics  by  the  successful  development  of  penicillin  andstreptomycin for medicinal use has resulted in the discovery of innumerable biologically active metabolicproducts of bacteria, actinomycetes and fungi. Rarely has a field of science shown such rapid expansion asthis branch of ecological chemistry and, indeed, the very term "antibiotic" which was defined as recentlyas 1947 by Waksman (73) as "the metabolic product of a microorganism toxic in low concentrations to othermicroorganisms," has expanded almost to the deletion of both of the "micro" qualifications. The subject hasbeen amply reviewed, e.g., by Brian (8) , and attention need be directed here only to those compoundsproduced by pathogenic fungi that may be involved in biological control or may prove of practical value forpurposes of crop protection.

Gliotoxin:

The report of Weindling  (75)  that  the soil  fungus Trichoderma  lignorum parasitized several  fungalpathogens responsible for the damping‐off of citrus seedlings has been mentioned above. At the surfaceof the culture medium, the Trichoderma hyphae coiled around the hyphae of a strain of Rhizoctonia solaniKühn, isolated from diseased citrus seedlings, causing a rapid cessation of growth in Rhizoctonia with therelease of numerous sheaves of yellow needle‐like crystals. Below the surface of the medium the effect ofthe parasite was less localized and, as the Trichoderma colony extended, the host hyphae were killed inadvance of the invading parasite and again masses of dark yellow star‐like crystals were produced. He (76)quickly established that parasitism was associated with the production by Trichoderma of a "lethal principle"which  is  very  unstable  except  under  acid  conditions. With  Emerson  (79)  he  isolated  the  crystallinecompound by extraction of the culture medium with chloroform, the best yields being up to 70 mg per literof filtrate. From analysis and molecular weight determinations the formula C14H16N2O4S2 was assigned to thecompound. Treatment with aqueous potassium hydroxide rapidly splits out sulphur in a form giving a blackprecipitate of lead sulphide on the addition of a few drops of a lead acetate solution. The extreme instabilityof  the  compound under  alkaline  conditions was  emphasized, but  it was noted  that  it was  recoveredunchanged from mild acid treatment.

Weindling  (77)  considered  that  the  fungus  forming  this  yellow  crystalline  toxin was  a  species  ofGliocladium—possibly G. fimbriatum G. & A., and not, as he had previously reported (79), a Trichoderma.Consequently, at the suggestion of J. R. Johnson, Weindling (78) christened the toxin "gliotoxin." He alsofound  that  this  same  toxin was produced by certain, but not all,  isolates of Trichoderma. Weindling'sidentification was subsequently questioned by Brian (5), who also found that gliotoxin was produced byTrichoderma viride (Pers.) Fr. which by then had been accepted as a name of T. lignorum. Gliotoxin has sincebeen found to be a metabolic product of Aspergillus fumigatus Fres. (52) and its mutant, A. helvola Yuill (33).

54

Page 55: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Johnson, its godparent, with McCrone and Bruce (45) , identified as gliotoxin a product from cultures of anunspecified Penicillium, and in the following year it was found to be produced by P. obscurum Biourge (54)and by P. jenseni Zal. (16), later corrected to P. terlikewskii Zal. (6).

The chemistry of gliotoxin is the subject of a series of papers by Johnson, Dutcher, and their co‐workers,in the first of which (42) the molecular weight was revised to C13H14N2O4S2. Treatment with phosphorus andhydriodic acid in acetic acid removed the sulphur and two of the oxygen atoms as hydrogen sulphide andwater.  The  determination  (24)  of  the  structure  of  the  resultant  product  as  2,3‐dimethyl‐1,4‐diketotetrahydropyrazino‐[1,2a]‐indole  gave  the  complete  carbon  and  nitrogen  skeleton  of  gliotoxin.Treatment of gliotoxin with metabolic potassium hydroxide gave a yellow crystalline product retaining onesulphur atom but with the loss of two carbon atoms. The structure of this degradation production wasconfirmed by synthesis (43) to be a thiohydantoin related to 2‐indolecarboxylic acid, namely, 2‐thio‐3‐methylindolo‐1',2'‐1,5‐hydantoin—a conclusion previously reached by Elvidge and Spring (26).

The disposition of the sulphur atoms was revealed by the observation of Dutcher, Johnson, and Bruce(25) that both are removed from gliotoxin in methyl alcoholic solution by aluminium amalgam to give adesthiogliotoxin that showed, by the Kühn‐Roth method, a terminal hydroxymethyl group not present ingliotoxin (44). For these reasons, the pentacyclic structure VI was assigned to gliotoxin.

The disulphide bridge of gliotoxin is responsible for the extreme instability of the molecule, especiallyunder mildly alkaline conditions.  It  is, moreover, associated with the high toxicity of the compound tobacteria and fungi, for its destruction leads to compounds almost devoid of bacteriostatic and fungicidal

55

Page 56: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

activity. The biological properties of gliotoxin are reviewed by Johnson et al. (42) and by Brian and Hemming(15) ; as a fungicide it is about two‐thirds as active as mercuric chloride but is selective in its action; at 10mg/L, it inhibits the growth in broth of the pathogenic bacteria examined; it has an appreciable contactaphicidal action, and intravenous or intraperitonal injections of about 50 mg/kg are lethal to rabbit, rat, andmouse. In Brian and Hemming's trials no evidence of phytotoxicity was seen, and the authors consideredthe possible use of acid formulations of gliotoxin for the control of plant diseases.

In  1945  Brian  and McGowan  (18)  reported  the  isolation,  from  some  pigment‐forming  strains  ofTrichoderma viride, of another higher fungistatic substance which they termed viridin. Yields of the orderof 45 mg/L were obtained of colorless rod‐like prisms which inhibited the growth of spores of Botrytis alliiat 0.006 µg/ml  (cf. gliotoxin 3.0 µg/ml) but had  little bacterio‐static activity  (10)  . Viridin  is extremelyunstable except  in solutions of pH 3.5 or  less. Vischer, Howland, and Raudnitz (72) concluded that themolecule of viridin corresponded  to C19H16O6. By chromatography  they separated  two  forms, α and ß,differing in optical rotation and in melting point; α‐viridin decomposes at 208‐217E, ß‐viridin melts at 140Eand is present in small amounts. The latter form is the less potent fungicide, requiring 0.16 µg/ml to inhibitthe germination of spores of B. allii, compared with 0.019 µg/ml for α‐viridin.

Griseofulvin:

When studying the failure of conifers on a sandy heath soil, Brian, Hemming, and McGowan (16) foundthat the soil molds were almost entirely species of Penicillium, one of which P. janczewskii produced, inartificial culture, a substance that caused an abnormal curling of the germ tubes of Botrytis allii (11) . This"curling factor" was subsequently found by Brian, Curtis, and Hemming (14) to be identical to griseofulvin,a metabolic product of P. griseofulvin Dierckx, isolated and described ten years earlier by Oxford, Raistrick,and Simonart (57) .

The molecular structure of griseofulvin was deduced by Grove and his associates (38) to be 7 ‐chloro‐4,6‐dimethoxycoumaran‐3‐one‐2‐spiro‐1'‐ (2'‐methoxy‐6'‐methylcyclohex‐2'‐en‐4'‐one) ( VII) .

56

Page 57: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Two  features  of  this  structure  are  rather  uncommon  in  a  natural  product,  namely,  the  chlorinesubstitution in the aromatic ring, and the spiran structure. Obtained in colorless crystals of m.p. 220‐221Efrom ethanol or benzene, it is but slightly soluble in water, giving an optically active solution neutral inreaction and stable in the range pH 3 to 8.8. These data have been subsequently revised in the "Report onGriseofulvin" published in 1955 by the Glaxo Laboratories, Ltd., to m.p. 222E and specific rotation in acetoneof +312E.

The  striking  feature  of  the  biological  activity  of  griseofulvin  is  its  profound  influence  on  themorphogenesis of many  fungi. At  concentrations of 0.1  to 10 µg/ml,  it produces  severe  stunting anddistortion of the hyphae, to which it imposes a spiral twist. Brian (7) , from an examination of its effects onmany microorganisms, noted that only those fungi with chitin cell walls are sensitive to griseofulvin; fungiwith  non‐chitinous  cell walls,  actinomycetes,  and  bacteria  are  unaffected.  The  seeds  of  angiospermssuffered retardation of germination on agar containing 25 µg/ml.

Dechlorogriseofulvin, in which the chlorine of griseofulvin is replaced by hydrogen, was recovered byMacMillan (50) from culture filtrates of both P. janczewskii and P. griseofulvin. He showed it to be alsocapable of inducing a twisted growth in B. allii although at higher concentrations. Grove and his colleagues(38) suggested that the curling activity may be associated with the spiro structure of the molecule. Thepractical use of griseofulvin has been limited by poor yields and difficulty associated with its low solubilityin most solvents. Ashton and Rhodes (1) pointed out that the first difficulty is overcome by submergedfermentation,  and  that  N,N'‐dimethylformamide  is  a  useful  solvent,  particularly  for  the  purpose  offormulations for practical use.

As a result of these developments, griseofulvin formulations are, at the time of writing, undergoing fieldtrial  as  fungicides.  The  ability  of  griseofulvin  to  travel  in  the  transpiration  stream  of  the  host  plant,demonstrated by Brian and his colleagues (19) , may render the compound of great practical interest for thecontrol of those fungus diseases not readily assailable by the standard protective fungicides.

Gladiolic Acid:

In  1946,  Brian,  Curtis, Grove, Hemming,  and McGowan  (12)  reported  that  the  culture media  ofPenicillium gladioli McCull. & Thom, previously reported to contain powerful bactericides, also had strongantifungal properties. The cultural conditions favoring the formation of this antifungal compound, which

57

Page 58: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

they named gladiolic acid, were studied by Brian, Curtis, and Hemming (13) , who showed that the acid wasactive only in its undissociated form, namely, at a low pH. It forms long colorless crystals of m.p. 160E, isoptically  inactive,  is  a monobasic  acid  formula  of  C11H10O5,  and  appears  to  be  a methoxymethyl‐2‐carboxyphenyl glyoxal. Grove (36) found that treatment with alkali transformed gladiolic acid to an isomerof m.p. 234E and, on the basis of this and other reactions, deduced that gladiolic acid may be representedby the tautomeric keto form VIII (5,6‐diformyl‐2‐methoxy‐3‐methylbenzoic acid) and the lactol form IX.

From cultures of another strain of P. gladioli, Raistrick and Ross (60) isolated a compound which theyshowed  to  be  dihydrogladiolic  acid  of  probable  structure  X  (5‐formyl‐6‐hydroxymethyl‐2‐methoxy‐3‐methylbenzoic acid), for on oxidation it was converted to gladiolic acid.

The synthesis confirming  the proposed structure of  the gladiolic acid was reported by Brown andNewbold (20).

In  no  case  reported  by Grove  (37)  is  the  fungistatic  action  of  gladiolic  acid  greater  than  that  ofo‐phthalaldehyde, but it is more specific—a property thought to be due to the presence of the carboxylgroup adjacent to the two formyl groups. Raistrick and Ross (60) showed that cyclopolic acid, a metabolicproduct of P. cyclopium Westling, is 4‐hydroxydihydrogladiolic acid XI.

Cycloheximide:

Leach, Ford, and Whiffen (48) reported that cultures of Streptomyces griseus (Krainsky) Waksm. &Schatz contained, in addition to the bactericide streptomycin, a toxin active against many yeasts but notagainst bacteria. As the compound is produced by an actinomycete and was thought to be a dike‐tone, itwas originally named actidione. The trade name, "Acti‐dione" is registered by the Upjohn Co. for its brandof this substance which is now known as cycloheximide. The chemical studies reported by Ford and Leach(30) gave the formula C15H23NO4, and degradation studies by Cornfeld, James, and Parke (47) led to thesuggestion that the active compound was ß‐[2‐(3,5‐dimethyl‐ 2‐oxycyclohexyl)‐2‐hydroxyethyl]‐glutarimide(XII) a monoketone.

58

Page 59: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

The colorless crystals of cycloheximide, m.p. 119.5‐421E, are slightly soluble in water and, though stablein neutral or acid solution, are rapidly decomposed by alkali. All the nitrogen is liberated as ammonia onboiling with sodium hydroxide solution.

Actidione exhibits a marked specificity in its biological reactions. It is, for instance, highly toxic to rats;Ford & Leach (30) place the intravenous LD50 at 2.5 mg/kg, whereas that for mice is 150 mg/kg.  Similarly,to certain pathogenic fungi it is sufficiently toxic to be suggested for practical use; for example, againstpowdery mildews (29) and cherry leaf spot (58).  Formulated products are now on the market, but its wideuse is curtailed by high phytotoxicity.

Trichothecin:

In 1934 Koch (46) reported that, around July and August, the black knots produced on plum and cherriesby the  fungus Dibotryon morbosum  (Schw.) T. & S. yield the  fungus Trichothecium roseum Link, whichactively  parasitizes  the  stroma  of  the  pathogen.  An  example  of  parasitism  by  this  fungus  on  anon‐pathogenic fungus was described as early as 1909 by Whetzel (81) . Culture filtrates of T. roseum werefound by Brian and Hemming  (17) to  inhibit the germination of conidia of Botrytis allii. The antifungalcompound responsible was isolated by Freeman and Morrison (31) and named trichothecin. It crystallizesfrom light petroleum in slender colorless crystals of m.p. 118E, is readily soluble in organic solvents, but isof only slight solubility in water. It is optically active [α]18+44EC. in chloroform. Trichothecin was shown byFreeman and Gill (32) to be an ester (C19H24O5) of isocrotonic acid and a ketonic alcohol trichothecolone(m.p. 182E), the structure of which does not yet appear to have been determined. Trichothecin is relativelystable under acid and mildly alkali conditions.  It  is strongly antifungal,  inhibiting spore germination ofPenicillium digitatum Sacc. at 1.25 µg/ml and of B. allii at 6 µg/ml, but is without noteworthy bactericidalactivity. It is but partly responsible for the inhibitory effects of culture filtrates of T. roseum on plant viruses,a property more pronounced in a polysaccharide fraction examined by Bawden and Freeman (3) .

59

Page 60: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

The Ecological and Practical Significance of Fungal Antagonism:

The discussion of the part played in nature by the antifungal toxins produced by soil fungi under theunnatural conditions of a culture medium was, because of the absence of experimental data, initially basedlargely on a priori reasoning. Strong doubts that the toxins have ecological significance arose, for toxinproduction is usually greatly influenced by the nutrient supply and was found only in media of high nutrientcontent, which have little resemblance to the natural substrate of the toxin‐producing fungus. The searchfor the antibiotic in normal soil innoculated with the appropriate microorganism was unsuccessful. Thisfailure may have been due to a rapid adsorption of the antibiotic on soil colloidal matter. Streptomycin, forexample, is basic in nature and behaves as if it were a trivalent ion of low zeta potential. For this reasonSimonoff and Gottlieb (68) concluded that it is so rapidly inactivated by clays and soil organic matter thatit could play no active biological role.

Trichothecin was also found by Hessayon (39) to be strongly absorbed by soil yet, even in unsterilizedsoil in which T. roseum had been grown, he found evidence of toxin production in a modification of thegrowth of  Fusarium oxysporum  var.  cubense E.  F.  Smith on nutrient  agar  in which  the  soil had beensandwiched. At sub‐lethal concentrations trichothecin, like many other toxicants, is stimulatory: Hessayonobserved a stimulation of mycelial growth of F. oxysporum, whereas in the sterilized soil infected with T.roseum the growth of F. oxysporum was inhibited.

Chloramphenicol (chloromycetin), being a neutral molecule,  is not  inactivated by soil colloids, andGottlieb and Siminoff (34) detected its presence in normal soil inoculated with Streptomyces venezuelae.But this antibiotic is so quickly metabolized by other soil microorganisms that its accumulation in soil can,at best, be only negligible.

Adsorption and the instability of most known antifungal metabolic products of fungi were therefore twoof the reasons for the view that these products exerted little ecological influence. In a critical examinationof these factors, Jefferys (40) used ten different antibiotics and concluded that, though he produced nodirect evidence that any were produced naturally  in soil, at  least  it could be said that all ten showed asufficient degree of stability to exert a significant biological effect.

A third reason arose through the frequent failure to detect the formation of antibiotics in normal soil.Wright (82) , for example, was unable to detect gliotoxin production in normal soil inoculated with T. virideand receiving no supplement or heat treatment; but  in autoclaved soil gliotoxin was present. Similarly,Grossbard  (35), was  unable  to  detect  the  presence  of  antibiotics  in  non‐sterile  soil  inoculated withPenicillium patulum Bainier, with Aspergillus terreus Thom, or with A. clavatus Desm. The complication dueto  the  liberation of nutrient  in most soil sterilization procedures was reduced by Grossbard who usedpropylene oxide  as  sterilant.  She was  able  to detect  antibiotic production  in  soil  so  sterilized beforeinoculations, especially when glucose or other carbohydrate nutrients were supplied. Success in the longsearch for antibiotics in untreated soil was met by Wright (83) who found gliotoxin in the seed coats of peasplanted  in a potting compost—the first example of antibiotic production  in an uninoculated soil  in thevicinity of a growing plant.

Grossbard found the type of organic material used as a source of carbohydrates had a marked effecton antibiotic production. Certain  samples of  red  clover or  rye grass were unsuitable—an observation

60

Page 61: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

recalling the work of West and Hildebrand (80) , who found that the plowing of soybean cover crop into soilinfected with strawberry root rots produced a striking reduction in the incidence of the disease, whereasthe plowing in of red clover had little effect. Similarly, Rouatt and Atkinson (65) found that the plowing ofsoybean  into potato scab‐infested soil  led to a reduction of scab  incidence, an effect not produced byplowing in red clover or rye grass. The significance of the increased acidity in the soil manured with soybeanshould not be overlooked. Grossbard concluded that the modification of the soil microflora produced bygreen manuring resulted in the formation of local concentrations of antibiotics, perhaps only temporary,which may have exerted an inhibitory action on plant pathogens in the neighborhood of the roots of hostplants. A similar conclusion was reached by Stevenson (69) , who obtained an apparent correlation betweenthe control of root rot of wheat in soil inoculated, after sterilization, with various actinomycetes and theinhibition of the causal fungus Helminthosporium sativum by the actinomycetes in nutrient culture.

The appearance of antibiotics in sterilized soil inoculated with the appropriate fungus may be influencednot only by the improved nutrient but by the absence of other microorganisms. Wright (82) tested thispossibility by adding a mixed microflora to autoclaved soil, but concluded that the beneficial effect ofautoclaving was not merely a consequence of sterilization, for whereas 5 min. steaming eliminated themicroflora, a minimum of 25 min. steaming was necessary to make the soil a suitable medium for gliotoxinproduction. Nevertheless, the elimination of competing organisms cannot help but encourage growth of theantibiotic‐producing  fungus.  This  outcome was  demonstrated  by  Richardson  (64), who  showed  thattreatment of the soil with the dithio‐carbamate fungicides, thiram and ferbam, reduced the number offungal species, the survivors being predominantly species of Trichoderma and Penicillium, which toleratethe fungicides. Protection of pea seedlings from damping‐off due to attack by Pythium ultimum Trow wasachieved in the thiram‐treated soil for periods long after the content of thiram had fallen below levels toxicto the pathogen, especially in compost‐rich potting soil. Although no decisive test was made of whether thesuppression of the pathogen was due to competition by resistant saprophytic fungi or to direct antagonism,the knowledge that the latter could produce antibiotics adds weight to the concept that the effectivenessof the fungicide is here due to antibiotics produced by the fungicide‐resistant soil fungi.

An even more conclusive example is provided by the work of Bliss (4) on the role of fungicidal fumigantsin  the  control  of  the  honey‐fungus,  Armillaria  mellea  (Vahl.)  Quel.  The  thick‐walled  cells,  thepseudosclerotia, which  form particularly on  the  rhizomorphs of  this  fungus, protect  it not  only  fromfumigant but  from  the attack of Trichoderma viride, which Bliss  found was constantly associated withinfected roots after fumigation. He concluded that the disturbance of the microbial soil population whichfollows fumigant treatment permits a rapid development of T. viride, which is now able to overcome theprotective mechanism of Armillaria. The control of Armillaria in citrus soils by fumigation is, he considered,due primarily not to the fumigant itself but to the antibiotic action of Trichoderma made possible by theeffects of the fumigant on the microbial population of the soil.

Further evidence of the ecological significance of fungal toxins was provided by studies on mycorrhizalrelationships. The failure referred to on p. 56, of attempts at afforestation in certain sandy heath soils wasfound by Rayner (61, 62) to be rectified by the addition of compost at the time of planting. Having shownthat the failure was not due to nutrient factors, she suspected that the effect was associated with biologicalactivity brought about by the supply of organic matter. Her husband, Neilson‐Jones (55) , demonstrated thatthe reason for the inhibition of conifer growth in the affected soil was the presence of antifungal compoundsto which at least one mycorrhizal fungus, Boletus bovinus, was highly susceptible. Brian, Hemming, and

61

Page 62: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

McGowan (16) examined the fungi present in this heath soil and found only certain species of Penicilliumwhich produced gliotoxin in liquid culture. Jefferys, Brian, Hemming, and Lowe (41) confirmed antibioticproduction by microfungi of acid heath soils and concluded that the factor is of ecological significance. If thisis so, the reason for the ameliorative action of compost remains to be explained; the encouragement of thegrowth of microorganisms  at  the expense of  the  antibiotic‐producing  fungi, or  the  adsorption of  theantibiotics produced, are two possible hypotheses.

A somewhat parallel phenomenon was found by Melin (51) in Swedish forests where he demonstratedthat needles shed  from  the  trees contained water‐soluble and heat‐stable substances having a stronginhibitory effect on mycorrhizal growth, but with a beneficial or negligible effect on litter‐decomposingspecies of fungi. The toxic substance was not identified.

The Practical Utilization of Fungicidal Antibiotics:

Although  it  is probable that the success of cultural practices such as green manuring  is due to theencouragement of the growth of antibiotic‐producing fungi, and that these practices can be aptly classedas methods of biological control, a more direct use of the isolated fungicidal antibiotic merits exploration.In addition to the extensive tests, in recent years, of the field performance of formulations of cycloheximideand of griseofulvin mentioned in the relevant sections above, a number of other antibiotics have receivedattention. Those that show the ability to impart fungicidal properties to the treated plants are the naturalfirst choice for such tests. This property, in the case of griseofulvin, was demonstrated by Brian et al. (19)and by Stokes (70) by the ingenious technique of the examination of the guttation drops from oats andwheat grown in water culture containing the antibiotic. Crowdy and Pramer (22), by the same method,found that chloramphenicol and penicillin were translocatable, whereas streptomycin, though not presentin the guttation drops, was detected in the leaves of the treated plants. Of the actinomycete antibiotics,chloramphenicol and streptomycin were identified in the leaf tissue, but no clear evidence was obtainedof  the  uptake  and  translocation  of  chlortetracycline,  neomycin  or  oxytetracycline  (to  use  theirnon‐proprietary names).

Another potential use of antibiotics for the purpose of crop protection is in seed treatment, an earlyexample being the use, by Wallen et al. (74), of cycloheximide for the treatment of pea seed. Internal seeddisinfection of peas  infected with Aschochyta pisi Lib. was reported by Dekker  (23), who used as seeddisinfectant a brei of culture of Streptomyces rimosus. The effective fungicide was found to be rimocidin,treatment of the pea seed with a crude preparation of this compound gave disease‐free seedlings. Rimocidinis a polyene which was considered by Oroshnik and his co‐workers (56) to be a tetraene, i.e., containing thegroup  ‐(CH:CH‐)4. It is convenient here to refer also to the successful control of barley smuts Ustilago hordei(Pers.) K. and S. and U. nuda (Jens.) Rostr. obtained by Chinn and Russell (21) by soaking the infected seedin broth cultures of the bacterium Pseudomonas viscosa (Frankl. and Frankl.) Migula. These authors at firstconsidered that this effect was due to metabolic substances produced by P. viscosa, but mentioned that theresults of more recent experiments suggested that microorganisms play little or no part in the control.

A  discussion  of  the  chemistry  and  biological  properties  of  other  antibiotics  that  are  of  potentialfungicidal use would go beyond the field of this review, for there is no evidence that many of them arederived from plant pathogens or that they function in nature as ecological chemicals. It will suffice to saythat  streptomycin,  oxytetracycline,  cycloheximide  and  other  antibiotics,  are  available  as  formulated

62

Page 63: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

products for use as agricultural fungicides. Their use, and tests of other antibiotics not yet commerciallyavailable, have been reviewed recently by Brian (9) and by Ark and Alcorn (2) .

References

1. Ashton, G. C., and A. Rhodes. Griseofulvin and dimethylformamide. Chem. & Ind. :1183. 1955.2. Ark, P. A., and S. M. Alcorn. Antibiotics as bactericides and fungicides against diseases of plants. Plant

Dis. Rept. 40:85‐92. 1956.3. Bawden, F. C., and G. G. Freeman. The nature and behaviour of inhibitors of plant viruses produced by

Trichothecium roseum Link. J. Gen. Microbiol. 7:154‐168. 1952.4. Bliss, D. E. The destruction of Armillaria mellea in citrus soils. Phytopathology 41:665‐683. 1951.5. Brian, P. W. Production of gliotoxin by Trichoderma viride. Nature 154:667. 1944.6. Brian, P. W. Production of gliotoxin by Penicillium terlikowskii Zal. Trans. Brit. Mycol. Soc. 29:211‐218.

1946.7. Brian, P. W. Studies on the biological activity of griseofulvin. Ann. Bot. 13:59‐77. 1949.8. Brian, P. W. Antibiotics produced by fungi. Bot. Rev. 17:357‐430. 1951.9. Brian, P. W. The use of antibiotics for control of plant diseases caused by bacteria and fungi. J. Appl.

Bact. 17:142‐151. 1954.10. Brian,  P.  W.,  P.  J.  Curtis,  H.  G.  Hemming,  and  J.  C.  McGowan.  The  production  of  viridin  by

pigment‐forming strains of Trichoderma viride. Ann. Appl. Biol. 33:190‐200. 1946.11. Brian, P. W., P. J. Curtis, and H. G. Hemming. A substance causing abnormal development of fungal

hyphae produced by Penicillium  janczewskii Zal.  I. Biological assay, production and  isolation of"curling factor". Trans. Brit. Mycol. Soc. 29:173‐187. 1947.

12. Brian, P. W., P. J. Curtis, J. F. Grove, H. G. Hemming, and J. C. McGowan. Gladiolic acid, and antifungaland antibacterial metabolic product of Penicillium gladioli McCull. & Thom. Nature 157:697‐698.1946.

13. Brian, P. W., P.  J. Curtis, and H. G. Hemming. Gladiolic acid, an antibiotic  substance produced byPenicillium gladioli McCull. & Thom. J. Gen. Microbiol. 2:341‐355. 1948.

14. Brian, P. W., P. J. Curtis, and H. G. Hemming. A substance causing abnormal development of fungalhyphae produced by Penicillium janczewskii Zal. III. Identity of "curling factor" with griseofulvin.Trans. Brit. Mycol. Soc. 32:30‐33. 1949.

15. Brian, P. W., and H. G. Hemming. Gliotoxin, a fungistatic metabolic product of Trichoderma viride. Ann.Appl. Biol. 32:214‐220. 1945.

16. Brian, P. W., H. G. Hemming, and J. C. McGowan. Origin of a toxicity to mycorrhiza in Wareham Heathsoil. Nature 155:637‐638. 1945.

17. Brian, P. W., and H. G. Hemming. Antibiotics from Fungi Imperfecti. J. Gen. Microbiol. 1:158‐167.18. Brian, P. W., and J. C. McGowan. Viridin: a highly fungistatic substance produced by Trichoderma viride.

Nature 156:144. 1945.19. Brian,  P. W.,  J. M. Wright,  J.  Stubbs,  and  A. M. Way.  Uptake  of  antibiotic metabolites  of  soil

microorganisms by plants. Nature 167:347‐349. 1951.20. Brown, J. J., and G. T. Newbold. Synthesis of gladiolic acid. Chem. & Ind. :1151. 1953.21. Chinn, S. H. F., and R. C. Russell. Antagonistic activity of microorganisms in the control of barley smuts.

Can. J. Agr. Sci. 36:107. 1956.

63

Page 64: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

22. Crowdy, S H., and D. Pramer. Movement of antibiotics in higher plants. Chem. & Ind. :160‐162. 1955.23. Dekker, J. Internal seed disinfection by an antibiotic from Streptomyces rimosus. Nature 175: 689‐690.

1955.24. Dutcher,  J. D.,  J.  R.  Johnson,  and W.  F.  Bruce. Gliotoxin.  The  antibiotic  principle  of Gliocladium

fimbriatum.  III.  The  structure  of  gliotoxin:  degradation  by  hydriodic  acid:  J.  Am.  Chem.  Soc.66:617‐619. 1944.

25. Dutcher,  J. D.,  J.  R.  Johnson,  and W.  F.  Bruce. Gliotoxin. VI.  The  nature  of  the  sulphur  linkages.Conversion to desthiogliotoxin. J. Am. Chem. Soc. 67: 1736‐1745. 1945.

26. Elvidge, J. A., and F. S. Spring. Gliotoxin. Part I. Synthesis of 2‐thio‐3‐methylindolo‐1':2'‐1:5‐hydantoinand its identification as a degradation product of gliotoxin. J. Chem. Soc. S 135‐S 140. 1949.

27. Falck, R. Ueber den Einfluss des Flössens auf die Widerstandfähigkeit des Bauholzes gegen Trockenfäuleund über den Holzschutz durch Schimmelbefall und Diffusionstränkung. Mitt. Forstwirtsch. 480‐485.1931.

28. Fawcett, H. S. The importance of investigations on the effects of known mixtures of microorganisms.Phytopathology 21:545‐550. 1931.

29. Felber, I. M., and C. L. Hamner. Control of mildew on bean plants by means of an antibiotic. Bot. Gaz.110:324‐325. 1948.

30. Ford,  J. H., and B. E. Leach. Actidione, an antibiotic  from Streptomyces griseus.  J. Am. Chem. Soc.70:1223‐1225. 1948.

31. Freeman, G. G., and R. I. Morrison. Trichothecin: an antifungal metabolic product of Trichotheciumroseum Link. Nature 162:30. 1948.

32. Freeman, G. G., and J. E. Gill. Alkaline hydrolysis of trichothecin. Nature 166: 698‐699. 1950.33. Glister, G. A., and T. L. Williams. Production of gliotoxin by Aspergillus fumigates mut. helvola Yuill.

Nature 153:651‐652. 1944.34. Gottlieb, D., and P. Siminoff. The production and  role of antibiotics  in  the  soil.  II. Chloromycetin.

Phytopathology 42:91‐97. 1952.35. Grossbard,  E.  Antibiotic  production  by  fungi  on  organic manures  and  in  soil.  J.  Gen. Microbiol.

6:295‐310. 1952.36. Grove,  J.  F.  Gladiolic  acid,  a metabolic  product  of  Penicillium  gladioli.  I.  Structure.  Biochem.  J.

50:648‐666. 1952.37. Grove,  J. F. Gladiolic acid, a metabolic product of Penicillium gladioli.  II. Structure and  fungistatic

activity. Biochem. J. 54:664‐673. 1953.38. Grove, J. F., J. MacMillan, T. P. C. Mulholland, and M. A. Thorold Rogers. Griseofulvin. Part IV. Structure.

J. Chem. Soc. 3977‐3987. 1952.39. Hessayon, D. G. Fungitoxins in the soil: II. Trichothecin, its production and inactivation in unsterilized

soils. Soil Sci. 75:395‐404. 1953.40. Jefferys, E. G. The stability of antibiotics in soils. J. Gen. Microbiol. 7:295‐312. 1952.41. Jefferys, E. G., P. W. Brian, H. G. Hemming, and D. Lowe. Antibiotic production by the microfungi of acid

heath soils. J. Gen. Microbiol. 9:314‐341. 1953.42. Johnson,  J.  R., W.  F.  Bruce,  and  J. D. Dutcher. Gliotoxin.  The  antibiotic  principle  of Gliocladium

fimbriatum. I. Production, physical and biological properties. J. Am. Chem. Soc. 65:2005‐2009. 1943.43. Johnson, J. R., and J. B. Buchanan. Gliotoxin. IX. Synthesis of the C11H8N2OS degradation product. J. Am.

Chem. Soc. 73:3749‐3751. 1951. L6544. Johnson, J. R., and J. B. Buchanan. Gliotoxin. X. Dethiogliotoxin and related compounds. J. Am. Chem.

Soc. 75:2103‐2109. 1953.

64

Page 65: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

45. Johnson,  J. R., W. C. McCrone, and W. F. Bruce. Gliotoxin,  the antibiotic principle of Gliocladiumfimbriatum. J. Am. Chem. Soc. 66:501. 1944.

46. Koch, L. W. Investigations on black knot of plums and cherries. II. The occurrence and significance ofcertain fungi found in association with Dibotryon morbosum (Sch.) T. & S. Sci. Agr. 15:80‐95. 1934.

47. Kornfeld, E. C., R. G. Jones, and T. V. Parke. The structure and chemistry of actidione, an antibiotic fromStreptomyces griseus. J. Am. Chem. Soc. 71:150‐159. 1949.

48. Leach, B. E., J. H. Ford, and A. J. Whiffen. Actidione, an antibiotic from Streptomyces griseus. J. Am.Chem. Soc. 69:474. 1947.

49. Machacek, J. E. Studies on the association of certain phytopathogens. Macdonald College (McGill Univ.)Tech. Bull. 7:87. 1928.

50. MacMillan,  J.  Dechlorogriseofulvin‐a  metabolic  product  of  Penicillium  griseofulvin  Dierckx  andPenicillium janczewskii Zal. Chem. &. Ind. :719. 1951.

51. Melin, E. Der Einfluss von Waldstreuextrakten auf das Wachstum von Bodenpilzen, mit besondererBerücksichtigung der Wurzelpilze von Baumen. Symb. Bot. Upsaliens 8: 1‐116. 1946.

52. Menzel, A. E. 0., 0. Wintersteiner, and J. C. Hoogerheide. The isolation of gliotoxin and fumigacin fromculture filtrates of Aspergillus fumigatus. J. Biol. Chem. 152:419‐429. 1944.

53. Millard, W. A., and C. B. Taylor. Antagonism of microorganisms as the controlling factor in the inhibitionof scab by green manuring. Ann. Appl. Biol. 14:202‐216. 1927.

54. Mull, R. P., R. W. Townley, and C. R. Scholz. Production of gliotoxin and a second active  isolate byPenicillium obscurum Biourge. J. Am. Chem. Soc. 67:1626‐1627. 1945.

55. Neilson‐Jones, W. Biological aspects of soil fertility. J. Agr. Sci. 31:379‐410. 1941.56. Oroshnik, W., L. C. Vining, A. D. Mebane, and W. A. Taber. Polyene antibiotics. Science 121:147‐149.

1955.57. Oxford,  A.  E.,  H.  Raistrick,  and  P.  Simonart.  Studies  in  the  biochemistry  of microorganisms.  IX.

Griseofulvin  C17H17O8Cl,    a metabolic  product  of  Penicillium  griseofulvin  Dierckx.  Biochem.  J.33:240‐248. 1939.

58. Peterson, D., and D. Cation. Exploratory experiments on the use of Acti‐dione for the control of Peachbrown rot and Cherry leaf spot. Plant Dis. Rept. 34:5‐6. 1950.

59. Pramer, D. Observations on the uptake and translocation of five actinomycete antibiotics by cucumberseedlings. Ann. Appl. Biol. 40:617‐622. 1953.

60. Raistrick, H., and D. J. Ross. Studies in the biochemistry of microorganisms. 87. Dihydrogladiolic acid,a metabolic product of Penicillium gladioli Machacek. Biochem. J. 50:635‐647. 1952.

61. Rayner, M. C. Mycorrhiza in relation to forestry. I. Research on the genus Pinus, with an account ofexperimental work on a selected area. Forestry 8:96‐125. 1934.

62. Rayner, M. C. The mycorrhizal habit in relation to forestry II. Organic composts and the growth of youngtrees. Forestry 10:1‐22. 1936.

63. Rayner, M. C. The mycorrhizal habit in relation to forestry. III. Organic composts and the growth ofyoung trees. Forestry 13:19‐35. 1939.

64. Richardson, L. T. The persistence of thiram in soil and its relationship to the microbiological balance anddamping‐off control. Can. J. Bot. 32:335‐346. 1954.

65. Rouatt,  J. W.,  and  R. G.  Atkinson.  The  effect  of  the  incorporation  of  certain  cover  crops  in  themicrobiological balance of potato scab infested soil. Can. J. Res., Sect. C. 28:140‐152. 1950.

66. Sanford, G.  B.  Some  factors  affecting  the  pathogenicity  of Actinomyces  scabies.  Phytopathology.16:525‐547. 1926.

65

Page 66: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

67. Sanford, G. B., and W. C. Broadfoot. Studies on the effects of other soil‐inhabiting microorganisms onthe virulence of Ophiobolus graminis Sacc. Sci. Agr. 11:512‐528. 1931.

68. Siminoff,  P.,  and  D.  Gottlieb.  The  production  and  role  of  antibiotics  in  the  soil.  I.  The  fate  ofstreptomycin. Phytopathology. 41:420‐430. 1951.

69. Stevenson, I. L. Antibiotic activity of actinomycetes in soil and their controlling effects on root‐rot ofwheat. J. Gen. Microbiol. 14:440‐448. 1956.

70. Stokes, A. Uptake and translocation of griseofulvin by wheat seedlings. Plant and Soil 5:132‐142. 1954.71. Vasudeva, R. S. Studies on the physiology of parasitism. XII. On the effect of one organism in reducing

the parasitic activity of another. Ann. Bot. 44:557‐563. 1930.72. Vischer, E. B., S. R. Howland, and H. Raudnitz. Viridin. Nature 165:528. 1950.73. Waksman, S. A. Microbial antagonisms and antibiotic substances. 2nd Ed., Commonwealth Fund, New

York. 1947.74. Wallen, V. R., M. D. Sutton, and Skolko, A. J. The effect of actidione on the growth of certain pathogenic

fungi and on the germination of pea seed. Phytopathology 40:156‐160. 1950.75. Weindling, R. Trichoderma lignorum as a parasite of other soil fungi. Phyto‐pathology 22:837‐845. 1932.76. Weindling, R. Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on

Rhizoctonia solani and other soil fungi. Phytopathology 24:1153‐1179. 1934.77. Weindling, R. Isolation of toxic substances from the culture filtrates of Trichoderma and Gliocladium.

Phytopathology 27:1175‐1177. 1937.78. Weindling,  R.  Experimental  consideration  of  the  mold  toxins  of  Gliocladium  and  Trichoderma.

Phytopathology 31:991‐1003. 1941.79. Weindling, R., and O. H. Emerson. The isolation of a toxic substance from the culture of Trichoderma.

Phytopathology 26:1068‐1070. 1936.80. West, P. M., and A. A. Hildebrand. The microbiological balance of strawberry root rot soil as related to

the rhizosphere and decomposition effects of certain cover crops. Can. J. Res., Sect. C. 19:199‐210.1941.

81. Whetzel, H. H. A fungus living as a parasite upon another fungus. Ont. Nat. Sci. Bull. 5:3‐4. 1909.82. Wright, J. M. The production of antibiotics in soil. I. Production of gliotoxin by Trichoderma viride. Ann.

Appl. Biol. 41:280‐289. 1954.83. Wright, J. M. Production of gliotoxin in soils. Nature 177:896. 1956.

66

Page 67: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Chapter 9

THE PRODUCTION OF INSECTICIDES AND INSECT ATTRACTANTS BY INSECTS AND MICROORGANISMS

Known examples of the production of  insecticides by  insects are few and recent. The chemotropicattraction of males by females of certain moth species has received more detailed study; early naturalistswere amazed at the remarkable distances over which these males are guided to the waiting females. It isconvenient to include in this discussion on insect‐produced insecticides a recent example of a bacterialinsecticide. Moreover, there are one or two known cases of the production of biologically active chemicalsby organisms outside the categories of the chapter headings, which may be included in the present chapter.

Of the insecticides for discussion, the first is:

Iridomyrmecin:

The Argentine ant (Iridomyrmex humilis Mayr.) and other ant species characterized by anal glandsproduce an insecticidal agent, iridomyrmecin, and it is reported in B.P. 715,546 that up to 3.5 g. may berecovered in the summer season from a million unfed worker ants. The insecticide is of low mammaliantoxicity, its formula is C10H16O2, and it is an optically active lactone of a cycloparaffin which, according toFusco, Trave, and Vercellone (15) , on oxidation yields a dicarboxylic acid identical to nepetalinic acid. Thisdiscovery, confirmed by Cavill, Ford, and Locksley (11) , indicates that iridomyrmecin is of structure XIII, astructure capable of epimerization of the asymmetric carbon adjacent to the carbonyl group.

67

Page 68: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Habrobracon Venom:

Beard (9) drew attention to the paucity of information on the toxicology of the poisons by which manybraconid wasps paralyze the insect larvae upon which they feed and on which they deposit eggs. He chosefor study Habrobracon juglandis Ashmead, which attacks the larvae of such insects as Ephestia, Plodia, andGalleria. The paralysis of the attacked larvae is due to the injection of a venom, which can be collected fromthe stylets of the wasp, and which is of extreme potency. Beard calculated that a single wasp could produceenough venom to kill about 50 pounds of Galleria larvae. The venom is, to some degree, species‐specificthough the wasp limits its attack to relatively few species. It will not attack larvae of the Japanese beetle(Popillia japonica) or the European corn borer (Pyrausta nubilalis Hb.), nor did injection of the venom intolarvae of these species produce paralysis. It is of interest in connection with the previous discussion of theHopkins Host Selection Principle (see p. 22) that the wasp,  if presented a mixed batch of Ephestia andGalleria larvae, will first attack Ephestia, even though it had been reared for several generations on Gallerialarvae.

The venom is inactivated at temperatures of 65EC or higher, and is presumably protein in character.Its mode  of  action  is  unknown,  but  is  different  from  that  of  the more  common  insecticides  of  theorganophosphate and DDT series. The protein nature of the venom prompted Beard to suggest that it is anenzyme, though he reported no attempt to determine whether it had any relationship to the lecithinasesand cholinesterases of the snake venoms.

The Insecticidal Inclusions of Bacillus cereus:

A number of bacterial species, which can be classified as variants of B. cereus Frankland & Frankland,are  pathogenic  to  insects  and  have  indeed  been  employed  as  agents  in  biological  control:  e.g.,  B.thuringiensis Berliner against the alfalfa caterpillar Colias philodice eurytheme Boisduval (28), and strainsof B. cereus against codling moth (Carpocapsa pomonella L.) (30).  B. sotto Ishiwata and B. cereus var. alestiToumanoff and Vago (32) are pathogens of the silkworm Bombyx mori L.

Hannay (19) observed that, in the sporulation of B. thuringiensis, the spores are invariably accompaniedby a parasporal body, a highly refractile and well‐formed diamond‐shaped crystal. He found that most othervariants of B. cereus pathogenic to insects formed crystals on sporulation, whereas nonpathogenic strainsfailed to  form crystals. Hence, he suggested that crystal  formation  is  in some way connected with theformation of a toxic substance causing septicaemia in insect larvae. Hannay's observation was confirmedby Steinhaus and Jerrel (29) within the range of strains of B. cereus available in their laboratory. The crystalmaterial proved to be protein in character and readily dispersible in alkali, both properties known to beshared by the polyhedral bodies that appear in certain virus‐infected insects. It was therefore important toascertain whether  similar  viruses were  involved, but electron micrographs  revealed no  trace of  suchparticles (21) . That the crystal protein is the toxin was shown by Angus (5) , for the spore‐free alkalineextract of a culture of B. sotto fed to silkworm larvae rapidly caused paralysis, whereas the sediment ofwashed alkali‐treated spores had no effect when fed but produced septicaemia when injected into thelarvae (7) . The potency of the crystal toxin is such that the LD50 is less than 0.5 µg per g larva—about twohundred times as toxic to silkworm larvae as the toxin derived from Coryne‐bacterium diphtheriae (Flügge)Lehmann & Naumann.

68

Page 69: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Methods for the recovery of the material of the crystal from the sporulating spores are described byHannay and Fitz‐James (21) . Their chemical studies revealed that the crystal is wholly protein, containingno phosphorus and composed of at  least seventeen amino acids, all α‐amino acids commonly found  inproteins. It would appear, from the preliminary results of Angus (6) , that only those insects of high gut pHare susceptible to either B. sotto or its toxin; but as Hannay (20) pointed out, this effect may be more closelyassociated with enzyme activity than with pH. He speculated that septicemia, as distinct from paralysis, isan outcome of an invasion in larval tissues by bacteria present in the gut.

Insecticidal Emanations from Insects:

Gough (16) , in studying the resistance of the flour moth Tribolium confusum Duv. to hydrogen cyanide,observed that in certain circumstances the adult beetles, and particularly the virgin females 4‐5 weeks old,emitted a substance which he described as self‐toxic, for it killed non‐emanation‐producing beetles enclosedin the same container. He did not examine this  insecticide chemically beyond recording that a flake ofpotassium hydroxide  suspended over  the beetles  turned  green,  and  that  the emanation  affects HCNmortality in a manner that suggests that it forms a loose combination with HCN, removing it from the gasphase to the walls of the container.

It had long been known (see Chittenden, 12) that flour heavily contaminated with Tribolium becamepink in color, and Roth and Howland (25) collected, in a dry‐ice trap, yellow‐brown crystals from air drawnover adult T. confusum. The material collected in a similar manner from adults of T. castaneum Hbst. wasshown by Alexander and Barton (4) to be a mixture of 2‐ethyl‐1,4‐dihydroxybenzene and 2‐methyl‐1,4‐dihydroxybenzene. Their results were confirmed by Loconti and Roth (26) who, on spectrographic evidence,concluded that these quinones were also produced by the adults of T. destructor Uyttenb. and of thelong‐headed flour beetle Latheticus oryzae Waterh. Loconti and Roth sought the function of these secretionsand  found  that  their  presence  had  little  effect  on  population  growth  but  that  they  served  rather  asrepellents, for starved beetles showed a marked preference for fresh flour over that contaminated with thequinones.

A similar example of auto‐intoxication was described by Roth, Neigisch and Stahl (26) in the cockroachEurycotis floridana Walker, but in this case the secretion was identified as trans‐2‐hexenal which, thoughtoxic to the roaches kept in a closed space and made to emit the material, seems normally to function asa repellent.

The  release  of  hydrogen  cyanide  by  certain  millipedes  was  described  as  early  as  1882  byGuldensteeden‐Egeling (17) . Davenport and his colleagues (13) noticed a cyanide smell when collecting theluminous millipede Lumino‐desmus  sequoiae Loomis & Davenport, and established  that  it was due  tohydrogen cyanide. Bees  imprisoned over  the millipedes  for 15 minutes were killed. The ability of  themillipedes to generate hydrogen cyanide may be associated with the luminescence, for McElroy and Strehler(23) showed that cyanide stimulated light‐emitting reactions in other organisms, but Davenport et al. couldtrace no tangible connection between cyanide release and luminosity.

Insect Attractants Produced by Insects:

Benzene extracts of the abdominal tips clipped from the virgin gypsy moth Lymantria dispar L. will

69

Page 70: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

attract males of the same species. Haller, Acree and Potts (18) showed that the attractant, which Acree (1,2,  3)  named  gyptol,  is  an  alcohol  occurring  in  the  phthalic  acid  ester  fractions  isolated  from  theunsaponifiable material of the benzene extract. Acree used chromatographic methods for the concentrationof the alcohol as the succinic acid ester or as the azoate (p‐phenylazobenzoyl ester) , but has as yet not beenable  to define more closely  the attractant compounds.  In his  later chromatographic  studies Acree  (3)recovered three active esters including gyptol, which appears to be esterified in the natural attractant; thethree esters are derived from at least two different alcohols.

Even  the  housefly  (Musca  domestica  L.)  is more  attracted  to  poison  bait which  other  flies  havepreviously visited than it is to fresh baits; the factor responsible was extracted, by Barnhardt and Chadwick(8)  ,  from  flies with 95 per  cent ethanol.  Similarly, Dethier  (14)  found  that  sugar baits became moreattractive to blowflies through the agency of the flies themselves, and concluded that the attractant wasa volatile compound produced from the sugar by some reaction of the flies.

Acrasins:

A remarkable example of chemotropism is provided by certain slime molds which secrete substancescausing  the  aggregation  of  the  individual  cells  to  form  organized  communities.  The  life  history  ofDictyostelium discoideum, for instance, begins with the discharge from the spores of an amoeba‐like cellwhich feeds by phagocytosis and reproduces by binary division. After this vegetative stage the myxamoebaebegin to collect in large aggregates, which assume a rounded structure with a hollow neck or stalk. Somecells become large and evacuolated, others appear to climb to the stalk, where they eventually form whatmight be called spores.

This process was  first described  in 1902 by Olive  (24), and  in 1947 Bonner  (10)  showed  that  theaggregation stage  is a chemotropic response to a substance, which he named acrasin, secreted by themyxamoebae. Investigations of its chemistry have been frustrated by its apparent instability though Shaffer(27)  found  it  to be  stable  if quickly  frozen.  In a  recent article he  (27a) gives evidence  that acrasin  isaccompanied by a protein—probably an enzyme—which inactivates it and that, when freed by dialysis, theacrasin is remarkably stable.

It would appear that a number of acrasins exist. For example, Shaffer (27) found that young cells of theslime mold Polysphondylium produced an acrasin to which cells of Dictyostelium did not respond; acrasinsecreted by older cells caused aggregation of cells of both  species. Sussman  (31) considered  that  theinitiation of aggregation should be distinguished from the continuance of aggregation. It seems reasonableto assume that the chemotropic agents concerned in the aggregation of the slime molds represent but slightmodifications of a basic acrasin molecule.

References1. Acree, F. The isolation of gyptol, the sex attractant of the female gipsy moth. J. Econ. Ent. 46:313‐315.

1953.2. Acree, F. Studies on the chromatography of gyptyl azoate. J. Econ. Ent. 46: 900‐902. 1953.3. Acree, F. The chromatography of gyptol and gyptyl ester. J. Econ. Ent. 47:321‐326. 1954.

70

Page 71: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

4. Alexander, P., and D. H. R. Barton. The excretion of ethylquinone by  the  flour beetle. Biochem.  J.37:463‐465. 1943.

5. Angus, T. A. A bacterial toxin paralysing silkworm larvae. Nature 173:545546. 1954.6. Angus, T. A. Some properties of a bacterial toxin affecting insect larvae. Prog. Rept. Can. Dept. Agr. Sci.

Serv. Forest Biol. Div. 9(6):1. 1954.7. Angus, T. A. Association of toxicity with protein‐crystalline inclusions of Bacillus sotto Ishiwata. Can. J.

Microbiol. 2:122‐131. 1956.8. Barnhardt, C. S., and L. E. Chadwick. A "fly factor" in attractant studies. Science 117:104‐105. 1953.9. Beard, R. L. The toxicology of Habrobracon venom: a study of a natural insecticide. Conn. Agr. Expt. Sta.,

Bull. 562. 1952.10. Bonner,  J.  T.  Formation  of  cell  aggregates  by  chemotaxis  in  the  development  of  the  slime mold

Dictyostelium discoideum. J. Expt. Biol. 106:1‐26. 1947.11. Cavill, G. W. K., D. L. Ford, and H. D. Locksley. Iridodial and iridolactone. Chem. & Ind. :465. 1956.12. Chittenden,  F. H.  Insects affecting  cereals and other dry  vegetable goods. U.S.D.A. Div. Ent. Bull.

4:112‐131. 1896.13. Davenport,  O.,  D.  M.  Wootten,  and  J.  E.  Cushing.  Biology  of  the  Sierra  luminous  millipede

Luminodesmus sequoiae Loomis & Davenport. Biol. Bull. 102:100‐110. 1952.14. Dethier, V. G. Mode of action of sugar‐baited fly traps. J. Econ. Ent. 48:235‐239. 1955.15. Fusco, F., R. Trave, and A. Vercellone. Iridomyrmecin, a natural insecticide from Iridomyrmex humilis

Mayr. Chim. et Ind. 37:251‐258. 1955.16. Gough, H. C. Factors affecting the resistance of the flour beetle, Tribolium confusum Duv., to hydrogen

cyanide. Ann. Appl. Biol. 26:553‐571. 1939.17. Guldensteeden‐Egeling, C. Ueber Bildung von Cyanwasserstoffsäure bei Einem Myriododen. Pflügers.

Arch. Physiol. 28:576‐579. 1882.18. Haller, H. L., F. Acree, and S. F. Potts. The nature of the sex attractant of the female gipsy moth. J. Am.

Chem. Soc. 66:1659‐1662. 1944.19, Hannay, C. L. Crystalline inclusions in aerobic spore‐forming bacteria. Nature 172:1004. 1953.20. Hannay, C. L. Inclusions in bacteria. Symp. Soc. Gen. Microbiol. 6:318‐340. 1956.21. Hannay, C. L., and P. Fitz‐James. The protein crystals of Bacillus thuringiensis Berliner. Can. J. Microbiol.

1:694‐710. 1955.22. Loconti, J. D., and L. M. Roth. Composition of the odorous secretion of Tribolium castaneum. Ann. Ent.

Soc. Am. 46:281‐289. 1953.23. McElroy, W. D., and B. L. Strehler. Factors influencing the response of the bioluminescent reaction to

adenosine triphosphate. Arch. Biochem. 22:420‐433. 1949.24. Olive, E. W. Monograph of the Acrasieae. Proc. Boston Soc. Nat. Hist. 30:451‐513. 1902.25. Roth, L. M., and R. B. Howland. Studies on the gaseous secretion of Tribolium confusum Duval. Ann. Ent.

Soc. Am. 34:151‐175. 1941.26. Roth, L. M., W. D. Neigisch, and W. H. Stahl. Occurrence of 2‐hexenal  in  the cockroach Eurycotis

floridana. Science 123:670‐671. 1956.27. Shaffer, B. M. Aggregation in cellular slime moulds: in vitro isolation of acrasin. Nature 171:975. 1953.27a.   Shaffer, B. M. Acrasin, the chemotactic agent in cellular slime moulds. J. Exp. Biol. 33:645‐657. 1956.28. Steinhaus, E. A. Possible use of Bacillus thuringiensis Berliner as an aid in the biological control of the

alfalfa caterpillar. Hilgardia, 20:359‐381. 1951.29. Steinhaus, E. A., and E. A.  Jerrel. Further observations on Bacillus thuringiensis Berliner and other

spore‐forming bacteria. Hilgardia, 23:1‐23. 1954.

71

Page 72: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

30. Stephens, J. M. Disease in codling moth larvae produced by several strains of Bacillus cereus. Can. J.Zool. 30:30‐40. 1952.

31. Sussman,  M.  An  analysis  of  the  aggregation  stage  in  the  development  of  the  slime  molds,Dictyosteliaceae. II. Aggregate center formation by mixtures of Dictyostelium discoideum, wild typeand aggregateless variants. Biol. Bull. 103:446‐457. 1952.

32. Toumanoff, C., and C. Vago. L'agent pathogène de la flacherie des vers à soie endémique dans la régiondes Cévennes: Bacillus cereus var. alesti var. nov. C.R. Acad. Sci. Paris 233:1504‐1506. 1951.

72

Page 73: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Chapter 10

BACTERIA vs. HIGHER PLANTS

In  closing  the  discussion  on  the  fungus‐host  plant  relationships,  attention  was  drawn  to  theresemblances between the symptoms of the diseased plants and those produced by the application ofgrowth substances. This similarity is also shown among bacterial diseases of plants, e.g., crown gall disease.

The crown gall problem has been reviewed in detail by de Ropp (9) and by Klein and Link (12). Thecausal organism, Bacterium tumefaciens (Smith & Town.) Conn., was shown by Berthelot and Amoureaux(1) to be capable of producing indoleacetic acid from nutrient media containing tryptophan. Attenuatedstrains of B. tumefaciens, unable of themselves to cause gall formation, can do so if indoleacetic acid or arelated growth substance is supplied. This observation of Braun and Laskaris (6) and of Thomas and Riker(14)  led directly  to  the conclusion  that  the difference between attenuated and virulent  strains of  thebacterium is in the relative amount of growth substance produced by each. The remarkable feature of thecrown gall disease  is, however, that host tissue, once transformed to gall tissue, continues to producegrowth substance in greater than normal amounts, even in the absence of disease‐causing bacteria. Thisbacteria‐free gall tissue, when implanted into healthy tissue of the same host species, was found by Braunand White (7) to cause the development of typical crown galls. It is therefore necessary to postulate, inaddition to indoleacetic acid which is the factor responsible for the continued abnormal proliferation of thegall tissue, a second factor which Braun has termed the "tumor‐inducing principle", and which renders thegall tissue capable of producing the growth substance in the absence of the pathogen. This hypothesis isneeded to explain the fundamental difference between the abnormal growth induced by indoleacetic acidand that caused by crown gall tissue; the former growth survives but briefly; the latter is a permanent andcontinuing alteration of the growth pattern.

Braun's "tumor‐inducing principle" has not been isolated but its study is possible in tissue culture. Thepossibility that this principle is a virus is not supported by the experimental work reviewed by Braun (4), norhas  the  electron microscope  revealed  evidence  of  virus  particles.  The  "tumor‐inducing  principle"  isthermolabile and of high molecular weight;  its precipitation by protamine sulphate and by manganouschloride indicates that it is a nucleic acid rather than a protein. Its remarkable ability, discovered by Kleinand Klein (11)  , of conferring the heritable property of virulence to avirulent strains of B. tumefaciens,Agrobacterium radiobacter, A. rubi, and Rhizobium leguminosarum brings the "tumor‐inducing principle"into the broad category of transformation agents; these will be further discussed on page 84.

The establishment of symbiosis between Rhizobium and  its host  legume  is another example of aninteraction between a bacterium and its host plant which involves auxins. The first observable stage is acharacteristic deformation of the root hairs of the legume, which was thought by Thimann (13) and by Chen(8) to be due to the secretion by Rhizobia of indoleacetic acid. Chen demonstrated the production of thiscompound by Rhizobia growing in culture media containing tryptophan; Thornton and Nicol (15) producedroot‐hair curling by treatment with sterile filtrates from Rhizobia cultures. This  reaction is produced even

73

Page 74: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

by strains of Rhizobium incapable of establishing infection of the rootlets. No explanation is as yet availableof the remarkable specificity shown by Rhizobia in their choice of host legume.

An example of phytotoxin production by a pathogenic bacterium is provided by the leaf spot diseaseof tobacco produced by Pseudomonas tabaci (Wolf and Foster) Stevens, a disease so rapid in developmentand so devastating to foliage that it is called "wild fire".  Johnson and Murwin (10) found that sterile filtratesof cultures of P. tabaci could produce the symptoms of "wild fire" not only in tobacco, but in many otherplant species. Because the lesions produced by the filtrate are indistinguishable from those produced byinfection it seems safe to conclude that the toxin is produced by the pathogen. The observation of Braun(3) that the toxin inhibits the growth of Chlorella, an inhibition prevented by the addition of yeast or liverextract, led him to test the effects of the vitamins known to be present in such extracts. Of these growthfactors, only methionine  (XIV)  in  its natural (1‐) form  inactivated the toxin. Moreover, he showed thatchlorotic  lesions,  similar  to  those  of  "wild  fire"  disease,  are  produced  by  treatment  of  tobacco withmethionine sulphoximine (XV) , then recently shown to be responsible for the convulsive effect on dogs ofwheat flour treated with nitrogen trichloride.

This valuable  clue enabled Woolley, Schaffner, and Braun  (17)  to deduce  that  "wild‐fire"  toxin  isprobably the lactone of α‐lactylamino‐ß‐hydroxy‐E‐amino‐pimelic acid (XVI),the lactone ring being formed 

74

Page 75: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

between the hydroxyl group of the lactic acid residue and a‐carbonyl group of tabtoxinine, an amino acid(α,  ε‐diamino‐ß‐hydroxypimelic acid) not previously  isolated  from natural  sources. The  lactone  ring  isopened by alkaline hydrolysis, and the resulting compound is not phytotoxic as is tabtaxinine, so that itwould seem that ionizable groups at both ends of the molecule render it inactive. The active products (XV)and  (XVI), and also methionine  (XIV), have but one  ionizable end group; but Braun  (5)  found  that anadditional and uncharacterized end group is necessary, for none of the other methionine‐like compoundsthat he tested was phytotoxic.

P. tabaci when carried in culture for long periods may lose its ability to produce the toxin. Braun (2) wasunable to distinguish the non‐toxigenic strains from the milder pathogen P. angulata (Fromme and Murray)Holland.  This  example provides  an  introduction  to  the  subject of bacterial dissociation which will bediscussed on page 79.

It may  be  anticipated  that  further  studies  of  the  phytopathogenic  bacteria will  produce  furtherexamples of phytotoxin production by these organisms. Certainly a wide range of toxins are known to beinvolved in the bacterial diseases of man and of animals, and as far back as 1936 Topley and Wilson (16)wrote, "The basis of all harmful effects of bacterial infection is quite certainly chemical; and only when thechemist has replaced the immunologist shall we be able to give an intellectually satisfying account of whathappens when a particular parasite invades a particular host". This statement was retained by Wilson andMiles, on p. 1146 of the 4th edition of this masterpiece, published as recently as 1955.

References

1. Berthelot, A., and G. Amoureux. Sur la formation d'acide indol. 3.acétique dans l'action de Bacteriumtumefaciens sur le tryptophane. C.R. Acad. Sci. Paris 206: 537‐540. 1938.

2. Braun, A. C. A comparative study of Bacterium tabacum Wolf and Foster and Bacterium angulatumFromme and Murray. Phytopathology 27:283‐304. 1937.

3. Braun,  A.  C.  The mechanism  of  action  of  a  bacterial  toxin  on  plant  cells.  Proc.  Natl.  Acad.  Sci.36:423‐427. 1950.

4. Braun, A. C.  Studies on  the origin of  the  crown‐gall  tumor  cell.  In Brookhaven  Symp.  in Biology.Abnormal and Pathological Plant Growth, pp. 115‐127. 1953.

5. Braun, A. C. A study of the mode of action of the wildfire toxin. Phyto‐pathology 45:659‐664. 1955.6. Braun, A. C., and T. Laskaris. Tumor formation by attenuated crown‐gall bacteria in the presence of

growth‐promoting substances. Proc. Natl. Acad. Sci. 28:468‐477. 1942.7. Braun, A. C., and P. R. White. Bacteriological sterility of tissues derived from secondary crown‐gall

tumors. Phytopathology 33:85‐100. 1943.8. Chen, H. K. Production of growth‐substances by clover nodule bacteria. Nature 142:753‐754. 1938.9. de Ropp, R. S. The crown‐gall problem. Bot. Rev. 17:629‐670. 1951.10. Johnson, J., and H. F. Murwin. Experiments on the control of wildfire of tobacco. Wisc. Agr. Expt. Sta.,

Res. Bull. 62. 1925.11. Klein, D. T., and R. M. Klein. Transmittance of tumor‐inducing ability to avirulent crown‐gall and related

bacteria. J. Bact. 66:220‐228. 1953.

75

Page 76: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

12. Klein, R. M., and G. K. K. Link. The etiology of crown‐gall. Quart. Rev. Biol. 30:207‐277. 1955.13. Thimann, K. V. On the physiology of the formation of nodules on legume roots. Proc. Natl. Acad. Sci.

22:511‐514. 1936.14. Thomas,  J.  E.,  and  A.  J.  Riker.  The  effects  of  representative  plant  growth  substances  upon

attenuated‐bacterial crown galls. Phytopathology 38:26. 1948.15. Thornton, H. G., and H. Nicol. Stimulation of root‐hair growth in legumes by sterile secretions of nodule

bacteria. Nature 137:494‐495. 1936.16. Topley, W. W. C., and G. S. Wilson. The principles of bacteriology and immunity. 2nd Ed., London. 1936.17. Woolley, D. W., G. Schaffner, and A. C. Braun. Studies on the structure of the phytopathogenic toxin of

Pseudomonas tabaci. J. Biol. Chem. 215:485‐493. 1955.

76

Page 77: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Chapter 11

THE ECOLOGICAL CHEMISTRY OF BACTERIA

Whereas the toxins produced by fungi are, as described in Chapter 7, compounds of diverse structurenot easily falling into any of the broad groups of metabolic products, the antibiotics produced by bacteriaare, by and large, polypeptides. Indeed, many authorities, for example Van Heyningen (56) , included therequirement of  antigenicity  in  the definition of  a bacterial  toxin.  Fluvomycin  and  the bacitracins,  forinstance, are polypeptides; subtilin and nisin are polypeptides containing an unusual amino acid β‐methyllanthionine  (α‐amino‐ß‐(2‐amino‐2‐carboxyethyl‐mercapto)‐butyric  acid)  (2,  44).  The  tyrocidines  andgramicidins are cyclic polypeptides and have provided excellent material for the elucidation of the sequenceof the amino acids composing these compounds, a brilliant example being the unravelling of the structureof tyrocidine A by Paladini and Craig (45) .

But, as yet, the significance of these bacterial products in the interplay of the soil microflora or in themaintenance of plant health has not been exposed, nor have the known bacterial toxins and antibioticsfound  use  in  crop  protection.  However,  there  is  a  growing  literature  dealing  with  the  effects  ofenvironmental chemicals upon the behavior and properties of bacteria. A discussion of these effects, whichwill  inevitably  involve  the  viruses, may  be  opened with  a  description  of  the  bacteriocins,  for  thesecompounds are nearest to the bacterial antibiotics.

Bacteriocins:

In 1925 Gratia (24) reported the production, by strains of Escherichia coli (Migula) Castell. & Chalmers,of readily dialysable compounds of high toxicity to certain other strains of this bacterium. These compoundswere termed colicines by Fredericq and Gratia (21) but, because like compounds have been since isolatedfrom cultures of Shigella dysenteriae (Shiga) Castell. & Chalmers and less commonly from Salmonella, themore general name of bacteriocins is preferable (30) . Their production is not confined to entero‐bacterialspecies, for Jacob (29) has recently reported the isolation from cultures of Pseudomonas pyocyanae (=Ps.aeruginosa (Schroeter) Migula) of pyocine, which has the typical properties of a bacteriocin.

These compounds are non‐antigenic but, as shown by Heatley and Florey (26) and by Gardner (23), areproteins  or  polypeptides  susceptible  to  hydrolysis  by  proteolytic  enzymes.  Their  biological  activity  isextremely specific for, as a general rule, the colicine produced by one strain of E. coli is toxic only to sensitivebacteria of the same strain. But the most remarkable feature of the group, a phenomenon discovered byJacob, Simonovitch, and Wollman (31) , is that colicine synthesis can be induced in cultures of certain strainsof E. coli by treatment with ultraviolet light or with certain chemicals such as nitrogen mustards. Colicinecannot be detected in such cultures prior to irradiation, but after treatment the bacteria continue to growuntil the cells lyse, when free colicine appears in the culture media.

The ability of a particular bacterial strain to produce bacteriocins is heritable — strains having this ability

77

Page 78: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

are said to be bacteriocinogenic. But the power, when  induced,  is  lethal to both bacteriocinogenic andnormal strains of the bacteria.

Bacteriocinogenicity and its consequences have parallels in the phenomenon of lysogeny. Fortunately,this involved subject has been brilliantly reviewed by Lwoff (37).

In brief,  lysogeny  is the phenomenon by which certain bacterial strains have a heritable ability toproduce bacteriophage. The cells of such lysogenic strains may spontaneously lyse, with the liberation ofbacteriophage particles, or  the production of  the phage may be  induced by  certain  treatments. Suchtreatments include irradiation by ultraviolet light or exposure to certain chemicals and cause the hithertolatent phage to develop; the affected cells eventually lyse and release phage particles able to attach andmultiply in strains of bacteria which are sensitive to the phage.

The analogy between bacteriocinogenicity and lysogeny is strengthened by the similarity in the chemicalagents capable of inducing the formation of bacteriocins and bacteriophages; e.g., the nitrogen mustardmethyl bis‐(ß‐chloroethyl)amine and tertiary butyl peroxide. These compounds, like ultraviolet radiation,are also mutagenic and carcinogenic.

Lwoff extends the analogy by pointing out that one particle of either colicine or bacteriophage is enoughto kill the sensitive bacterium and that the adsorption of either particle by the bacterium is controlled bya specific receptor sometimes common for phage and bacteriocin. In composition, however, bacteriocinsare wholly protein, whereas the bacteriophages are organized "bodies" with a protein‐lipin membranecontaining deoxyribonucleic acids. Presumably the ability of bacteriophage to multiply in sensitive bacteriais attributable to the specific deoxyribonucleic acids; bacteriocins have no such component and do notmultiply in the bacteria they attach.

To what then is due the difference between lysogenic and non‐lysogenic bacteria? Burnet and McKie(11) concluded that there is some specific thing being perpetuated in lysogenic bacteria, something whichLwoff  and  Gutmann  (38)  named  the  prophage.  The  prophage  has  the  properties  of  a  genetic  unit,incorporated into the genetic material of the bacterium, which can in the terms of Jacob and Wollman (32)"undergo transition into a pathogenic form, the development of which leads to the death of the host andliberation of infective virus particles".

The feature that brings this phenomenon, and also that of bacteriocinogenicity, within our purview isthat environmental chemicals can bring about striking changes in cultures of lysogenic and bacteriocinogenicbacteria. In the presence of inducing chemicals such cultures, which otherwise would remain apparentlynormal, undergo changes which lead to the lethal biosynthesis of bacteriophage or bacteriocin.

A relationship possibly of fundamental significance has been traced by Freeman (22) between lysogenyand  toxigenicity  in Corynebacterium diphtheriae. He  found  that non‐toxigenic  strains of  this organismbecame toxigenic after infection with a temperate bacteriophage. The temperate bacteriophage does notkill its host bacterium but renders it lysogenic. Further Freeman found that the production of diphtheriatoxin  by  lysogenic  strains  of  the  bacterium  is  inhibited when  iron  is  present  in  the  culture medium.Mitsuhashi, Kurokawa, and Kojima (39) showed that no appreciable toxin is produced until the exogenoussupply of iron of the nutrient has been exhausted. The bearing of this observation on the pathogenesis of

78

Page 79: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

diphtheria is discussed by Pappenheimer (46) in connection with the hypothesis that the diphtheria toxinis related to the protein moiety of diphtheria cytochrome b1  and that its high toxicity is due to interferencein the cytochrome system—a hypothesis supported by the results of Pappenheimer and Williams' study (47)of the insecticidal action of the toxin on the Cecropia silkworm.

Although  it  is hazardous with our present  knowledge of  the nature of  viruses  to  group  togetherbacteriophages, insect viruses, and plant viruses, on any basis other than that all behave as pathogens ofdimensions less than 200 millimicrons, they all consist, chemically, of a greater or lesser complex of proteinand nucleic acid. This is the excuse for discussing, in this section, an example of the profound effect that thechemicals of the environment may exert on certain virus diseases of insects. In 1944, Yamafugi and Shirozu(61) found that silkworms fed with hydroxylamine developed a typical polyhedral virus disease, and theirclaim was confirmed in subsequent publications surveyed by Yamafugi and Yoshihara (62) . The effectivechemicals included inorganic nitrites and various oximes which were thought by the Japanese workers tolead, by enzymic reactions, to an accumulation of peroxides. Incidentally, Yamafugi and Fujiki (60) alsoclaimed  that  the  treatment of  tobacco with heat, hydrogen peroxide, or hydroxylamine  leads  to  theformation of an  infectious substance  in the  leaves, though the degree of  its  infectiveness was small  incomparison with that of tobacco viruses.

Although Yamafugi (59) does not agree, the general view of other virologists is that the Japanese resultsfall into line with other evidence that the insect larvae before treatment are infected with a latent form ofthe virus. Smith and Wyckoff (51) recounted several examples of the sudden appearance of virus infectionin stocks of caterpillars reared with every care through many generations of apparently healthy stock, andsuggested that virus in a latent condition had passed from generation to generation in the stock. Bergold(8), in a complete review of the problem, accepted the latency of insect viruses as a fact—though pleadingfor further research. He cited the conclusion of Vago (55) that the pathogenic agent is present in mosthealthy individuals of Bombyx mori and can be activated by certain chemicals or physical treatments. If thatview is correct, the possibility of latent infection so complicates the study of virus diseases that the use ofchemical  activation  as  a means  of  detecting  the presence of  latent  infection  should be more widelyexplored.

Bacterial Dissociation:

The variability of microorganisms in culture is notorious. The multitude of variants is the despair ofevery biologist except, perhaps, the systematist; Brierley (10) after half a life's work on the taxonomy ofBotrytis cinerae with its many strains wrote, "From long, perhaps unduly long, experience of these races Ican recognize—"intuitively" if you like—differences which I can neither measure nor describe;".

Typical examples of the changes that appear, and that to become apparent are transmitted from parentto progeny, are the emergence of avirulent strains among pathogens or of strains resistant to toxicants orto virus. Although the expression dissociation, originally used by De Kruif (14) rather in the sense of themechanical separation of variants from a mixed culture, came to be applied to the appearance of variantsof different growth pattern (e.g., rough or smooth) on solid media, it now serves as a term to cover all typesof variation and is useful because it implies no mechanism for the changes.

It was at one time thought that the variation  in morphological characteristics, frequently found  in

79

Page 80: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

bacteria, represented different stages in an orderly life cycle—an idea termed cyclogeny by Enderlein (17).This idea proved inadequate, and it survives possibly only to account for the L‐forms of certain bacteria.Under conditions unfavorable to their growth, such as exposure to antibiotics, to antibodies or to phages,bacillary forms of certain species form chromatin‐rich granules which develop into tiny "L‐phase" colonieson culture media, a phenomenon reviewed by Dienes and Weinburger (16). In a number of cases cited byKleineberger‐Nobel  (33),  the  L‐phase  has  been  observed  to  revert  to  the  bacillary  form  often withmorphological, antigenetic, or biochemical properties different from the original.

Cyclogeny was replaced by the idea that the variants pre‐existed in the inoculum and that one or morebecame predominant because environmental factors happened to favor their development. This hypothesisof pre‐existing variants does not, of itself, imply any mechanism for the origin of such variants. This problem,the origin of variant forms, has provoked controversies reminiscent of the earlier battles from which theLamarkian hypothesis of the inheritance of acquired characteristics emerged discredited. The participantsof the controversy tend to two opposing views: at one extreme is the hypothesis that the variants arise byspontaneous and uncontrollable changes in the genes, changes termed mutation by de Vries (15) ; at theother extreme is the hypothesis that the organisms have a capacity for adaptation to their environment, theadaptive changes being passed on to the descendants.

Although a detailed discussion of this problem, which has been the subject of full symposia in 1953 (1)and 1955  (50),  is beyond  the scope of  this report,  the question has so high a potential significance  inecological chemistry that a discussion of the chemical aspects is not out of place.

Experimental evidence that the environment has merely favored the growth of pre‐existing mutantsand  not  induced  new  mutants  comes  from  the  fluctuation  test  of  Luria  and  Delbrück  (36)  or  itsmodifications. In most cases, a list of which is given by Newcombe (43), such statistical techniques show thatthe probable explanation of the results  is that the mutants were present prior to the exposure of theorganisms to the particular selective environment that revealed the mutant. Rates of mutation can becalculated for the characters studied: typically they range from one per thousand to one per thousandmillion  per  bacterium  per  division  cycle.  In  other words  there  exists,  for  each  gene  studied,  a  smallprobability  that mutation will  occur  during  the  "life‐time"  of  the  bacterium. Mutation  results  in  theappearance of an altered gene which confers the selected property, e.g., drug resistance, on those bacteriawhich carry the altered gene. Little is know of the nature of this "accident" presumably in gene duplication.

It was at one time held that this accident in gene duplication which leads to dissociation cannot be aneffect of the chemical environment to which the microorganism is exposed. One reason for this view is theevidence of the extreme stability of the gene, as revealed by the constancy of hereditary characters and thehigh degree of  agreement of  segregation  to  the  theoretical Mendelian  ratios  in  sexually  reproducingorganisms.  A second reason is that the genes lie within the cell membrane and are well protected from theexternal environment.

The significance of this second argument was reduced almost to vanishing point by the discovery ofmany chemicals that are able to increase the rate of mutation. In 1927 Muller (42) showed that mutationrates in the fruit fly Drosophila can be increased one or more hundred fold by X‐rays. In 1942, Auerbach andRobson (4) found that certain chemical warfare agents, such as the mustard gas, ß,ß‐dichloroethyl sulphide,increased mutation rate  in the same  insect. Since that date, the number of chemicals with mutagenic

80

Page 81: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

properties has grown to proportions beyond listing here. Levan (35), for instance, gave a list with referencesof over twenty‐five different types of compounds capable of inducing chromosome changes in Allium andVicia. Even the mutagenic action of irradiation is biochemical, for Stone, Wyss, and Haas (54) found that theirradiation of the medium prior to inoculation with the bacteria will increase mutation rates in the latter.True the mutation rate was slower than that obtained by direct irradiation, but it is probable that directirradiation is able to produce mutagenic substances within the nucleus and thereby by‐pass the need forpenetration. At all events, the present evidence is that mutagens external to the organism can producechanges in the nucleoproteins of the gene which, if not lethal, are duplicated and passed to the progeny.The presence of the mutagenic chemical in the environment increases the mutation rate; one or more ofthe mutations may result in a variant which, having a selective advantage in that particular environment mayoutgrow  its  non‐mutant  fellows.  In  this way  the  environment  can  affect  the  genes  even  though  themutations produced are wholly at random.

Suggestions that the environment can influence the nature or direction of mutation have, up to now,been stoutly opposed by geneticists. This opposition rests mainly on the evidence, mentioned above, of thestability of the gene in sexually reproducing organisms. Yet mutation must have a biochemical basis and itscauses will presumably be found to be chemical in character. What evidence is to be found to support thisstatement among other organisms? A first example is provided by the phenomenon of enzyme induction.Monod and his colleagues of the Institut Pasteur (41) showed that certain strains of E. coli were able tosynthesize  the enzyme ß‐galactosidase  in  response  to  the presence  in  the  culture medium of  certaingalastosides. A related phenomenon is the penicillin‐induced synthesis of penicillinase by Bacillus cereusexamined by Pollock (48). The inductor need not, as in the latter example, be identical to the substrate, forcertain ß‐thiogalactosides induce the formation of ß‐galactosidase, yet are not hydrolysed by the inducedenzyme.

The mechanism of enzyme induction discussed by Monod (40) requires examination. When an inductor,for example, methyl‐ß‐D‐thiogalactoside, is added in saturating concentrations (ca 5 x 10‐4M) to a cultureof cells with succinate as substrate, the rate of increase of galactosidase in relation to the bacterial mass isconstant.  If, however,  the  cells are exposed  to  lower  concentrations of  inductor,  the  rate of enzymesynthesis then slowly increases to a uniform rate as if it has taken time for an effective concentration ofinductor to accumulate within the cells. But if these cells are washed to remove the inductor and allowedto regrow, the inductor at low concentrations is able to initiate enzyme synthesis immediately at a constantrate. To explain  this  "pre‐induction" effect, Monod postulated another enzyme  system  "Y" present  ininduced cells which facilitates the entry of the inductor. The enzyme "Y" is distinct from the galactosidaseand is further necessary to explain the inhibitory effect of glucose. Pre‐induced cells produce galactosidaseover many generations when grown in the presence of glucose and inductor (at low concentrations) ; on theother hand, initially non‐pre‐induced cells over the same number of generations on the same medium donot  synthesize  the  enzyme.  The  Y  enzyme  therefore  perpetuates  itself  in  the  growing  population  ofpre‐induced cells and, in Monod's words, "may, under certain conditions, tend to mimic genetic transmissionof the acquired `induced' condition."

This  induced alteration  in  the state of  the enzyme protein of  the organism may be regarded as aconcrete example of the suggestion of Sevag (49) that persistent changes in microorganisms such as drugresistance are the result of the altered state of the enzyme proteins, which may invoke alterations in theself‐reproducing nucleoproteins themselves. To this latter group belong the genes and viruses.

81

Page 82: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

In a discussion of the possibility that the environment may influence the hereditary mechanisms, theidea  that  the  latter may  involve cytoplasmic  factors as distinct  from nuclear genes should not  remainunmentioned. The postulation of genetic determinants not chromosomal in character seemes necessary toexplain certain experimental results; Crosby (12) discussed a mechanism whereby (if identities such as theplasmagenes* exist) these bodies enable the inheritance of acquired adaptations. The evidence relative tobacteria is discussed by Hinshelwood (27) . A practical example from among insects is due to Waddington(57) who exposed 17‐23‐hour‐old pupae of Drosophila melanogaster to temperatures of 40EC for four hours.About 48 per cent of the flies which subsequently emerged were crossveinless. Breeding was continuedfrom normal and crossveinless stocks and selection continued until, from the twelfth generation onwards,crossveinless flies were produced from pupae not given the heat treatment. In Waddington's words, "Duringthe  course  of  selection,  a  genetic  constitution  has  therefore  been  synthesized which,  under  normalconditions, produced the same effect as was originally  found only as a response to the stimulus of anabnormal environment".

But  the  experimental  data  of  bacteriology  are  still  too  incomplete  to  permit  even  a  tentativesumming‐up of the role, direct or indirect, of chemical environment on dissociation. Bacterial transformationand transduction are, however, particular cases of dissociation which warrant separate examination for theirmechanics are better known.

It is already evident that the experimental test of the influence of environment in heredity may firstcome from the viruses. The tobacco mosaic virus, first obtained in crystalline form by Stanley (52) in 1935,is a rod‐shaped particle of about 300 mµ long and 15 mµ in diameter (Williams and Steere, 58). It consistsof a double‐walled cylinder of protein constituting about 94 per cent of the weight of the particle and aninner rod‐like core of nucleic acid. As in the other plant viruses examined, the nucleic acid component iswholly ribonucleic acid, whereas that of bacteriophages is deoxyribonucleic acid. The nucleic acid contentof the plant viruses may range up to about 40 per cent. (see Knight, 34) . The virus protein yields no unusualamino acid, and only the L‐isomers appear to be present. By gentle chemical treatment, Fraenkel‐Conratand Williams (20) have been able to separate the protein and nucleic acid components of tobacco mosaicvirus, each of which alone  is almost non‐infective. Yet, when mixed  in  slightly acid  solution,  the  twocomponents recombine to  form particles not distinguishable  from the original virus and with a similarthough weaker pathogenicity to tobacco—yet still two hundred times that of the nucleic acid component.By improving the conditions for recombination, Commoner and his colleagues (11a) raised the infectivityof the reconstituted virus to about one‐tenth that of the original virus.

Many strains of the tobacco mosaic virus are known. They have different virulence or infective power,and arise by processes analogous to mutation. Passage of a plant virus through a new host, or the subjectingof the  infected host to unusual environmental conditions, may produce such a change or may select apre‐existent mutant. Bawden (7) reported the reversible change of tobacco mosaic virus from the "bean"form to the "tobacco" form by passage through the appropriate host. As his attempts to gain evidence thathis inocu‐lum contained two variants multiplying differentially in the two hosts failed, he concluded that thechange was host‐induced.__________

* Danielli (13) has recently suggested that this type of hypothetic determinant of cytoplasmic inheritance be termed

a homeostat, defined as "an organization of macromolecules, or of processes, which is self‐reproducing and whichmay (and usually does) determine and control the expression of one or more characters in a cell lineage".

82

Page 83: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Chemically,  each  variant  of  tobacco mosaic  virus was  shown  by  Black  and  Knight  (9)  to  have  acharacteristic composition, the major differences being in the make‐up of the protein component. Thesedifferences appeared mainly in the proportion of the amino acids present, though one strain possessedhistidine and methionine which were absent in other strains. All thirteen variants, including this one, havesimilar  carboxyl  terminal end groups,  for  treatment with  the enzyme  carboxypeptidase  released onlythreonine (Knight, 34) . No differences could be established in the nucleic acids of the various strains oftobacco mosaic virus, though wide differences were found in the nucleic acids of different viruses.

That differences do exist between the nucleic acids of the various strains of tobacco mosaic virus iselegantly shown by Fraenkel‐Conrat and Williams (18, 20) . They separated, by the methods mentionedabove, the protein and the nucleic acid components of an ordinary strain of the virus and a strain (HR) firstisolated from Holmes ribgrass. The latter strain yields a protein differing from that of the ordinary strain inamino acid composition and in antigenic specificity. They reconstituted the virus from the nucleic acid ofthe HR  strain and  from  the protein of  the ordinary  strain. This  "hybrid"  virus when  treated with  theantiserum of the protein of the ordinary strain lost its infectivity, but not when treated with the antiserumof the HR protein. Hence the hybrid virus protein is that of the ordinary strain. Plants infected with thehybrid virus developed the symptoms of the HR strain and when the progeny of the "hybrid" virus wasrecovered from the diseased plant, the virus proved to be wholly HR strain, for its protein, like HR proteinand unlike the protein of the ordinary strain, contained methionine and histidine and much tyrosine. It istherefore evident that the symptoms produced by the virus are determined by its nucleic acid component,and that there must be differences in the nucleic acids of the different strains. Moreover, the experimentdemonstrates that the nucleic acid component controls the synthesis of the protein.

In  a  semi‐popular  account of  this work,  Fraenkel‐Conrat  (19) wrote  that  there  seem  to be  slightquantitative differences between the protein of the original HR virus and that of the hybrid virus afterpassage through the host plant. If these differences are real, the significance of the work becomes evenmore striking, for it would indicate that the protein of the ordinary strain used for the reconstitution of thevirus has had a genetic effect, bringing about a modification of the protein in the progeny of the "hybrid"virus. This would be the first demonstration of a mutation achieved through the mechanism postulated bySevag, whereby  the  altered  state of  the enzyme protein has  invoked  alteration  in  the  self‐producingnucleoproteins.

This interaction of protein and nucleic acid places the phenomenon in a somewhat different categoryfrom that displayed under bacterial transduction and transformation in which, as will be shown, the nucleicacids  themselves  are  the  agents  involved  in  the hereditary  changes  induced by  the  chemicals of  theenvironment.

Bacterial Transformation:

Pneumococci may be broadly divided into two classes: those with polysaccharide capsules (S‐type) andthose lacking a polysaccharide capsule (R‐type). The R‐types are generally avirulent for mice, but in 1928Griffith  (25)  found  that  if heat‐killed S‐type bacteria were added  to an  inoculum of  living R‐type cells,infection  resulted. Viable S‐type cells of  the same  type as  the dead cells added  to  the  inoculum wererecovered from the blood of the infected mice. Although Griffith was unable to duplicate this process invitro, he recognized that material from the killed S‐cells had changed the R‐type cells to S‐type cells.

83

Page 84: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

Conditions necessary for achieving this transformation in vitro were quickly found, and Avery and hisco‐workers succeeded in extracting and purifying the compounds responsible for this drastic alteration ofthe properties of the pneumococcus. With McCarty  (6) they showed that this compound was a highlypolymeric and viscous form of sodium deoxyribonucleate of molecular weight of the order of five hundredthousand and active at a concentration of 1 part in 6 x 108. Hotchkiss (28), by growing penicillin‐sensitivepneumococci  in  the  presence  of  deoxyribonucleate  from  penicillin‐resistant  strains,  producedpenicillin‐resistant organisms  in  a proportion 10,000  times  greater  than  that  formed by  spontaneousmutation. Similarly, streptomycin‐resistant strains of Haemophilus influenzae were produced by Alexanderand Leidy (3) by the use of deoxyribonucleic acid extracted from streptomycin‐resistant Haemo‐philus.Transformation reactions therefore have a wide biological significance —a point stressed by Austrian (5) inhis review of the experimental work on this subject. To the examples discussed by Austrian may be added"the tumor‐inducing principle" which was postulated by Braun and his colleagues to explain the results oftheir studies on crown gall (see p. 73).

In all cases the new characters acquired by treatment with the transforming agent were heritable. Thetransforming agent, of which the physical properties have been reviewed by Zamenhoff (63) , appears tobe polymeric deoxyribonucleic acid, for its activity is destroyed by deoxyribonuclease. It would seem to bederived from genetic material and to have survived the process of purification, retaining the ability to reachand become incorporated with the genetic mechanism of the bacterium. A remarkable feature is not somuch  that  the chemical  responsible  for  the hereditary change  is a  large molecule  likely  to be  labile  ifdeprived of its protein protection, but that it can penetrate deeply enough to be incorporated into the cellnucleus. The chemical reactivity of the transforming agent has been investigated by Zamenhoff and hiscolleagues (64). The agent  is resistant to  inactivation by protein denaturants but  is readily affected bymutagens, undergoing a diversity of reactions—which suggests that different mutagens have differentreactions. Zamenhoff's results indicate that the first reaction of the mutagen on the transforming agent isto convert it to an unstable form.

Bacterial Transduction:

A further mechanism by which genetic traits can be transferred from one organism to another wasdescribed by Zinder and Lederberg (65) . They found that when Salmonella typhimurium is grown in thepresence of particular  temperate phages,  it produces a  filtrable agent  capable of  inducing hereditarychanges in other strains of the bacillus, much after the manner of transformation. Unlike the transformationagent, however, this filtrable agent is not affected by deoxyribonuclease, nor is it readily extractable fromthe  cell.  Its  particles  are  about  100 mµ  in  diameter  and  appear  to  be  carried  on  the  phage.  Thisphenomenon, whereby heritable characters are transferred from donor bacteria to recipient bacteria, wascalled "transduction" by Zinder and Lederberg (65) . They then, and later with Stocker (53) , suggested thattransduction results from the transfer of genetic material by particles of "filterable agent". The materialtransferred may well be deoxyribonucleic acid, but here it is protected by the protein of the phage particlesand it is not free in the medium as in the case of transformation. Moreover the phage here provides themeans of entry into the transduced cell.

The fast‐accumulating experimental evidence of bacterial and virus dissociation seems to reveal thatthe gene is but a chemical, a complex of nucleic acid and protein, by no means immune from reaction withthe components of its environment. The manipulation of the chemistry of the nucleic acids in the living

84

Page 85: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

organism, with a maintenance of the in vivo conditions, will clearly be of extreme difficulty. But the prospectof the purposeful induction of non‐lethal mutations provides one of the most thrilling vistas of ecologicalchemistry.

References

1. Adaptation in Microorganisms. 3rd Symp. Soc. Gen. Microbiology, Cambridge University Press. 1955.2. Alderton, G. A new sulphur‐containing amino acid from subtilin. J. Am. Chem. Soc., 75:2391‐2392. 1953.3. Alexander, H. E., and G. Leidy. Determination of inherited traits of H. influenzae by desoxyribonucleic

acid fractions isolated from type‐specific cells. J. Expt. Med. 93:345‐359. 1951.4. Auerbach, C., and J. M. Robson. Chemical production of mutations. Nature 157:302. 1946.5. Austrian, R. Bacterial transformation reactions. Bact. Rev. 16:31‐50. 1952.6. Avery, O. T., C. M. MacLoed, and M. McCarty. Studies on the chemical nature of the substance inducing

transformation of pneumococcal types. J. Expt. Med. 79:137‐157. 1944.7. Bawden,  F.  C.  Reversible,  host‐induced,  changes  in  a  strain  of  tobacco  mosaic  virus.  Nature

177:302‐304. 1954.8. Bergold, G. H. Insect viruses. Adv. in Virus Res. 1:91‐139. 1953.9. Black, F. L., and C. A. Knight. A comparison of some mutants of tobacco mosaic virus. J. Biol. Chem.

202:51‐57. 1953.10. Brierley, W. B. Some viewpoints of an applied biologist. Ann. Appl. Biol. 21:351‐378. 1934.11. Burnet, F. M., and M. McKie. Observations on a permanently lysogenic strain of B. enteritidis gaertner.

Aust. J. Expt. Biol. Med. 6:277‐284. 1929.11a.  Commoner, B., J. A. Lippincott, G. B. Shearer, E. E. Richman, and Jia‐hsi Wu. Reconstitution of tobacco

 mosaic virus components. Nature, 178:767‐771. 1956.12. Crosby, J. L. A suggestion concerning the possible role of plasmagenes in the inheritance of acquired

adaptations. J. Genet. 54:1‐8. 1956.13. Danielli, J. F. Cytoplasmic inheritance. Nature 178:214‐215. 1956.14. De Kruif, P. H. Dissociation of microbic species. 1. Co‐existence of individuals of different degrees of

virulence in cultures of the bacillus of rabbit septicaemia. J. Expt. Med. 33:773‐789. 1921.15. De Vries, H. The mutation theory. Chicago. 1910.16. Dienes, L., and H. I. Weinberger. The L forms of bacteria. Bact. Rev. 15:245‐288. 1951.17. Enderlein, G. Bakterien‐Cyclogenie. W. de Gruyter, Berlin. 1925.18. Fraenkel‐Conrat, H. The role of the nucleic acid in the reconstitution of active tobacco mosaic virus. J.

Am. Chem. Soc. 78:882. 1956.19. Fraenkel‐Conrat, H. Rebuilding a virus. Sci. Am. 194 6:42‐47. 1956.20. Fraenkel‐Conrat, H., and R. C. Williams. Reconstitution of active tobacco mosaic virus from its inactive

protein and nucleic acid components. Proc. Natl. Acad. Sci. 41:690‐698. 1955.21. Fredericq, P., and A. Gratia. Diversité des souches antibiotiques de B. coli et etendue variable de leur

champ d'action. C.R. Soc. Biol. 140:1032‐1033. 1946.22. Freeman,  V.  J.  Studies  on  the  virulence  of  bacteriophage‐infected  strains  of  Corynebacterium

diphtheriae. J. Bact. 61:675‐688. 1951.23. Gardner, Joan F. Some antibiotics formed by Bacterium coli. Brit. J. Expt. Path. 31: 102‐111.

85

Page 86: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

24. Gratia, A. Sur un remarquable exemple d'antagonisme entre deux souches de Colibacille. C.R. Soc. Biol.93:1040‐1041. 1925.

25. Griffith, F. The significance of pneumococcal types. J. Hyg. 27:113‐159. 1928.26. Heatley, N. G., and H. W. Florey. An antibiotic from Bacterium coli. Brit. J. Expt. Path. 27:378‐390. 1946.27. Hinshelwood, C. N. Adaptation in microorganisms and its relation to evolution. Symp. Soc. Expt. Biol.

7:31‐42. 1953.28. Hotchkiss, R. D. Transfer of penicillin resistance in pneumococci by the desoxyribonucleate derived from

resistant cultures. Cold Spring Harbor Symp. on Quant. Biol. 16:457‐460. 1951.29. Jacob, F. Biosynthese induite et mode d'action d'une pyrocine, antibiotique de Pseudomonas pyocynea.

Ann. Inst. Pasteur 86:149‐160. 1954.30. Jacob, F., A. Lwoff, L. Siminovitch, and E. Wollman. Definition de quelques termes relatifs à la lysogénie.

Ann. Inst. Pasteur 84:222‐224. 1953.31. Jacob, F., L. Siminovitch, and E. L. Wollman. Sur la biosynthèse d'une colicine et sur son mode d'action.

Ann. Inst. Pasteur 83:295‐315. 1952.32. Jacob, F., and E. L. Wollman. Induction of phage development in lysogenic bacteria. Cold Spring Harbor

Symp. Quant. Biol. 18:101‐121. 1953.33. Klieneberger‐Nobel, E. Filterable forms of bacteria. Bact. Rev. 15:77‐103. 1951.34. Knight, C. A. The chemical constitution of viruses. Adv. in Virus Res. 2:153‐182. 1954.35. Levan, A. Chemically‐induced chromosome reactions in Allium cepa and Vicia faba. Cold Spring Harbor

Symp. Quant. Biol. 16:233‐243. 1951.36. Luria, S. E., and M. Delbruck. Mutations of bacteria from virus sensitivity to virus resistance. Genetics

28:491‐511. 1943.37. Lwoff, A. Lysogeny. Bact. Rev. 17:269‐337. 1953.38. Lwoff, A., and A. Gutmann. Recherches sur un Bacillus megatherium lysogène. Ann. Inst. Pasteur 78:

711‐739. 1950.39. Mitsuhashi, S., M. Kurokawa, and Y. Kojima. Study on the production of toxin by C. diphtheriae. Jap. J.

Exp. Med. 20:261. 1949.40. Monod, J. Remarks on the mechanics of enzyme induction. In Enzymes: Units of biological structure and

function, ed. by O. H. Gaebler, pp. 7‐28. Acad. Press Inc., New York. 1956.41. Monod,  J., G. Cohen‐Bazire, and M. Cohn. Sur  la biosynthèse de  la  (3‐galactosidase  (lactase) chez

Escherichia coli. La spécificité de l'induction. Biochem. Biophys. Acta 7:585‐599. 1951.42. Muller, H. J. Artificial transmutation of the gene. Science 66:84. 1927.43. Newcombe, H. B. Origin of bacterial variants. Nature 164:150‐151. 1949.44. Newton, G. G. F., E. P. Abraham, and N. J. Berridge. Sulphur‐containing amino‐acids of nisin. Nature

171:606. 1953.45. Paladini, A., and L. C. Craig. The chemistry of tyrocidine. III. The structure of tyrocidine A. J. Am. Chem.

Soc. 76:688‐692. 1954.46. Pappenheimer, A. M., Jr. Pathogenesis of diphtheria. Symp. Soc. Gen. Microbiol. 5:40‐56. 1955.47. Pappenheimer, A. M., Jr., and C. M. Williams. Effects of diphtheria toxin on the Cecropia silkworm. J.

Gen. Physiol. 35:727‐740. 1952.48. Pollock, M. R. Penicillinase adaptation in Bacillus cereus: adaptive enzyme formation in the absence of

free substrate. Brit. J. Expt. Path. 31:739‐753. 1950.49. Sevag, M. G. Protein molecule, resistance to microbiocides, mutations, and related problems. In Origins

of resistance to toxic agents. Acad. Press Inc., New York. 1955.

86

Page 87: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

50. Sevag, M. G., R. D. Reid, and O. E. Reynolds. Origins of resistance to toxic agents. Acad. Press Inc., NewYork. 1955.

51. Smith, K. M., and R. W. G. Wyckoff. Electron microscopy of insect viruses. Research 4:148‐155. 1951.52. Stanley, W. M.  Isolation of a crystalline protein possessing the properties of tobacco‐mosaic virus.

Science 81:644‐645. 1935.53. Stocker, B. A. D., N. D. Zinder, and J. Lederberg. Transduction of flagellar characters in Salmonella. J.

Gen. Microbiol. 9:410‐433. 1953.54. Stone, W. S., O. Wyss, and F. Haas. The production of mutations in Staphylococcus aureus by irradiation

of the substrate. Proc. Natl. Acad. Sci. 33:59‐66. 1947.55. Vago,  C.  Phénomènes  de  "Latentia"  dans  une maladie  à  ultravirus  des  insectes.  Rev.  Can.  Biol.

10:299‐308. 1951.56. Van Heyningen, W. E. Recent developments  in the field of bacterial toxins. Schweiz. Z. Path. Bakt.

18:1018‐1035. 1955.57. Waddington, C. H. Selection of the genetic basis for an acquired character. Nature 169:278. 1952.58. Williams, R. C., and R. L. Steere. Electron microscopic observations on the unit of length of the particles

of tobacco‐mosaic virus. J. Am. Chem. Soc. 73:2057‐2061. 1951.59. Yamafugi, K. Behaviour of polyhedral virus in host cell. Report of Agr. Technol. Kyushu Univ. No. 12:4‐7.

1954.60. Yamafugi, K., and T. Fujiki. Experimental production of tobacco virus. Biochem. Z. 318:101‐106. 1947.61. Yamafugi, K., and Y. Shirozu. Die Abhängigkeit der Neubildung des Virus Proteins von der Erniedrigung

der Katalase. Biochem. Z. 317:94. 1944.62. Yamafugi, K., and I. Yoshihara. Procedures for the chemical production of silkworm virus. Enzymologia.

15:10‐13. 1951.63. Zamenhof, S. Biology and biophysical properties of transforming principles. Prog. Biophys. 6:86‐119.

1956.64. Zamenhof,  S.,  G.  Leidy,  E.  Hahn,  and  H.  E.  Alexander.  Inactivation  and  unstabilization  of  the

transforming principle by mutagenic agents. J. Bact. 72:1‐11. 1956.65. Zinder, N. D., and J. Lederberg. Genetic exchange in Salmonella. J. Bact. 64:679‐699. 1952.

87

Page 88: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

AUTHOR INDEX

Abraham, E. P.   86Ackerman, L.   30Acree, F.   69, 70, 71Alcorn, S. M.   63Alderton, G.   85Alexander, H. E.   84, 85, 87Alexander, P.   69, 70Amoureux, G.   73, 75Anderson, J. A.   33, 36Andreae, W. A.   17, 18Angus, T. A.   68, 69, 71Arens, K.   36Ark, P. A.   63Ashton, G. C.   57, 63Aso, K.   52Atkinson, R. G.   61, 65Auclair, J. L.   27, 30Auerbach, C.   80, 85Austrian, R.   84, 85Avery, O. T.   84, 85Baker, F. C.   29, 30Barcinsky, R.   15, 18Barnes, R. A.   36Barnes, T. W.   9, 11, 20Barnhardt, C. S.   70, 71Barton, D. H. R.   69, 70Baunacke, W.   15, 18Bawden, F. C.   59, 63, 82, 85Bazzigher, G.   44, 50Beard, R. L.   68, 71Beck, E. G.   41, 42Becker, Y.   18Bedford, Duke of   20Benedict, H. M.   13, 18Bennett, E. L.   12, 18Bentley, J. A.   17, 18Bergold, G. H.   79, 85Berridge, N. J.   86Berthelot, A.   73, 75Bickle, A. S.   17, 18Bishop, D.   16, 18Black, F. L.   83, 85Bliss, D. E.   61, 63Blondeau, R.   13, 21Bode, N. R.   13, 18Bonner, J.   12, 13, 18, 19Bonner, J. T.   70, 71Borthwick, H. A.   32Boussingault, J. B.   7Boysen Jensen, P.   41, 42Braun, A. C.   73, 74, 75, 76, 84Brian, P. W. 43, 44, 46, 47, 48, 50, 54,

56, 57, 58, 59, 62, 63, 64Brierley, W. B.   36, 79, 85Broadbent, L.   22, 30

Broadfoot, W. C.   53, 66Brown, J. J.   58, 64Brown, R.   15, 18Brown W.   43, 48, 50Bruce, W. F.   55, 64, 65Buchanan, J. B.   64, 65Burnet, F. M.   78, 85Calam, C. T.   18, 19Cameron, F. K.   8, 19Carter, W.   42Cation, D.   65Cavill, G. W. K.   67, 71Chabrolin, C.   15, 19Chadwick, L. E.   23, 24, 30, 70, 71Chen, H. K.   73, 75Chinn, S. H. F.   62, 64Chittenden, F. H.   69, 71Clark, R. V.   51Clauson‐Kaas, N.   47, 50Clements, F. E.   6, 11, 19Cohen‐Bazire, E.   86Cohn, M.   86Collins, R. P.   48, 51Commoner, B.   82, 85Conway, H. F.   52Cook, A. H.   48, 50Cormack, M. W.   14, 19Cornfeld, E. C.   59Cox, S. F.   50Craig, L. C.   77, 86Craighead, F. C.   22, 30Crombie, A. C.   23, 30, 32Crosby, J. L.   82, 85Cross, B. E.   45, 46, 50Crowdy, S. H.   62, 64Curtis, P. J.   45, 50, 56, 57, 58, 63Cushing, J. E.   71Danielli, J. F.   82, 85Darpoux, H.   44, 50, 51Darrah, J. H.   32Daubeny, C. G. B.   8, 19Davenport, O.   69, 71Davidson, J.   27, 28, 30Davis, E.   12, 19Dawson, R. F.   27, 30de Candolle, A.   7, 9, 14De Hahn, J. T.   45, 51Dekker, J.   62, 64De Kruif, P. H.   79, 85Delbrück, M.   80Deleuil, G.   12, 19De Ropp, R. S.   73, 75Dethier, V. G.. 22, 23, 24, 30, 70, 71De Vries, H.   80, 85Dickson, J. G.   14, 20

88

Page 89: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

AUTHOR INDEX

Dickson, R. C.   28, 30Dienes, L.   80, 85Dimond, A. E.   43, 47, 48, 49, 51, 52Doolittle, S. P.   34, 36Dufrénoy, J.   33, 36, 50, 51Duley, F. L.   13, 20Durrell, L. W.   36Dutcher, J. D.   55, 64Eberhardt, F.   17, 19Elson, G. W.   50Elvidge, J. A.   55, 64Emerson, O. H.   55, 66Enderlein, G.   79, 85Erdtman, H.   36Evans, A. C.   27, 30Evelyn, J.   6, 11Evanari, M.   16, 17, 19Faivre‐Amiot, A.   44, 50, 51Falck, R.   54, 64Falconer, D. S.   24, 30Farmer, T. H.   50Fawcett, H. S.   53, 64Felber, I. M.   64Fennell, D. I.   52Fitz‐James, P.   69, 71Flanders, S. F.   25, 30Florey, H. W.   77, 86Folsom, J. W.   24, 30Fontaine, T. D.   34, 36Ford, D. L.   67, 71Ford, J. H.   58, 59, 64, 65Forsman, B.   38, 39Forsyth, F. R.   43, 51Fraenkel, G.   26, 27, 30, 31Fraenkel‐Conrat, H.   82, 83, 85Fredericq, P.   77, 86Freeman, G. G.   59, 63, 64Freeman, V. J.   78, 86Fries, N.   38, 39Frisch, K. von   24, 31Fujiki, T.   79, 87Fukunaga, K.   52Funke, G.   13, 19Fusco, F.   67, 71Galston, A. W.   13, 18Gardner, Joan F.   77, 86Gauhe, A.   36Gäumann, E.   33, 34, 36, 43,

45, 47, 48, 50, 51Gerber, N. N.   36Gill, J. E.   36, 59, 64Gilmore, A. E.   14, 20Glister, G. A.   64Goodwin, R. H.   19Gothoskar, S. S.   48, 51Gottlieb, D.   60, 64, 66Gough, H. C.   69, 71

Gries, G. A.   12, 19Griffith, F.   83, 86Gripenberg, J.   36Grossbard, E.   60, 61, 64Grove, J. F. 44, 50, 51, 56, 57, 58, 63, 64Guldensteeden‐Egeling, C. 69, 71Gutmann, A.  7 8, 86Guyot, L.   12, 18, 19Haagen‐Smit, A. J.   13, 19Haas, F.   81, 87Hacskaylo, E.   50, 51Hahn, E.   87Haller, H. L.   69, 71Hamner, C. L.   64Hannay, C. L.   68, 69, 71Hartland, B. L.   9, 19Hatfield, W. C.   36Hayashi, T.   45, 47, 52Heatley, N. G.   77, 86Hellriegel, H.   7, 19Hemberg, T.   17, 19Hemming, H. G. 47, 50, 56, 57, 58,

59, 62, 63, 64Hendricks, S. B.   32Hessayon, D. G.   60, 64Hieke, K.   27, 31Hietala, P. K.   34, 37Hiltner, L.   38, 39Hijner, J. A.   16, 19Hildebrand, A. A.   60, 66Hill, R.   32Hinshelwood, C. N.   82, 86Hoogenheide, J. C.   65Hopkins, A. D.   22, 31Hopkins, B. A.   28, 32Horiuchi, M.   52Horne, W.   13, 21Hotchkiss, R. D.   84, 86Howland, R. B.   69, 71Howland, S. R.   56, 66Hunter, A.   11Husain, M. A.   25, 31Igarashi, H.   52Irving, G. W.   34, 36Jackson, R. W.   52Jacob, F.   77, 78, 86James, R. G.   59, 65James, W. O.   27, 31Jefferys, E. G.   60, 62, 64Jenner, C. E.   32Jerrel, E. A.   68, 71Johansen, F. D.   14, 19Johnson, A. W.   15, 18Johnson, B.   31Johnson, J.   74, 75Johnson, J.R.   54, 55, 56, 64, 65Jones, F. G. W.   16, 19, 23, 32

89

Page 90: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

AUTHOR INDEXKambe, K.   45, 52Katznelson, H.   39Kenten, J.   28, 31King, H. E.   25, 32Klein, D. T.   73, 75Klein, R. M.   73, 75, 76Kleineberger‐Nobel, E.   80, 86Knight, C. A.   82, 83, 85, 86Kobel, H.   45, 51Koch, L.   15, 20Koch, L. W.   14, 20, 59, 65Koeckemann, A.   16, 20Kojima, Y.   78, 86Kornfeld, E. C.   59, 65Kuenen, D. J.   29, 31Kuhn, R.   25, 26, 31, 34Kurokawa, M.   78, 86Kurosawa, E.   45, 51Küster, E.   41, 42Lackmann, J.   7, 20Lal, K. B.   25, 31Langford, C. T.   52Lansdown, A. R.   18Laskaris, T.   73, 75Lathrop, F. H.   27, 31Leach, B. E.   58, 64, 65Lebeau, J. B.   14, 20Lederberg, J.   84, 87Lees, A. D.   29, 31Leidy, G.   84, 85, 87Levan, A.   80, 86Levison, I.   50, 51Lewis, I. F.   41, 42Liebig, J. von   8, 20Liener, I. E.   26, 31Lindley, J.   14, 20Link, G. K. K.   73, 76Lipke, H.   26, 31Lipp, J. W.   23, 31Lippincott, J. A.   85Lockhead, A. G.   38, 39Locksley, H. D.   67, 71Loconti, J. D.   69, 71Loehwing, W. F.   9, 20Long, A. G.   18Löw, I.   25, 31, 34Lowe, D.   62, 64Luckwill, L. C.   40, 42Ludwig, R. A.   43, 44, 48, 51Luria, S. E.   80, 86Lwoff, A.   78, 86Lyon, T. L.   38, 39Ma, R.   36MacDougall, D. T.   49, 51Machacek, J. E.   53, 65MacLeod, C. M.   85MacMillan, J.   50, 57, 64, 65Malpighi, M.   7Maltais, J. B.   27, 31Mann, H. H.   9, 11, 20Marcovitch, S.   28, 31

Marrian, D. H.   20Martin, J. P.   41, 42Massenot, M.   18Massey, A. B.   12, 20McCalla, T. M.   13, 20McCarty, M.   84, 85McColloch, J. W.   23, 31McCrone, W. C.   55, 65McElroy, W. D.   69, 71McGowan, J. C.   56, 57, 62, 63Mclndoo, N. E.   24, 31McKie, M.   78, 85McKinney, K. B.   31Mebane, A. D.   65Melin, E.   62, 65Menzel, A. E. O.   65Miescher, G.   48, 51Millard, W. A.   53, 65Mitsuhashi, S.   78, 86Moewus, L.   16, 20Moewus, T.   16, 20Molisch, H.   11, 20Monod, J.   81, 86Montégut, J.   18Montieth, L. G.   23, 31Morrison, R. I.   59, 64Mulholland, T. P. C.   46, 50, 51, 64Mull, R. P.   65Muller, C. H.   13, 20Muller, H. J.   80, 86Murwin, H. F.   74Naef‐Roth, St.   45, 48, 51Nager, W.   48, 51Neigisch, W. A.   69, 71Neilson‐Jones, W.   61, 65Newbold, G. T.   58, 64Newcomb, E. H.   42Newcombe, H. B.   80, 86Newton, G. G. F.   86Newton, R.   33, 36Nicol, H.   73, 76Nutman, P. S.   38, 39Olive, E. W.   70, 71Oroshnik, W.   62, 65Ostvald, H.   10, 20Owen, .J. H.   36, 37Oxford, A. E.   56, 65Painter, R. H.   22Paladini, A.   77, 86Pallansch, M. J.   31Palmer, J. G.   50Pappenheimer, A. M., Jr.  78, 79, 86Parke, T. V.   59, 65Parker, M. W.   29, 32Parkinson, D.   39Parnell, F. R.   25, 32Parr, T.   42Patrick, Z. A.   14, 20Payne, T. M. B.   39Peterson, D.   65Pickering, S. U.   10, 11, 20

90

Page 91: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

AUTHOR INDEXPierson, C. F.   48, 51Pilet, P. E.   49, 51Plattner, P. A.   48, 50, 51Pollock, M. R.   81, 86Poole, J. B.   36Potts, S. F.   69, 71Pound, G. S.   44, 51Pramer, D.   62, 64, 65Proebsting, E. L.   14, 20Radley, M.   50Raistrick, H.   18, 56, 58, 65Raper, K. B.   52Raudnitz, H.   56, 66Rayner, M. C.   61, 65Reed, H. S.   21Reid, R. D.   87Reinhardt, H. J.   32Rennerfelt, E.   36, 37Reynolds, O. E.   87Rhodes, A.   57, 63Richardson, H. H.   32Richardson, L. T.   61, 65Richman, E. E.   85Ride, M.   44, 51Riker, A. J.   73, '76Ripley, P. O.   9, 11, 20Rivnay, E.   27, 32Roberts, E. A.   38, 39Robinson, D. B.   51Robinson, E.   15, 18Robson, J. M.   80, 85Ross, D. J.   58, 65Roth, L. M.   69, 71Rouatt, J. W.   39, 61, 65Roux, E. R.   13, 21Roux, L.   44, 50, 51Rovina, A. D.   38, 39Ruhnke, G. N.   14, 21Russell, E. J.   8, 9, 11, 21Russell, P. B.   20Russell, R. C.   62, 64Ruston, D. F.   25, 32Salt, G.   25, 32Sanders, E.   28, 30Sanford, G. B.   53, 65, 66Saunders, A. R.   15, 21Schader, E.   16, 20Schaffner, G.   74, 76Schearer, G. B.   85Scheffer, R. P.   48, 51Schlectendahl, D. F. C.   41, 42Schneiderhan, F. J.   12, 21Scholz, C. R.   65Schreiner, O.   8, 21Sequeira, L.   49, 51Sevag, M. G.   81, 83, 87Shaffer, B. M.   70, 71Shirozu, Y.   79, 87Siminoff, P.   60, 64, 66Siminovitch, L.   77, 86Simonart, P.   56, 65

Skinner, J. J.   8, 21Skolko, A. J.   66Slankis, V.   50, 51Sloan, H.   11Smith, K. M.   79, 87Sohns, V. E.   52Sowder, A. M.   35, 37Spring, F. S.   55, 64Stahl, W. H.   69, 71Stahmann, M. A.   37, 51Stanley, W. M.   82, 87Steere, R. L.   82, 87Steeves, T. A.   49, 51Steinhaus, E. A.   68, 71Stephens, J. M.   71Stevenson, I. L.   61, 66Stewart, W. S.   17, 21Stiven, G.   13, 21Stocker, B. A. D.   84, 87Stodola, E. H.   46, 52Stokes, A.   62, 66Stone, W. S.   81, 87Strehler, B. L.   69, 71Stringer, A.  32Stubbs, J.   64Sumuki, Y.   52Sunderland, N.   18Sussman, M.   70, 72Sutton, M. D.   66Swarbrick, T.   40, 42Taber, W. A.   65Tamari, K.   45, 52Tamura, T.   52Taves, C.   19Taylor, C. B.   53, 65Tetjurev, W. A.   16, 21Thexton, R. H.   39Thimann, K. V.   73, 76Thomas, J. E.   73, 76Thornton, H. G.   73, 76Thorold Rogers, M. A.   64Thorpe, W. H.   23, 24, 32Thorsteinson, A. J.   24, 32Timonin, M. I.   14, 21Todd, A. R.   15, 18, 19, 20Topley, W. W. C.   75, 76Toumanoff, C.   72Townley, R. W.   65Trave, R.   67, 71Trischmann, H.   34, 36Tyler, G. J.   18Unwin, C. H.   50Upshall, W. H.   14, 21Vago, C.   72, 79, 87Van Heyningen, W. E.   77, 87Van Overbeek, J.   13, 21Vasudeva, R. S.   53, 66Vercellone, A.   67, 71Vershaffelt, E.   24, 32Vining, L. C.   65Virtanen, A. I.   34, 37

91

Page 92: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

AUTHOR INDEX

Vischer, E. B.   56, 66Vozniakovskaia, Y. M.   38Waddington, C. H.   82, 87Waggoner, P. E.. 43, 47, 48, 49, 51, 52Waksman, S. A.   54, 66Walker, J.C. 33, 36, 37, 48, 51, 52Wallace, R. H.   38, 39Wallen, V. R.   62, 66Walsh, B. D.   22, 32Walton, L.   41, 42Ward, C.   46, 51Waring, W. S.   19, 20Way, A. M.   64Way, M. J.   28, 32Weinberger, H. I.   80, 85Weindling, R.   53, 54, 66Wellman, F. L.   49, 52Went, F. W.   12, 13, 16, 17, 19, 21West, P. M.   38, 39, 60, 66Whetzel, H. H.   59, 66Whiffen, A. J.   58, 65White, P. R.   73, 75Whitney, M.   8, 21Wilfarth, H.   7, 19

Williams, C. M.   79, 86Williams, R. C.   82, 83, 85, 87Williams, T. L.   64Williamson, C. E.   49, 52Wilson, F.   28, 32Wilson, G. S.   75, 76Wilson, P. K.   38, 39Winslow, R. D.   15, 21Winstead, N. N.   48, 52Wintersteiner, O.   65Wolf, F. T.   49, 52Wollman, E.   86Wollman, E. L.   77, 78, 86Woolley, D. W.   47, 52, 74, 76Wootten, D. M.   71Wright, J. M.   50, 60, 61, 64, 66Wu, Jia‐Hsi   85Wyckoff, R. W. G.   79, 87Wyss, O.   81, 87Yabuta, T.   45, 46, 47, 52Yamafugi, K.   79, 87Yoshihara, I.   79, 87Zamenhof, S.   84, 87Zinder, N. D.   84, 87

92

Page 93: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

SUBJECT INDEX

3‐Acetyl‐6‐methoxybenzaldehyde 12, 13Achroia grisella   23Acrasins   70"Acti‐dione"   58Actinomyces scabies   53Acyrthosiphon pisum   27, 28Adsorption, removal of toxins by 8Agriotes spp., food finding by 24Agrobacterium radiobacter   73Agrobacterium rubi   73Agropyron repens   10Agrostis gigantea   9Aldehydes, as phytotoxins   8Alkaloids, biosynthesis of   27Allelopathy   11Allogibberic acid   46Alternaria solani   44Alternaric acid   44Alternarin   44Amaranthus hybridus   17Amino acids, excretion from plant roots   38Amino acids, factors in insect resistance   27Amygdalin, as phytotoxin   14Andropogon pubescens   12Anthonomus grandis   24Antibiosis   5Antibiotics   54, 60Anuraphis roseus   28, 40Aphids, photoperiodism in   28Aphis craccivora   25Aphis chlorin   28Aphis rumicis   28Aphis sorbi   28Armillaria mellea   61Artemisia absinthium   13Artemisia vulgaris   13Asparagine, as insect attractant   24Aspergillus helvola   55Aspergillus fumigatus   55Asterolecanium variolosum   42Bacillus cereus   68, 81Bacillus sotto   68Bacillus thuringiensis   68Bacterial dissociation   79 et seq.Bacterial transduction   84Bacterial transformation   83Bacteriocinogenicity   78Bacteriocins   77Bacteriophages   79Bacterium turnefaciens   73

Barberry, effect on wheat   7Barley, effect of grasses on   9Bees, chemotropic responses of   24Benzoic acid, as phytotoxin   14Benzoxazolinone, as fungicide   34Beta patellaris   16Beta webbiana   16"Big Bud" of currants   40Biotin, as root exudate   38Blastocholines   16Boletus bovinus   62Boletus luteus   50Boletus variegatus   50Bombyx mori   68, 79Brevicoryne brassicae, photoperiodism in   27Bromegrass, phytotoxins of   13Bromus inermis   13Browntail moth, host selection by   24Butoxypolypropyleneglycol, as insect repellent   25t‐Butyl peroxide, as mutagen   783‐Butylpyridine‐6‐carboxylic acid  45Cabbage butterflies, chemotropic responses of   24Carpocapsa pomonella   68Castanea dentata   44Castanea sativa   44Catechol, as fungicide   33Chalconines, as factors in resistance 26Chenopodium album, inhibition by barley   17Chickweed, effect on crop plants   9Chloramphenicol   60, 62Chlorida obsoleta, host selection by 23Chloromycetin   60Cibotium Barometz   11Cinnamic acids, as phytotoxins   13Cladosporium fulvum, in antibiosis 53Coffee leaf disease   49Coliasphilodiceeurytheme, biological control of   68Colicines   77Colletotrichum circinans   33Colorado potato beetle, host resistance to   25, 34Competition, among higher plants    6 et seq.Corn earworm, host selection by  23Coronopus squamatus, use against eelworms   16Corynebacterium diphtheriae  68, 78Couch grasses, phytotoxicity of    10Coumarins, as phytotoxins   13Crop rotation   7Crown gall   73"Curling Factor"   56Cyclogeny   79

93

Page 94: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

SUBJECT INDEX

L‐ forms of bacteria   80Linseed, seed germination stimulant from   15Lithospermum fruticosum   12Lycomarasmin   47Lycopersicin   34Lycopersicum pimpinellifolium   34Lymantria dispar   69Lysogeny   78Matricaria inodora   9Meadow nematodes   14Metatechanychus ulmi, photoperiodism in   29Methylbis(ß‐chloroethyl) amine, as mutagen   782‐Methyl‐1,4‐dihydroxybenzene, from insects   69Mikiola fagi, gall formation by   41Monoculture, defects of   9Mouse‐ear, phytotoxins from   12Musca domestics   70Mustard oils, as insect attractants    24Mutation   80Mycorrhiza   49, 61Myzus persicae   22, 25Naphthalene acetic acid   40Nematodes, stimulation of   15Nemeritis canescens, host selection by   23Nicotiana tabacum   27Nisin   77Nitrogen mustards, as mutagens   78Olfactory responses, in host selection 24Omphalia flavida   49Onion, resistance to Colletotrichum   33Ophiobolus graminis   53Oriental fruit moth, photoperiodism in   28Orobanche cumana   15Orobanche minor   15Orobanche speciosa   15Osage orange, resistance to fungi   36Oxytetracycline   62Parthenium argentatum   13Peach, replant problem   7, 14Peas, aphid resistance in   27Pectolytic enzymes, as phytotoxins  48Penicillium cyclopium   58Penicillium digitalum   59Penicillium expansum   53Penicillium gladioli   57, 58Penicillium griseofulvin   56, 57Penicillium janczewskii   56, 57Penicillium jenseni   55Penicillium obscurum   55Penicillium patulum   60Penicillium terlikewskii   55Phaseolus vulgaris   25Phenols, as fungicides   33

Phormia regina   24Photoperiodism   28o‐Phthalaldehyde   58Phytoptus ribis   40Phytotoxins, from higher plants   11 et seq.Phytotoxins, role in plant pathology   43 et seq.Pieris brassicae   24Pieris rapae   24Pinosylvin, as fungicide   34Plant excretions, as factor in crop rotation   7Plant excretions, as source of phytotoxins   8Plasmagenes   82Popillia japonica, host selection by 23Potato scab, control by green manuring   53Prophages   78Prosoplasmas   41Protocatechuic acid, as fungicide    33Pseudomonas angulata   75Pseudomonas tabaci, toxins from   74Pseudomonas viscosa   62Puccinia graminis, phytotoxins from 43Pyocine   77Pyrausta nubilalis   68Red clover, plowing in of   61Rhizobium spp.   7, 73Rhizosphere   38Rhyzopertha dominica   23Rimocidin   62Root excretions, historical   8Root excretions, effect on higher plants   8 et seq.Root excretions, effects on soil organisms   38 et seq.Rye, resistance to Fusarium   34Salicylaldehyde, as phytotoxin   8Salmonella spp.   77, 84Sclerotinia fructicola   53Sclerotinia fructigena   53Scopoletin, as phytotoxin   17Scythian lamb   6, 11Seed treatment, use of antibiotics for 62Shigella dysenteriae   77Sinalbin, as insect attractant   24Sinigrin, as insect attractant   24Snow mold   14Solanidine   26, 35Solanines   26Solanum andigenum   16Solanum chacoense   25Solanum demissum   25, 26Solanum dulcamara   26Solanum nigrum   26Solanum polyadenium   25Solanum tuberosum   26Solidago virgaurea   12

94

Page 95: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

SUBJECT INDEX

Cycloheximide   58Cyclopolic acid   58Cytoplasmic inheritance   822,4‐D   13, 49Day length, effects on organisms  29Dechlorogriseofulvin   87Demissidine   35Demissine   26Deoxyribonucleic acids   78, 84Diamond back moth, host selection by   24Diapause in insects, hormonal control of   29Diaporthin   44Diataraxia oleracea   28Dibotryon morbosum   59N,N‐Diethyltoluamide, as insect repellent   25Dihydrogladiolic acid   58Dihydroxystearicacid, as phytotoxin   83,5‐Dihydroxy‐transstilbene, as fungicide   34Dimethylfluorene   46Dimethyl phthalate, as insect repellent   25Draecula cephalamollipes, gall formation by   41Drino bohemica, host selection by   23Eclipic acid   16Eelworm hatching factor   15Empoasca devastans   25Empoasca faciatis   25Encelia farinosa, phytotoxins from   12, 13Endothia parasitica, toxins from  44Enzyme induction   81Ephestia kuehniella   23Erica multi flora   12Escherichia coli   772‐Ethyl‐1,4‐dihydroxybenzene from insects   692‐Ethyl‐1,3‐hexanediol, as insect repellent   25Ethylene, phytotoxicity of   49Ethylenechlorohydrin, effect on dormancy   17Euproctes chrysorrhaea, chemotropism of   24Eurosta solidaginis   42Eurycotes fiorindana, insecticide from   69Flax, wilt resistance of   14"Florigen"   28Fluctuation tests   80Fluvomycin   77Franseria dumosa   12, 13Furocoumarins, as phytotoxins  12Fusaric acid   45Fusarinic acid   45Fusarium culmorum   14Fusarium lini   14Fusarium lycopersici  34, 47, 48, 49Fusarium moniliforme   45

Fusarium nivale   34Gall formation by insects   41Gibberella fujikuroi   45Gibberellic acid   45Gibberellins   45Gladiolic acid   57Gliocladium fimbriatum   54Gliotoxin   54 et seq. 60Glucocheirolin, as insect attractant 24Gnorimoschema gallaesolidaginis,

gall formation by   41Gramicidin   77Grapholitha molesta, photoperiodism in   28Grasses, interspecific effects   9Griseofulvin   56Guayule, phytotoxins from   13Gum, as defense against pathogens  33Gymnosporangium juniperi‐virginianae   49Gyptol   69, 70Habrobracon venom, as insecticide 68Hamamelis virginiana   41Helianthemum lavandulaefolium       12Helminthosporium sativum, toxins from   44Heterodera cruciferae   15Heterodera rostochiensis   15Heterodera schachtii   15, 16trans‐2‐Hexenal   69Hieracium pilosella   12Higher plants, toxins from  9 et seq.Holcus mollis   9Homeostat   82Hopkins Host Selection Principle 22, 68Hormaphis hamamelidis   41Host resistance, to fungi  33 et seq.Host resistance, to insects  22 et seq.Hydrogen cyanide, as phytotoxin  14Hydrogen cyanide, from millipedes 69Hydrojugone   12Hydroxylamine, virus induction by 795‐Hydroxy‐1,4‐naphthoquinone, as phytotoxin   12Indoleacetic acid   13, 17, 49, 50, 73Indolylacetonitrile   17Insect repellents   25Iridomyrmecin   67Japanese beetle, host selection by   23Juglans cinerea   11Juglans nigra   11Juglone, as phytotoxin   12Kataplasmic galls   41 Latent virus   79Latheticus oryzae, insecticides from 69Leptinotarsa decemlineata, resistance to   25,26

95

Page 96: CHEMICAL ASPECTS OF ECOLOGY IN RELATION TO AGRICULTURE

SUBJECT INDEX

Sorghum vulgare   15Soybean, plowing in of   60Soybean, resistance to insects of   26Soyin   26Spergula arvensis   9Spurrey, effects on crop plants   9Stellaria media   9Streptomyces griseus   58Streptomyces rimosus   62Streptomyces venezuelae   60Streptomycin   62, 63Striga hermonthica   15Striga lutea   15Subtilins   77Swine cress, in eelworm control   16Systemic fungicides   62Tabtoxinine   75Tartarian lamb   11Téletoxie   12Tetrahydroxystilbene, as fungicide  36Thamnosa montana   12Thiamine, from plant roots   38Thuja plicata   35Thujaplicins, as fungicides   35Tobacco mosaic, strains of   82Tobacco, "wild fire"   74Tomatin   26, 34Tomato moth, photoperiodism in  28Toxylon pomiferum   36Trachypogon plumosus   13Transduction   84

Transforming agents   84Tribolium castaneum   69Tribolium confusum   69Tribolium destructor   69Trichoderma lignorum   54Trichoderma viride   14, 54, 61Trichogramma evascens   25Trichothecin   59, 60Trichothecium roseum   59Trimethylethylene, as fungicide   43Trionymus sacchari   41Tropolone derivatives, as fungicides 35Tumor‐inducing principle   73, 84Twitchgrasses, effects on crop plants   9Tyrocidines   77Uromyces pisi   49Ustilago hordei   62Ustilago nuda   62Ustilago zeae   49Vanillin, as phytotoxin   8VerticilIium alboatrum   48Viridin   56Vivotoxins   43Virus structure of   82Walnuts, effects on vegetation   11"Wildfire" toxin   74Wireworms, food finding by   24Wormwood, phytotoxins of   13D‐Xyloketose   15

96