characteristics of nearside car crashes an integrated...

66
Characteristics of nearside car crashes – an integrated approach to side impact safety Cecilia Sunnevång Institutionen för kirurgi och perioperativ vetenskap Umeå 2016

Upload: hacong

Post on 04-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

Characteristics of nearside car crashes – an integrated approach to side impact safety Cecilia Sunnevång

Institutionen för kirurgi och perioperativ vetenskap

Umeå 2016

Page 2: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

Publisher under Swedish law: the Dean of the Medical Faculty

This work is protected by Swedish Copyright Legislation (Act 1960:729)

ISBN: 978-91-7601-587-2

ISSN: 0346-6612

Elektronisk version tillgänglig på http://umu.diva-portal.org/

Tryck/Printed by: Lars Åberg Service Centre KBC

Umeå, Sweden 2016

Page 3: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

To my father

Page 4: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

i

Table of Contents

Table of Contents i Abstract ii Abbreviations iv List of Publications v Background 1

Side Crashes 3 Infrastructural Improvements 4 Development of Vehicle Safety Systems 6

Current Test Protocols for Side Impact 9 Anthropomorphic Test Devices for Side Impact Injury Assessment 10

Aims 12 Materials and Methods 12

Theoretical Framework 13 Real Life Data Analyses 14

Potential of AEB in Intersection Crashes 17 Injury Distribution 20

WorldSID Response Compared to Post Mortem Human Subjects 21 Crash Tests 23

Results 25 Real-life Data Analyses 25

Potential of AEB in Intersection Crashes 27 Injury Distribution 29

WorldSID Response Compared to Post Mortem Human Subjects 29 Crash Tests 31

General Discussion 33 Injuries, Injury Risk and Severity Levels 33 Analysis Using the Integrated Safety Chain 35 Nearside Crashes in the Integrated Safety Chain 36 Improved Protection for the Remaining Unavoidable Crashes 39 Implication of Results 41 Limitations 42 Future Research 43

Conclusions and Recommendations 43 Acknowledgements 45 References 47

Page 5: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

ii

Abstract

Introduction: Approximately 1.25 million people globally are killed in traffic

accidents yearly. To achieve the UN Global Goal of a 50% reduction of fatal

and serious injuries in 2020 a safer infrastructure, as well as new safety

technologies, will be needed. Side crashes represent 20% of all serious and 25

% of fatal injuries. The overall aim of this thesis is to provide guidelines for

improved side impact protection. First, by characterizing nearside crashes and

injury outcome, including injuries from the farside occupant, for non-senior

and senior front seat occupants. Second, to determine whether the WorldSID

dummy provides opportunities for improved in-crash occupant protection.

And third, by relating in-crash occupant protection to pre-crash

countermeasures, to explore a holistic approach for side crashes using the

integrated safety chain from safe driving to crash.

Methods: NASS/CDS data for both older and modern vehicles was used to

provide exposure, incidence, and risk for fatal injury as well as detailed injury

distribution and crash characteristics. The WorldSID dummy was compared

to Post Mortem Human Subjects (PMHS) in impactor tests at high and low

severities to demonstrate the possibilities of this tool. Crash tests were

performed to evaluate WorldSID crash test dummy assessments of injuries

found in the NASS/CDS data. The integrated safety chain was used to

demonstrate how to evaluate occupant protection in side crashes from a larger

perspective, involving infrastructure and Automated Emergency Braking.

Result: Most side crashes occur at intersections. The head, thorax, and pelvis

are the most frequently injured body regions, and seniors have a higher risk

for rib fractures compared to non-seniors. The WorldSID dummy response

was similar to the PMHS response at the higher impact speed, but not at the

lower. In conjunction with improved airbags infrastructural change, and the

use of Automated Emergency Braking, can effectively reduce the number of

fatalities and injured occupants in side impacts.

Conclusion: Future focus for side impact protection should be on

intersection crashes, improved occupant protection for senior occupants, and

protection for and from the farside occupant, reducing injury risk to the head,

thorax, and pelvis. The WorldSID dummy has the ability to reproduce

humanlike responses in lateral and oblique impacts. However, at a low crash

severity, chest deflection could be underestimated, which must be taken into

consideration when evaluating, for example, pre-crash inflated side airbags.

Analyzing nearside crashes using the integrated safety chain shows that speed

management by means of roundabouts is an efficient countermeasure

Page 6: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

iii

reducing the number of injurious crashes, as well as reducing variations in

crash severity. In combination with an Automated Emergency Braking a large

part of side crashes could be avoided or crash severity mitigated. Rather than

developing structures and airbags for high-speed crashes, it is important to

consider alternative countermeasures. Hence the need for an integrated

approach to side impacts.

Page 7: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

iv

Abbreviations

ABS Antilock Braking System ADAS Advanced Driver Support Systems AEB Automated Emergency Braking AEB+ Automated Emergency Braking at higher brake level

than currently implemented (1,5g) AIS Abbreviated Injury Scale ATD Anthropomorphic Test Device Delta-V, DV Delta Velocity (change of velocity) EC European Commission ECE R95 European Commission for Europe, Regulation No. 95

(Protection of occupants in the event of lateral collision)

ESC Electronic Stability Control Euro NCAP European New Car Assessment Programme Euro RAP European Road Assessment Programme EuroSID2 European Side Impact Dummy (version2) FMVSS Federal Motor Vehicle Safety Standards GIDAS German In-Depth Accident Study Global NCAP Global New Car Assessment Programme IIHS Insurance Institute of Highway Safety IRC Injury Risk Curve LTV Light Truck or Van MAIS3+F Maximum AIS3 including fatal injuries MDB Moving Deformable Barrier NASS/CDS National Accident Sampling System / Crash

Worthiness Data System NHTSA National Highway and Traffic Safety Administration PMHS Post Mortem Human Subject SID2s Side Impact Dummy 2s SUV Sport Utility Vehicle THOR Test device for Human Occupant Restraint TTC Time to collision US NCAP US New Car Assessment Programme V2X Vehicle to vehicle or infrastructure communication WorldSID, WSID Worldwide Side Impact Dummy, 50th percentile male

Page 8: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

v

List of Publications This thesis is based on the following five publications, which will be referred

to in the text as Studies I-V:

Study I

Sunnevång C, Rosén E, Boström O. Real-life fatal outcome in car-to-car

nearside impacts--implications for improved protection considering age and

crash severity. Traffic Injury Prevention. Vol. 10(2):194-203, 2009.

Study II

Sunnevång C, Sui B, Lindkvist M, Krafft M. Census Study of Real-Life

Nearside Crashes with Modern Side Airbag-Equipped Vehicles in the United

States. Traffic Injury Prevention, Vol. 16(suppl 1):117-124, 2015.

Study III

Sunnevång C, Subit D, Kindig M, Lessley D, Lamp J, Boström O, Kent R.

Response of the Worldwide Side Impact Dummy (WorldSID) to Localized

Constant-Speed Impacts. Annals of Advancement in Automotive Medicine

/Annual Scientific Conference, Vol 55:231-41, 2011.

Study IV

Sunnevång C, Subit D, Pipkorn B, Kent R. Rate dependent spine motion and

chest deflection differences between WorldSID and PMHS under localized

constant-speed impacts. Submitted to Traffic Injury Prevention, 2016.

Study V

Sunnevång C, Pipkorn B, Boström O. Assessment of Bilateral Thoracic

Loading on the Nearside Occupant Due to Occupant-to-Occupant Interaction

in Vehicle Crash Tests. Traffic Injury Prevention Vol. 16:217–223, 2015.

Page 9: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

1

Background

Traffic injuries and fatalities are an increasing global health problem. If

current injury rates are sustained, traffic accidents will be the fifth cause of

death for the younger population in 2020 (WHO 2015). Currently,

approximately 1.25 million people throughout the world die in traffic

accidents yearly. Half are occupants of 4-wheeled motor vehicles, while the

remainder drive powered two-wheelers, are cyclists, or pedestrians (WHO

2015). In the US in 2009, approximately 2 million motor vehicle occupants

were injured, and 22,383 of these were fatally injured. (NHTSA 2013). In

Europe (EU25) 10,950 motor vehicle occupants were fatally injured in 2013

(EC 2015a).

In the Decade of Action for Road Safety 2011-2020 safer vehicles are

considered one of the key pillars of the Decade Action Plan (UN 2010). The

action plan specifically addresses the promotion of safety systems through

harmonization of global standards, consumer information, and incentives to

accelerate the implementation of new technology (UN 2010). In the 2030

Agenda for Sustainable Development, launched by the UN in September 2015,

road safety was included for the first time, and one of the Global Goals was to

reduce global road traffic fatalities and injuries by 50% between 2010-2020

(UN 2015).

The road transport safety strategy Vision Zero, aiming toward no fatalities or

serious injuries in the road transport system, was adopted by the Swedish

government in 1997 (Swedish Government 1997). As in other safety policies

Vision Zero is based on Haddon’s principles of focusing not only on one main

accident causation factor, but to work with a systematic combination of

causation, and the effect of countermeasures (Haddon 1980). The Vision Zero

strategy introduced a Safe System Approach, focusing on sharing

responsibility between system providers and users in order to reduce injury

within the transport system (Tingvall 1995, Tingvall et al. 1996, Tingvall 1997).

Since the adoption of Vision Zero in Sweden, focus on countermeasures for

safer roads and vehicles, as well as speed management, have decreased road

fatalities by approximately 50% (541 in 1997 to 259 in 2015), despite the

number of vehicles having increased substantially (Swedish Transport

Administration 2016). Other countries and organizations have adopted this

approach (Belin 2012), and thereby paved the way for Global Goals.

According to Vision Zero it is important to focus on all aspects of traffic safety

(such as driver behavior, infrastructure and vehicles). A safe driver is assumed

fit to drive and complying with traffic regulation, which means wearing a

Page 10: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

2

seatbelt, being sober, and complying with speed limits (Stigson 2009). A safe

infrastructural design focuses on reducing the number of crashes by, for

example, speed management (roundabouts, speed cameras, and road humps),

and separated vehicle lanes (Kallberg et al. 1999, VTI 2016). For safer vehicles,

Global NCAP has identified prioritized technical solutions that will be

promoted through rating schemes (Global NCAP). Technologies in focus are

seatbelts (and seatbelt reminders), airbags, tires, Antilock Braking Systems

(ABS), Adaptive Cruise Control (ACC), Electronic Stability Control (ESC), and

Automated Emergency Brake (AEB) systems.

To evaluate the effects of countermeasures within the Safe System Approach

the integrated safety chain was introduced by Tingvall et al. in 2008. The

method was further developed by Lie (2012). Strandroth et al. (2012) used the

integrated safety chain as a method to demonstrate a combined effect of

simultaneous improvements of road and vehicle safety technologies. A more

detailed explanation of the integrated safety chain is available in the Method

and Materials section, whereby the method is the theoretical framework of

this thesis.

Regardless of countermeasure, human injury tolerance and biomechanics

constitute the limitations of the road transport system. To investigate the

potential for crash avoidance and injury mitigation the dose-response model

developed by Kullgren (1998) can be used. Crash severity (exposure) is the

input, dose, and injury outcome (incidence), the response. Injury risk function

forms the link between input and outcome (Kullgren 2008).

Figure 1. Dose-response model with methods of reducing the number of injured occupants by moving the curves (1-3) (Kullgren 2008).

By introducing countermeasures that reduce crash severity (1), or the number

of crashes (2), or the injury risk (3) the number of injured occupants is

reduced. The dose-response model has been applied to real-life data in several

Page 11: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

3

studies as a means to predict the influence on injury outcome when

introducing new countermeasures (Norin 1995, Kullgren 1998, 2008).

Side Crashes

For crashes resulting in serious (AIS3+) and fatal injuries, side crashes are the

second most common crash direction (principal direction of force 2-4 and 8-

10 0’clock) after frontal crashes (Traffic Safety Facts 2013). Using US national

statistics and comparing the ratio of fatal side and frontal crashes, the trend is

increasing, implying that the number of frontal crashes with fatal outcomes is

being reduced faster than fatal side crashes (Subit et al. 2010). Side crashes

account for approximately 20% of all crashes resulting in serious injury, and

approximately 25% of all fatalities (Traffic Safety Facts 2013). In the US,

approximately 5000 people are fatally injured in side crashes (excluding

rollovers). Previous research has shown that occupants exposed to a nearside

(seated adjacent to the intruding structure) or farside (seated opposite the

intruding structure) crashes have similar exposures, and, regardless of injury

outcome, 50% of occupants are seated nearside, and 50% are seated on the

farside (Gabler et al. 2005, Fildes et al. 2005, Sander and Boström 2010,

Brumbelow et al. 2015). When considering occupants sustaining serious

injuries in side crashes the ratio is 65% nearside, and 35% farside, and for

fatally injured occupants, 75% nearside, and 25% farside.

For nearside occupants previous studies have shown that the most frequent

severely and fatally injured body regions are the head and thorax (Thomas and

Frampton 1988, Håland et al. 1993, Yoganandan et al. 2007). Thoracic

injuries are more frequent than head injuries in an older age group (Kent et

al. 2005a, Augenstein et al. 2005). Including moderate (AIS2+) injuries shows

that, after the head and chest, lower and upper extremity injuries are also

frequent (Welsh et al. 2007, Yoganandan et al. 2007). Low severity injuries

resulting in long-term consequences are injuries to the spine, head and lower

extremities (Stigson et al. 2015). For the far side occupant the most frequent

serious and fatal injuries were also to the head and thorax, followed by upper

and lower extremities (Gabler et al. 2005, Yoganandan et al 2014.). For farside

occupants low severity injuries to the head, face and lower extremities result

in long-term consequences (Stigson et al. 2015).

For side crashes in the US, the most common crash mode is a car-to-car

impact (85%), but when serious or fatal injury is considered, a larger portion

of the striking vehicles are light trucks or vans (LTV). Due to the difference in

front end structure the fatality rate is 2.5 times higher than for being impacted

by another car (Prasad et al. 2015). In Europe, the most common side impact

crash mode is car-to-car impact (EU 2015a). In side crashes resulting in AIS3+

Page 12: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

4

or fatal injury the maximum residual intrusions are found predominantly at

the center of the vehicle’s side or in front of the b-pillar, with a principal

direction of force at 9-10 and 2-3 o’clock (Xinghua et al. 2012, Brumbelow et

al. 2015). Based on accident data (UK and US) side crashes resulting in serious

and fatal injury occur at severities above what is currently (2016) evaluated in

consumer rating test procedures (Thomas and Frampton 1999, Brumbelow et

al. 2015).

Nearside occupant protection in side crashes is a challenge due to the speed

of the event and the short distance between the nearside occupant and the

intruding structure. Loading of the occupant, and thereby the injury risk,

depends on the speed of the intruding structure, as well as the relative change

of velocity, delta-v (Tingvall et al. 2003). The impact speed of the bullet vehicle

deforms the target vehicle’s side (intrusion), as well as translating the target

vehicle in the impact direction (delta-v). The allotment of intrusion, intrusion

speed, and delta-v are dependent on the vehicle mass ratio, the bullet front,

and target side structure. To improve occupant protection in side crashes it is

therefore important to focus on energy control (Tingvall et al. 2003). This can

be done by speed limit restriction (to control impact speed) and control of

structural compatibility throughout the vehicle fleet.

Infrastructural Improvements

The infrastructural design is an important part of the Safe System Approach.

Safe infrastructural design anticipates human errors, and potential impact

energy can be controlled (Stigson 2009). When vehicle trajectories cross,

crash risk increases. Intersections lead to complex situations, with a high

frequency of crashes leading to fatal and serious injuries, as well as property

damage. In 2013, 20% of all European fatalities, and 26% of US fatalities

occurred at intersections (EC 2015b, NHTSA 2014).

The European Road Assessment Programme (Euro RAP) is a program that,

like Euro NCAP for vehicle safety, evaluates and provides star ratings for

European road standards with respect to safety. A four-star Euro RAP rating

on intersections limits speed to less than 50 km/h (no roundabout), or above

50 km/h requiring grade separation or a roundabout (Stigson 2009).

The most strategic countermeasures for reducing injurious intersection

crashes are plane separate intersections, roundabouts, and reduced vehicle

speed (Oxley et al.2004). Roundabouts, an infrastructural design reducing

travel speed, can reduce the number of crashes by up to 90%, and reduce

serious and fatal injuries by 60-80% (Persaud et al. 2000, Gross et al. 2014).

Page 13: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

5

A roundabout (Figure 2) has fewer points of conflict than a traditional

intersection, and specifically addresses crossing path and left turn scenarios.

Figure 2. Roundabout example (NTF 2016).

The effectiveness of conflict reduction of the roundabout compared to

signalized intersections was found to be less at intersections exceeding a

certain traffic volume, however, for crashes resulting in serious injury,

effectiveness was high for all intersections (Gross et al. 2012). Replacing

intersections with roundabouts reduces speed, number of conflict points, and

number of side crashes, resulting in fewer injuries to car occupants and

pedestrians (Persuad et al. 2014, Gross et al. 2012, Hydén and Várhelyi 2000,

Retting et al. 2001). However, studies show that car-to-bicycle crashes are

increasing in roundabouts as compared to intersections, resulting in more

injuries to cyclists (Hydén and Várhelyi 2000, Daniels et al. 2007). The

increased risk of injury for cyclists can be due to rules experienced as

ambiguous for the right of way between bicycle and car, as well as roundabout

design (Hydén and Várhelvi 2000, Sakshaug et al. 2010).

There are several aspects to be considered when designing a roundabout.

Diameter, affecting the lateral displacement of the vehicle, will affect speed

when approaching the roundabout, and hence traffic flow. Integrating cyclists

to the roundabout increases complexity, and the number of conflicts

compared to separate cyclist lanes (Daniels et al. 2007, Sakshaug et al. 2010).

For older drivers information on an impending roundabout, safe speed while

approaching, the number of lanes in the roundabout, and what lane to use

when entering and exiting the roundabout, is of primary importance (Lord et

al. 2007).

Remaining crash types when replacing a junction with a roundabout are rear-

end crashes, entering crashes, crashes to vulnerable road users, and single

vehicle crashes to the central island (Mandavilli et al. 2009, Polders et al.

2015). Sideswipes also occur for roundabouts with multiple lanes.

Page 14: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

6

To further reduce side crashes by infrastructural design, separated vehicle

lanes have proven effective, even if data sets are small. A benefit analysis,

comparing the fatality ratio prior to and after separated lanes, carried out by

the Swedish National Road and Transport Institute, showed a 70% reduction

of severe and fatal injuries (Vadeby and Björketun 2016).

Development of Vehicle Safety Systems

Today, there is a wide range of vehicle safety systems. It is common to divide

these systems into active safety systems, often related to the pre-crash phase

and used for crash avoidance, and passive safety systems, related to occupant

protection during the crash (in-crash) as injury mitigation. This categorization

is sometimes confusing. Haddon, for instance, refers to active safety as

systems initiated by the driver, and passive as systems initiated by the vehicle

(Haddon 1980). A belt system would, in that sense, be considered an active

system, which is not presently the case. To best utilize modern technology it is

time to avoid categories and refer only to safety systems. As pointed out in the

Safe System Approach vehicle safety systems need to be integrated with the

road and human user in order to achieve full potential. Consequently, an

integrated safety approach is recommended.

During the last few decades, occupant safety, especially for frontal impacts,

has been greatly improved (Frampton et al. 2002, Kullgren et al. 2010, Eigen

et al. 2012). The structural performance of cars has been upgraded, reducing

intrusion into the passenger compartment, and occupant protection systems

for injury prevention during the crash phase, have been introduced (Kahane

2004). The seat belt is the most effective in-crash safety system, keeping the

occupant in a stable position, and reducing serious and fatal injuries by

approximately 40% (Evans 1991, Kahane 2000). Adding the frontal airbag

increases the risk-reducing effect in frontal impacts by 60-70% (Kent et al.

2005). However, the seat belt and frontal airbags are less effective (except for

preventing ejection) when the vehicle is impacted from the side (Håland 1994,

Viano and Paranteau 2010). Since the nearside occupant is exposed to the

highest risk of injury, priority for occupant protection has been to reduce

loading transferred from the intruding structure to the nearside occupant. The

short distance between the occupant and intruding structure, in combination

with the rapidity of the event, make side impacts a challenge in terms of

occupant protection (Håland 1994).

Epidemiological studies and crash tests concluded that, despite structural

improvements, additional occupant protection was needed. Thus, side airbags

were developed (Håland 1994, Pipkorn 1996). In 1995 Volvo was the first

manufacturer to introduce a thorax protection side airbag, supplied by

Page 15: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

7

Autoliv. In 1998 the inflatable curtain (IC) was introduced as a means of

reducing head injuries in side impacts (Öhlund et al. 1998, Bohman et al.

1998).

Legal and rating requirements developed for side impact protection since the

mid-90s have resulted in a majority of passenger cars now equipped with

airbags, protecting the head and chest for the nearside occupant.

Requirements have also contributed to further structural improvements in

newer cars, which have reduced intrusion, and reduced the risk of occupant

injury (Samaha 2003, Kahane 2007, Welsh et al. 2007, Sunnevång et al.

2010). American accident statistics have shown that airbags protecting the

head and thorax reduce the risk of fatal injuries in a side impact by

approximately 30% (McCartt and Kyryschenko 2007, Kahane 2014). Using

Swedish data Stigson and Kullgren (2011) showed a similar risk reduction for

serious injury. However, American and Swedish accident statistics have

shown that serious and fatal side impacts occur at higher crash severities than

those for which the restraint systems were developed, thus implying that the

severity (e.g. impact speeds) in today's legal and rating tests should be

increased (Thomas and Frampton 1999, Arbelaez et al. 2005, SRA 2006,

Brumbelow et al. 2015).

As outboard side airbags (protecting nearside occupants from the intruding

structure) are becoming standard equipment, attention has also been paid to

farside occupants. Of all side impacts, approximately 35% of serious, and 25%

of fatal injuries, are sustained by the farside occupant (Gabler et al. 2005,

Fildes et al. 2005, Sander and Boström 2010). At high severities side airbags

on the struck side also provide protection for the farside occupant (Kahane

2007). However, adding test procedures addressing injuries to farside

occupants in moderate severity crashes is recommended to improve overall

side impact protection (Boström et al. 2008, Newland et al. 2008).

Studies investigating two front seat occupants exposed to side impacts have

found that the nearside occupant injury risk increases by 8% if there is a

passenger present, and that in cases with two occupants, the nearside

occupant is, to a greater extent, more severely injured than the farside

occupant (Newland et al. 2008, Viano and Parentau 2010, Stigson and

Kullgren 2011). Injury risk and injury mechanisms for the farside occupant, as

well as for the nearside occupant in cars without airbags, are well documented

(Thomas and Frampton 1988, Håland et al. 1993 Yoganandan et al. 2007,

2014). However, injuries sustained in airbag-equipped cars, and to the

nearside occupant, due to occupant-to-occupant interaction, have not yet

been thoroughly investigated.

Page 16: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

8

With improved safety for front seat occupants, attention has also been

directed toward the rear seat. Although less frequently occupied than the front

seat, rear seat occupants sustain fatal and serious injuries in side crashes. For

children, the head, thorax and pelvis are the most frequently injured body

regions for restrained occupants (Bohman et al. 2009). In 2008 92% of new

cars in the US were equipped with side airbags as standard equipment in the

front seat. The corresponding number for the rear seat was 6%. Adding seat-

mounted side airbags to the rear seat would substantially reduce occupant

injury risk, and also ensure shorter occupants the protection provided by

inflatable curtains for taller occupants (Bohman et al. 2009).

In recent years electronic systems have been developed for the improvement

of car occupant safety. These can be divided into systems that inform or warn

the driver of a critical situation, and systems that intervene to avoid a crash,

or mitigate crash severity. Systems, providing situational awareness, vehicle

control, and driver monitoring, create new opportunities for crash avoidance

and injury mitigation (Schöneburg et al. 2003). These systems are crucial for

highly automated driving, where the driver can engage in tasks other than

driving (Eugensson et al. 2013).

Two systems that have long been on the market are Anti-lock Braking Systems

(ABS) and Electronic Stability Control (ESC). Both are designed to avoid

uncontrolled skidding during braking (ABS) and maneuvering (ESC). The

ABS prevents tires from locking during hard braking, which enables steering,

and ESC was introduced in the late nineties to prevent loss-of-control

accidents by helping the driver maintain or regain control of the vehicle when

close to losing control. Between the manufacturing years 2000 and 2007 the

fitment of ESC into new vehicles increased from 5% to 41%, and by 2017 all

new vehicles in the US will be equipped with ESC (Kahane 2012). In Sweden,

almost all new cars are fitted with ESC since 2009 (Strandroth 2012). Based

on Swedish data the ESC reduces fatal loss of control accidents by 74% (Lie

2012b). This substantial reduction of loss of control accidents could, in terms

of side impacts, reduce almost all high severity impacts such as skidding into

oncoming traffic, loss of control resulting in impacts to fixed objects, and

rollovers.

Newer sensing systems, such as cameras and radar, collecting information on

vehicle surroundings, are becoming increasingly implemented. Exterior

sensor systems are a must for advanced driver support systems (ADAS) that

can warn or intervene in critical situations. One intervention, where exterior

sensors are used, is the Automated Emergency Braking, AEB, where the car

brakes automatically before an estimated crash. AEB for rear-end crashes has

been proven effective using real life data (Isaksson-Hellman and Lindman

Page 17: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

9

2012, Fildes et al. 2015, Chiccihno 2016). A simulation study using left turn

intersection crashes included in the German In-Depth Accident Study

(GIDAS) showed that AEB activation on the turning vehicle (assuming 100%

fleet penetration) reduced the number of crashes by 45% (Sander 2016). If

both cars were equipped with AEB 60% of intersection crashes could have

been avoided. By braking the bullet vehicle in a side impact when the crash is

unavoidable crash severity is reduced, thereby reducing injury risk for the

occupant.

Radar and camera systems can also be used to improve the triggering of belt

pretensioners and inflatable systems. Belts, airbags, and active structures can

be triggered prior to impact if a crash is considered unavoidable (Schöneburg

2015). When the point of no return is passed the vehicle can prepare for the

coming crash by firing external airbags on the front of the striking vehicle

(Pipkorn et al. 2007) or along the outside of the struck vehicle (Luzon-Narro

et al. 2014). External airbags mitigate intrusion, as well as reducing the energy

transferred to the occupant. Pre-crash information can also be used to trigger

seat mounted side airbags, adjust the armrest, inflate structures in the door to

strengthen the structure, or move the seat (Luzon-Narro et al. 2014). Systems

as described above have been shown to reduce crash test dummy (SID-IIs and

EuroSid2) chest deflection by 20-60% (Pipkorn et al. 2007, Luzon-Narro et

al. 2014). It should be noted, however, that a pre-trigger system also has to

provide sufficient protection if pre-trigger sensing fails.

Current Test Protocols for Side Impact

Since the late 90's, side impact occupant protection for the front seat driver

has met legal requirement and has been evaluated in consumer rating tests

such as FMVSS 214 (legal requirement US), ECE-R95 (legal requirement EU),

different NCAP procedures, and the Insurance Institute for Highway Safety

(IIHS) high moving deformable barrier (MDB) test. Test procedures aim to

evaluate occupant protection using available anthropomorphic test devices

(ATDs) in scenarios representing characteristics as observed in real life data.

Although nearly similar, test procedures (both legal and consumer rating)

from different countries vary slightly due to the dummy version used, barrier

speed, weight, or rear seat occupant ATD (CARHS 2016). The present thesis

will focus on front seat consumer rating tests (US NCAP, Euro NCAP and

IIHS), whereby these three large consumer programs are currently inciting

the development of side impact occupant protection (Figure 3).

For impacts with narrow objects such as trees and lampposts in a run off road

crash, there is a side pole impact test included in Euro and US NCAP. In this

test the vehicle is run at 32 km/h into a rigid pole with a diameter of 254 mm

Page 18: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

10

(top of Figure 3). The impact direction is 75 degrees counter clockwise (90

degrees is pure lateral) to add forward motion to the occupant, and the impact

point is aligned to the ATD head (Euro NCAP 2015a, NHTSA 2012a).

To represent intersection crashes a moving deformable barrier of different

shapes and weights are run into the side of the target vehicle at different

impact speeds. To represent a moving target vehicle the US NCAP uses a

crabbed barrier that impacts the target vehicle at 27 degrees (NHTSA 2012b).

Euro NCAP MDB impacts the target vehicle laterally (Euro NCAP 2012b). The

IIHS high barrier is designed as a SUV front, which, due to its height above

ground, does not impact the sill of a passenger car, and thereby results in a

larger intrusion into the occupant compartment (IIHS 2016).

Figure 3. European and US consumer rating test procedures (CARHS 2016).

Anthropomorphic Test Devices for Side Impact Injury Assessment

To assess injury risk in a car crash, ATDs, also called crash test dummies, are

used as occupants in crash tests. It is important to verify whether the response

from the ATDs can represent occupant kinematic behavior, as well as predict

injury in representative loading conditions. As safety systems become more

refined it is necessary to have a tool sensitive enough to differentiate between

systems (including pre-crash triggered airbags), and to represent a wider

range of occupants, especially in terms of senior frailty and fragility. The ATDs

used in rating procedures are the tools assessing the biomechanical

consequences of an occupant involved in a crash.

IIHS Euro NCAP

US NCAP

Page 19: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

11

Dummy measurements correspond to injury criteria representing injuries

observed from accident data. To identify injury criteria, and as one way of

deriving injury risk curves (IRC) for these criteria, tests using post mortem

human subjects (PMHS) can be used. PMHS tests are carried out on specific

body regions, or the whole body, in order to identify relevant and reliable

injury mechanisms and criteria, corresponding to injuries observed from

accident data. By matched dummy tests injury risk curves are created and can

be used for occupant risk evaluation.

There are three ATDs used in the aforementioned rating procedures; SID-IIs,

ES-2re and WorldSID (Humanetics 2016). The SID-IIs, a 5th percentile small

female is used in the front seat in the US NCAP pole test, and in the rear seat

barrier test (NHTSA 2012b). It is also used in the front and rear seats in the

IIHS high barrier test (IIHS 2016). The small female WorldSID (5th

percentile), which is under development, aims for a higher biofidelity rating

(measurement of humanlike response) than the current SID-IIs. The ES-2re,

and the WorldSID 50th percentile dummies represent the mid-size male

(based on American anthropometry data). During the course of work with this

thesis the WorldSID 50th was introduced in Euro NCAP (Euro NCAP 2015a,

2015b), and is also proposed for the US NCAP upgrade (NHTSA 2015).

Currently, the ES-2re dummy is used in the US NCAP pole and barrier test

protocols. (NHTSA 2012).

The ATD biofidelity rating is a measurement of how humanlike the dummy

responds compared to PMHS in different test configurations. It is important

that the dummy subjected to the same loading as a car occupant, records the

overall loading, and can replicate injuries observed in field data. The

biofidelity ranking assesses internal kinematic and kinetic responses. Several

previous studies have focused on developing corridors wherein the ATD

response should be for side impact (ISO 1999, Ruhle 2009). Comparative

testing between PMHS, WorldSID 50th percentile, and the ES-2re, shows that

the WorldSID exhibits a more biofidelic behavior regarding kinematics and

biomechanical responses under lateral load, according to both ISO and

NHTSA evaluation schemes (Tylko et al 2005 and 2006, Yoganandan and

Pintar 2008, ISO 2008, Ruhle 2009). Comparison of sled tests with and

without side airbag also showed an improved biofidelity for WorldSID

compared to the EuroSID2 (Kim et al. 2016).

A comparison of crash tests using older and newer cars showed that occupant

loading was higher in older vehicles compared to modern (Sunnevång et al.

2010). Since side vehicle structures and occupant loading has changed, and

side crash occupant protection has been evaluated through consumer rating

Page 20: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

12

tests, there is a need to align real life loading conditions and biofidelity

requirements.

Aims

The overall aim of this thesis is to provide guidelines for improved side impact

protection. First, by characterizing nearside crashes and injury outcome,

including injuries from the farside occupant, for non-senior and senior front

seat occupants, and second, by finding out whether the WorldSID dummy

provides opportunities for improved in-crash occupant protection based on

crash characteristics and injury outcome. Third, by relating in-crash occupant

protection to pre-crash countermeasures, to explore a holistic approach for

side crashes using the integrated safety chain.

The studies carried out during the development of the thesis focused on

occupant in-crash protection. However, with the rapid development of

automated driving in conjunction with focus on infrastructural changes for a

safer road traffic system, the third aim is necessary to identify prioritized areas

for improved side impact protection. Therefore, an additional analysis using

the integrated safety chain, including countermeasure effects from other

published studies, was performed to reach the overall aim.

Materials and Methods

Different methods were used throughout this thesis, characterized by a

holistic approach, based on real life data and laboratory tests. Observing crash

outcomes retrospectively for older cars without side airbag protection

revealed implications for enhanced side impact protection. To understand the

opportunities and potential limitations of the new crash test dummy

WorldSID, a back-to-back comparison to the PMHS was performed. To

evaluate the nearside occupant injury risk, the WorldSID was tested in a series

of crash tests to assess the head and thoracic injury risk when a neighboring

occupant was present. As a last step real life data for crashes, including only

cars equipped with deploying side airbags, was studied in order to provide

guidelines for future protection of occupants in side impact.

In the sections below the theoretical framework for the thesis is described, as

well as a more extensive description of the methods used in the studies, and

for additional analyses carried out for this thesis.

Page 21: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

13

Theoretical Framework

In the integrated safety chain events from normal driving to a crash were

broken down into phases, and in each phase an action/reaction could have

occurred, which may have avoided or mitigated the crash somewhere along

the chain (Lie 2012). However, there is no clear definition of normal driving.

Normal driving usually refers to a common way of driving which can include

risky behavior. In the present thesis the integrated safety chain, as shown in

Figure 4, starts with safe driving.

Figure 4. The integrated Safety Chain (Developed from Lie 2012).

In this thesis safe driving is further developed from the safe driver explained

by Stigson (2009). Safe driving is defined as compliance with traffic

regulations, meaning that the driver follows traffic regulations (legal BAC,

follows speed limits, and adjusts to road and traffic conditions), is attentive,

aware of risks, and has proper training, and the cognitive ability to drive.

Drivers that deviate from safe driving will enter the next phase, deviation from

normal driving. This might arise due to inattention, stress, fatigue, or risky

behavior such as speeding. Such deviations can be intervened by

infrastructural countermeasures (ex. speed hump) or an onboard safety

system (driver alert) in order to return the driver to safe driving as shown in

Figure 4 (top arrows). For a remaining portion (Figure 4, horizontal arrows),

the situation can escalate to where the vehicle starts to drift, or the gap to the

lead vehicle is too small. Again, the driver and vehicle can be brought back to

safe driving by a warning or intervention, and if not, a critical situation occurs

when a driver loses control of the car, brakes too late, or commits an error

leading to an inevitable crash. In the crash the vehicle protection systems

should be designed to mitigate occupant loading to below injurious levels.

Page 22: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

14

Focus of the studies included in the present thesis has been on the last phase

of the chain; occupant protection in the event of a crash, Figure 5. To provide

guidelines for future occupant protection systems the in-crash

countermeasures need to be put into a context of future sustainable transport

systems in order to understand the impact of a mix of countermeasures

throughout the integrated safety chain. Identifying countermeasures and

evaluating their effect on crash avoidance and injury mitigation can aid in

assigning priorities within road transport safety.

Figure 5. Schematic view of the present thesis and papers.

Real Life Data Analyses

To design occupant protection systems, and assess injuries from field data,

register studies are often used. In this thesis the American accident database

National Accident Sampling System – Crashworthiness Data System

(NASS/CDS) has been used for real life data analyses.

NASS/CDS contains in-depth crash studies from 27 primary sampling units

throughout the US. For a crash to be investigated, at least one passenger car,

light truck or van (LTV), must be so damaged that it must be towed away after

the crash. The crash is then investigated with respect to vehicle, occupant, pre-

crash, and crash characteristics. Injuries are recorded and registered

according to the Abbreviated Injury Scale (AIS) (AAAM 2008). Approximately

5000 crashes are investigated each year. The data can be made nationally

representative through a statistically derived system of weighting factors

(NHTSA 2015b).

To evaluate differences due to age in real life data, senior occupants were

defined as aged 60 or above. The non-senior group included occupants aged

10-59. There is no common definition for entry to the senior stage of life, but

increased frailty and fragility are associated with aging (Kent et al. 2009).

Previous studies of biomechanical responses have used different cut-off ages,

ranging from 40-70 years (Evans 1991, Viano and Ridella 1996, Zhou et al.

Page 23: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

15

1996). Human bone and soft tissue reaches maximum strength at the age of

40, and decline gradually to the ages of 60-70. Thereafter, they decline more

rapidly (Zhou et al. 1996). For long-term consequences, females aged 60 or

older showed a higher risk of permanent medical impairment due to upper

extremity fracture compared to younger females and males of the same age

group (Gustafsson et al. 2014).

Crash severity from real life data can be defined in different ways. Residual

intrusion is one measurement, but difficult to relate to impact force and

vehicle deceleration. Therefore, the use of the change in velocity, delta-v, is

more commonly used as a severity measurement. In NASS/CDS delta-v is

calculated using a program called WinSmash, a two-step analysis where

vehicle trajectory and damage are taken into consideration (Sharma et al.

2007). In the case of an intersection crash, both vehicle trajectories and

intrusion profiles are entered into the calculations. Based on this information

delta-v in the longitudinal and lateral directions, as well as the total delta-v,

are calculated for both vehicles, and listed in the NASS/CDS database. It has

been shown that the WinSmash calculator overestimated delta-v by 13% for

car-to-car crashes compared to delta-v based on EDR data (Johnson and

Gabler 2014). The WinSmash predictions were found to be more accurate for

LTV-to-car crashes.

In Study I NASS/CDS data for 1994-2006 was analyzed in order to find all

front seat occupants exposed to a nearside car-to-car impact. Only occupants

10 years old or older were selected, as well as cars manufactured 1980 or later.

A nearside impact was defined as having a principal direction of force (PDOF)

from 2-4 o’clock (passengers) and 8-10 o’clock (drivers). The sample consisted

predominantly of cars without side airbags (98%). The NASS/CDS data was

weighted to represent a national (US) estimate of nearside car-to-car crashs

1994-2006.

Crash exposure over lateral delta-v was plotted for the entire sample as well

as stratified for non-senior and senior occupants. The empirical incidences for

fatality (dead within 30 days post-crash) were investigated for the three

occupant groups (all, non-seniors, and seniors). Gamma distributions were

fitted to the empirical incidence to present the distribution of fatal injuries

with respect to lateral delta-v. From the empirical incidence of fatal injury,

and the number of exposed occupants, risk curves were derived.

To adjust the sample to represent a vehicle fleet equipped with side airbags,

and thereby understand how to reach a 30% risk reduction of fatal injuries

(McCartt and Kyrychenko 2006, Kahane 2007), a hypothetical airbag model

was designed. The model, consisting of side airbag protection level θmax over

Page 24: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

16

lateral delta-v is shown in Figure 6. For delta-v dependency, the model was

based on the observation that when impact severity is low the airbag will not

deploy until a given delta-v, denoted A. At high crash severity above delta-v,

denoted C, the airbag will no longer have any mitigating effect due to vehicular

structural behavior. These observations provide a start and end point for the

airbag protection level as a function of delta-v, denoted θ(v). Due to legal and

rating procedures at certain impact speeds, and with varying occupant sizes,

it was assumed that the airbag has a constant maximum risk reducing effect,

i.e. protection level θmax, from delta-v A to delta-v B, after which it decreases

linearly (assumption based on observations from internal sled tests), to delta-

v C.

In Study I, delta-v A was set at 10 km/h. Delta-v B was set at 30 km/h based

on observations from FMVSS 214 and US NCAP tests. Due to the lack of

information regarding delta-v dependency and airbag risk reduction in a

delta-v above legal and rating tests, three delta-v Cs (C1, C2, and C3) were

investigated. For the end points, C1-C3, delta-v 45 km/h, 55 km/h and 65

km/h, were assumed. With these constraints, the protection level, θmax, in

the delta-v interval A-B, can be adjusted to provide an overall fatality

reduction of 30%. Three values of delta-v C result in three different protection

levels, θmax1-3. Hence, three models (Model 1-3), all giving a 30% side airbag

fatality reduction, were evaluated.

Figure 6. A hypothetical model of side airbag effectiveness.

The hypothetical airbag models, representing 30% overall reduction of

fatalities, was applied to the real life fatality incidence for the total NASS/CDS

sample as an illustrative example of how currently established side airbag

effectiveness would change the incidence of fatal side impact crashes in the

field data, considering 100% implementation of side airbags. The total

number of fatalities, Nd, is the integral over delta-v of the incidence of

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Lateral Delta V (km/h)

Model 1

Model 2

Model 3

Pro

tectio

n le

vel [

%]

No f ire Legal &

Rating

Beyond legal

45 55 6510 30

θmax1

θmax3

θmax2

C2A B

θ(v)

C3C1

Page 25: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

17

fatalities at delta-v=v, I(v). The incidence can also be expressed as the product

of exposure E(v) (i.e. the number of crashes at delta-v=v), and the risk of death

R(v). Assuming a total effectiveness of 30% in fatality reduction provides a

reduced number of fatalities Ñd = 0.7 Nd. This is the result of a reduced risk

of death applied to the unchanged exposure E(v). The effectiveness,

sometimes called benefit, of a restraint system can be written as Eff = (Nd -

Ñd) / Nd. In the same way, the protection level, θ(v), of a restraint system, at

a given delta-v, can be written as θ(v) = (R(v) - R~

(v)) / R(v). See Eqs 1-3.

)()()()(0

vEvRvIwheredvvIN d

0

)()( dvvRvENd Eq. ( 1 )

0

)()(~~

dvvEvRNd Eq. ( 2 )

000

)()(1

)()(

)(~

)(1)())(

~)((

1~

dvvIvN

dvvIvR

vRvR

NdvvEvRvR

NN

NNEff

dddd

dd Eq. ( 3 )

From the final integral in Eq. (3), it follows that maximum effectiveness is

reached if θ(v) is large when I(v) is large. In other words, the effectiveness of

the restraint system is maximized if the airbag is optimized for delta-v at

which most occupants are fatally injured, i.e., where the incidence is high.

To evaluate future enhancement of side airbag protection the hypothetical

airbag models were used as references and the protection level (θmax) and

delta-v were increased 20%, respectively, and in combination. The new fatality

reduction for each of the three calculations was compared to the reference

30% risk reduction for the total sample, non-senior and senior group to

evaluate the effect of respective improvements.

Potential of AEB in Intersection Crashes

This section describes how to apply the dose-response model to the results

from Study I as a means of evaluating possibilities for crash avoidance and

mitigation by intersection AEB. This evaluation is an addition to the

individual studies in order to answer the research question, and to contribute

to the overall aim of the thesis.

In Figure 7 the exposure of nearside car-to-car crashes, as well as fatal

incidence and the injury risk from Study I, is presented. For an AEB system

the exposure will change due to braking, and the curve will move to the left.

As a consequence of the shift in exposure incidence will be reduced.

Page 26: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

18

Figure 7. Left y-axis: Gamma distributions as a function of lateral delta-v for exposure (E) and incidence (I) of nearside car-to-car crashes from Study I (older cars without side airbags). Right y-axis: Occupant injury risk (R) as a function of lateral delta-v.

However, the exposure, incidence and injury risk derived for fatal nearside

car-to-car crashes in Study I was derived from crashes with older cars without

side airbags. By applying different models of side airbag efficiency

representing 30% fatality reduction, the incidence e.g. response, was adjusted

to predict a fleet of side airbag-equipped cars. Based on crash tests performed

at high impact speed airbag Model 2 (C= 55 km/h) is assumed to be the most

representative model (Sunnevång et al 2010). Introducing the side airbag

according to Model 2 results in a shift of the fatal injury risk according to Eq.

(4).

𝑅𝑖𝑠𝑘 (𝑆𝐴𝐵) =𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 (𝑆𝐴𝐵)

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑛𝑜 𝑆𝐴𝐵) Eq. (4)

The adjusted incidence curve, using Model 2 (presented in Study I), and

denoted Incidence (SAB), is therefore used for evaluating opportunities by

AEB in side crashes (Figure 8). As lateral delta-v was used as a measurement

of crash severity in Study I, and an AEB system reduces impact speed, it was

assumed that impact speed was twice the lateral delta-v. Since the study

included passenger cars only, similar masses of the bullet and target vehicle

were assumed.

E(v)

I(v) R(v)

Page 27: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

19

Figure 8. Left: Exposure of fatal nearside crashes from Study I. Right: Incidence of fatalities in cars without SAB (grey) compared to cars with side airbags (black).

In an intersection crash there are three ways AEB can be used to avoid a crash.

First, the target vehicle can brake, and thus avoid being struck in the side by

the bullet vehicle. Second, the bullet vehicle can decelerate for a certain time,

and thus avoid the crash, or mitigate crash severity. Third, both vehicles brake,

and avoid or mitigate the crash. In the present thesis the first two scenarios

are addressed (illustrated in Figure 9).

Figure 9. Illustration of target vehicle equipped with AEB (left) and bullet vehicle equipped with AEB (right).

Assuming a target vehicle equipped with AEB, TargetAEB. A 45% effectiveness

means that in 45% of the conflicts the struck vehicle would have braked to

avoid a crash (Sander 2016). The effectiveness of a target vehicle equipped

with AEB can be calculated according to Eq. (5) and the adjusted incidence

according to Eq. (6).

𝐸𝑓𝑓 (𝑇𝑎𝑟𝑔𝑒𝑡𝐴𝐸𝐵) = 1 −𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 (𝑇𝑎𝑟𝑔𝑒𝑡𝐴𝐸𝐵)

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 (𝑆𝐴𝐵)

Eq. (5)

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 (𝑇𝑎𝑟𝑔𝑒𝑡𝐴𝐸𝐵) = (1 − 𝐸𝑓𝑓(𝑇𝑎𝑟𝑔𝑒𝑡𝐴𝐸𝐵)) ∗ 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 (𝑆𝐴𝐵) Eq. (6)

Page 28: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

20

To evaluate the effect of a target vehicle being equipped with AEB the

following assumptions were made:

Since the crossing point was not reached at the same time, 45% of

the crashes in Study I could have been avoided.

Ideal sensor performance (Field of view, lighting conditions, etc.),

and for obstructed vehicles, V2X communication (wireless vehicle

communication to other cars or infrastructure).

A bullet vehicle equipped with AEB, BulletAEB, would brake with a given

deceleration at a given time before the crash, TTC (time to collision). Brake

application will, in some crashes, avoid the crash by bringing the bullet vehicle

to a complete stop before impact. For the remaining crashes the impact speed

will be reduced. As a consequence the exposure curve will change. The

incidence for an AEB-equipped, bullet vehicle, can be calculated according Eq.

(7), and the effectiveness of the system according to Eq. (8).

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 (𝐵𝑢𝑙𝑙𝑒𝑡𝐴𝐸𝐵) = 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝐵𝑢𝑙𝑙𝑒𝑡𝐴𝐸𝐵) ∗ 𝑅𝑖𝑠𝑘 (𝑆𝐴𝐵) Eq. (7)

𝐸𝑓𝑓(𝐵𝑢𝑙𝑙𝑒𝑡𝐴𝐸𝐵) = 1 −𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 (𝐵𝑢𝑙𝑙𝑒𝑡𝐴𝐸𝐵)

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 (𝑆𝐴𝐵) Eq. (8)

Based on the situation, and driver comfort, different levels of braking can be

applied. In this thesis a standard AEB level (as in current rear end AEB

systems) was used, as well as a higher brake level (AEB+) that could

potentially be used when a crash is unavoidable. The following assumptions

were made for bullet vehicle AEB and AEB+:

Ideal sensor performance (Field of view, lightning condition, etc.),

and for obstructed vehicles, V2X communication

Bullet AEB meaning constant, ideal braking of 0.8g at TTC=0.5s

Bullet AEB+ meaning constant, ideal braking of 1.5g at TTC=0.5s

Injury Distribution

In study II NASS/CDS was queried to investigate the injury distribution and

injury mechanisms for side airbag-equipped vehicles where the nearside

occupant sustained at least one AIS2+ injury. NASS/CDS data between 2000

and 2012 was searched to extract all side impacts with belted occupants in

modern vehicles (MY>1999). Rollovers were excluded, and only front seat

occupants above 10 years of age were included. Occupants from this sample,

seated adjacent to the intruding structure (nearside), and protected by at least

one deployed side airbag, were studied case by case.

Page 29: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

21

The case-by-case study was performed to gain a more detailed understanding

of occupant injuries in terms of frequency and associations between injuries.

Twenty-three injured body parts were identified as recurring in a trial study,

and therefore, selected for further analysis in all 228 cases. For almost 50% of

the cases in this study, either delta-v or information regarding intrusion was

missing from the NASS/CDS files, making the relationship between injury and

crash severity difficult to evaluate. As a complement residual intrusion,

deformation close to the occupant, was also used as a measurement of severity

in the crash.

A paired comparison was performed to evaluate the influence of occupant-to-

occupant interaction in addition to nearside loading. The number of femur

fractures, head injuries, and thoracic injuries for a single nearside occupant

was compared to the number of injuries when a neighboring occupant was

present in the crash.

WorldSID Response Compared to Post Mortem Human Subjects

In order to evaluate the WorldSID’s capability of reflecting human responses

to oblique loading and low severity impacts, the dummy was compared to

previously performed PMHS tests. Three PMHS were tested at the University

of Virginia (Subit et al. 2010). The subjects were selected based on the absence

of pre-existing unhealed fractures, lesions or other bone pathology, as

confirmed by pre-test computed tomography (CT) analysis (Table 1). The

subjects were obtained and treated in accordance with ethical guidelines

established by the National Highway Traffic Safety Administration (NHTSA),

and all testing and handling procedures were reviewed and approved by an

independent oversight committee at the University of Virginia. The subjects

were screened negative for infectious diseases and stored in a freezer (-15˚C)

until thawed at room temperature, 48 to 72 hours prior to the test preparation.

Table 1: Summary of subject characteristics.

Subject id Subject # Age

(year) Weight

(kg) Stature

(cm) BMI

(kg/m2) Cause of

death

S1 427 79 79 181 24.1 Failure to

thrive*

S2 420 59 93 180 28.7 Stroke

S3 430 74 47 173 15.7 Lung cancer

*No additional information provided

Page 30: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

22

For a comparison of side impact responses between the WorldSID and PMHS

beyond the scope of ISO/TR9790, the WorldSID 50th percentile was

successively impacted at low (1 m/s) and high (3 m/s) velocities using a

constant-velocity impactor setup as previously described and used for PMHS

evaluation by Subit et al. (2010). The WorldSID response in comparison to

PMHS is presented in Studies III and IV. The reasoning behind the impact

speeds was that low severity represents a low speed, non-injurious, crash as

well as the loading from a pre-triggered side impact. The high velocity was

considered in the same range as occupant loading in a modern vehicle

subjected to a rating crash test.

As a straightforward attempt to relate the loading severity of the constant-

speed localized impactor tests to dummy loading in a car crash, spine

velocities (average of T1 and T12) in previously performed crash tests reported

by Sunnevång et al. 2010 were retrieved and compared to the spine velocity in

the WorldSID impactor test results (Study IV). A set of older cars (mid-size

sedan MY 1998) represented the pre US NCAP vehicle fleet, and a modern US

NCAP compliant set of vehicles (mid-size sedan MY2009) represented the

current vehicle fleet.

The subjects were impacted at three levels on the upper body, and at three

angles: 0° (lateral), +15° (posterolateral) and -15° (anteraolateral). For all

impact directions the stroke length was at least 80 mm, and each test was

repeated twice. The dummy was seated on a rigid chair designed to

approximate a typical occupant position in a standard car seat and impacted

to the left side (Figure 10).

Figure 10. WorldSID positioned on a rigid seat with the impactor targeting the shoulder (left), and definition of the impact levels relative to the landmarks on the WorldSID structure (right).

The WorldSID was impacted at three levels: the shoulder, the upper thorax,

and the mid thorax (Figure 10). The impactor force and displacement were

Page 31: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

23

measured in the Y-direction (Figure 10). In addition to the WorldSID internal

deflection measurements kinematic data was also collected by tracking the

position of retroreflective spherical markers.

Figure 11. WorldSID shoulder, thorax and abdomen ribs, equipped with 6 + 6 2D IR-Tracc sensors. Right and left IR-Tracc sensors at shoulder level are indicated.

In order to compare with PMHS responses, “anatomical locations” on the

WorldSID were selected for measurement to approximate the locations used

for the PMHS tests reported by Subit et al. (2010). These included the head,

spine, pelvis, shoulders, and ribcage (Figure 11). Additionally, markers were

placed on the seat and impactor. The external deflection of the struck side of

the ribcage was measured using the motion of the impactor and upper spine.

The 3D motion of the impactor was also tracked during impact, in accordance

with the upper spine coordinate system, and the Y-axis component of this

motion was taken to be the lateral chest deflection (Study III). The

displacement of the spine was defined as the y-displacement of the point on

the spine and aligned with the impactor.

In a side impact, the occupant is exposed to loading from the intruding

structure. The loading applied translates into chest deflection and spine

displacement during impact. In Study IV the PMHS and WorldSID allotment

between chest deflection and spine displacement was evaluated as a means to

gain further insight into the WorldSID biofidelic response in high and low

speed impacts.

Crash Tests

To validate findings from the field data, and to evaluate occupant injury risk

for the head and thorax in rating procedures as well as at higher severity (than

in 2016 rating procedures), a set of crash tests were performed in Study V. A

comparison of older vehicles without side airbags with modern vehicles with

airbags using the WorldSID was presented by Sunnevång et al. (2010). To

further evaluate nearside occupant injury risk using WorldSID, including

occupant-to-occupant interaction, additional tests were performed. Different

IR-Tracc IR-Tracc

Lateral

Ribcage

Markers

Medial

Rib-End

Page 32: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

24

loading conditions were used as well as different bullet vehicles. The target

vehicle was always a passenger car of different sizes, and the WorldSID 50%ile

male was always the nearside occupant. Test configurations are shown in

Table 2.

Table 2. Crash test matrix from Study V.

Car-to-Car SUV-to-Car Euro NCAP Euro NCAP

Large Sedan, 1735 kg

SUV, 2250 kg

Barrier 1500 kg

Oblique Pole

Compact Car (MY 2009), 1130 kg

Test 2 70 km/h

Small Sedan (MY 2009), 1200 kg

Test 6 & 7 50, 50 km/h

Test 8 & 9 32, 32 km/h

Large Sedan (MY 2009), 1865 kg

Test 1 80 km/h

Test 3 & 4 65, 65 km/h

Test 5 60 km/h

The first four tests evaluated the WorldSID nearside response to high severity

vehicle-to-vehicle crashes, representing the characteristics of fatal

intersection crashes in Sweden where impact speed was found to be 70-80

km/h, and the residual intrusion approximately 350-500 mm (Sunnevång et

al. 2011). The vehicle-to-vehicle tests were performed in a 90° impact aligning

the bullet centerline to the middle of the target wheelbase. Impact speed was

65 km/h for the SUV impacts, and 70km/h and 80km/h for the car-to-car

tests, respectively. The consumer rating tests including moving deformable

barrier tests and oblique pole tests were performed to evaluate WorldSID 50th

male response to the Euro NCAP 2016 protocol, except that the large sedan

was impacted at 60 km/h instead of the specified 50 km/h (Euro NCAP

2015b).

In each of the crash tests the WorldSID 50th percentile male was seated on

the struck side (nearside), and the WorldSID used in this test series was

equipped with 12 two dimensional IR-Traccs’ (2D IR-Tracc); 6 on the left side,

and 6 on the right. This design enables measurement of bilateral loading

(deflection from the left and right side of the thorax). Due to limited

availability of WorldSID dummies other crash test dummies were used

representing the neighboring occupant. In the vehicle-to-vehicle tests, and the

Euro NCAP test at 60 km/h, a THOR-NT was seated on the non-struck side,

and in the Euro NCAP tests with the small sedan (AE-MDB and Oblique Pole)

a EuroSID2 was seated on the non-struck side. In all tests the WorldSID and

neighboring dummy were restrained by a three-point pre-tensioning (2 kN at

the retractor) seat belt, and on the struck side an inflatable curtain and a seat-

Bullet Target

Bullet Target

Page 33: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

25

mounted side airbag protected the head and thorax from the intruding

structure. Since the vehicles tested as well as crash test configurations varied

between tests, results were compared with respect to severity in terms of

lateral delta-v and residual intrusion at the occupant position.

For injury assessment, WorldSID specific head and thorax injury risk curves

(IRC) were used. The head injury criterion, HIC, was calculated, and the

corresponding AIS3+ injury risk was derived using the IRC from NHTSA

(1995). Peak deflection, measured by the IR-Tracc, and calculated viscous

criterion, VC, on the inboard and outboard side was used as injury criterion

for assessing AIS3+ thoracic injury risk. Injury risk was calculated using the

IRC for a non-senior and senior occupant, derived by Petitjean et al. (2012).

AIS3+ thoracic injury risks based on peak deflection were calculated for an

occupant aged 45 and 67, respectively. For soft tissue thoracic injury based on

VC, the injury risk for a 45-year-old occupant was calculated (Petitjean et al.

2009).

Results

Real-life Data Analyses

In Study I, the real life data analysis based on side impacts in the US between

1994 and 2006 showed that non-senior and senior occupants were equally

exposed to side impacts. However, seniors were overrepresented in fatal

injuries, and impact severity was lower for crashes resulting in fatal injury

(Figure 12).

Figure 12. Fatal incidence and injury risk for the total sample (left) as well as stratified into senior (dashed line) and non-senior (line) samples (right).

Applying the three-airbag models to the incidence of fatal crashes for the total

sample resulted in three levels of airbag protection as presented in Figure 13.

However protection levels differed when applied to non-senior and senior

groups, respectively.

Page 34: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

26

Figure 13. Left y-axis: The three hypothetical airbag models for the total sample. All models resulted in 30 percent overall airbag effectiveness. Right y-axis: The new incidences for fatal injury calculated for each of the three models compared to the original incidence for the NASS/CDS sample without airbags.

For the non-senior occupants the hypothetical models showed high protection

levels up to delta-v of 40 km/h. The protection level for senior occupants was

lower when compared to the level for non-senior occupants.

The reduction of fatalities when the delta-v or airbag protection level, or a

combination of the two, were increased, is shown in Figure 14. The results

should be compared to the 30% fatality reduction, which represents the

current side airbag protection systems. The maximum effectiveness of delta-v

or airbag protection level is shown on the left.

0

1

2

3

0

20

40

60

80

100

0 20 40 60 80 100

Lateral Delta-V (km/h)

Original incidence Model 1 Model 2 Model 3

Incidence (%) Protection level (%)

Page 35: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

27

Figure 14. Comparison of effectiveness (30 percent for current systems) with a 20 percent increase in delta-v compared to a 20 percent risk reduction, and thus an increase of the protection level, by combining the two approaches.

Potential of AEB in Intersection Crashes

In this section the additional evaluation (in addition to the individual studies),

of AEB’s influence on results from Study I, is presented. For the target vehicle

equipped with AEB the incidence of fatally injured occupants would change

according to Figure 15.

Figure 15. Comparison of fatal incidence for airbag-equipped cars (grey), assuming 45% crash avoidance by target vehicle equipped with AEB (black).

Non-Senior Occupants

30% 30%37%

44%33% 39%

57%

40%

99%

37% 36%

68%

35%34%

52%

0%

20%

40%

60%

80%

100%

Max. protection

level (100%)

Max Delta-v

(B =>∞)

Increased delta-v

(+ 20%)

Increased

protection level

(θmax+ 0.2(1-

θmax))

Combined increase

of delta-v and

protection level

Model 1

Model 2

Model 3

Current benefit

Target Population Outcome of change

Effectiveness

Senior Occupants

40%34%

40% 44%

76%84%

35% 32%40% 44%

89%

34% 32%42% 44%

0%

20%

40%

60%

80%

100%

Max. protection

level (100%)

Max Delta-v

(B =>∞)

Increased delta-v

(+ 20%)

Increased

protection level

(θmax+ 0.2(1-

θmax))

Combined increase

of delta-v and

protection level

Model 1

Model 2

Model 3

Current benefit

Effectiveness

Target Population Outcome of change

Page 36: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

28

By calculating a new delta-v for AEB-equipped bullet vehicles exposure will

change and incidence will be reduced (Figure 16).

Figure 16. Left: Exposure for the total sample in Study I (grey) compared to the new exposure, assuming the bullet vehicle is equipped with intersection AEB (black). Right: Comparison of fatal incidence for airbag-equipped cars (grey) and bullet intersection AEB braking with 0.8g at TTC 0.5s (black).

If the bullet vehicle is equipped with AEB, and braking by 0.8g is applied at

0.5s prior to crash (TTC=0.5), incidence would be affected, as presented in

Figure 16. Crash avoidance and speed reduction would reduce the number of

fatalities by approximately 70 %.

With a higher braking level, AEB+ (1.5g), the exposure would change and

incidence reduced according to Figure 17. Introducing the AEB+ would reduce

the number of fatalities by approximately 95%.

Figure 17. Left: Exposure for the total sample in Study I (grey) compared to the new exposure assuming the bullet vehicle is equipped with intersection AEB+ (black). Right: Comparison of fatal incidence for airbag-equipped cars (grey) and bullet intersection AEB+ braking with 1.5g at TTC 0.5s (black).

As the above examples show, braking of the vehicle has a substantial effect on

injury outcome. Braking of the target vehicle, by target vehicle AEB, prevents

the crossing point being reached at the same time, and the crash is thereby

avoided. Crashes can also be avoided by bullet vehicle AEB, and even if the

crash cannot be avoided, speed reduction is of the utmost importance for

injury outcome.

Page 37: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

29

Injury Distribution

The NASS/CDS analysis in Study II showed that the senior group sustained at

least one AIS2+ injury in approximately 90% of intersection crashes. The

remaining 10% were due to loss of control. Most of the non-senior occupants

were also injured in intersection crashes (70%), but had a larger proportion of

loss-of-control crashes (25%), and a smaller proportion of other crashes (5%).

The most frequent injuries in nearside impacts were rib fractures, regardless

of whether the occupant was senior or not. For the non-senior group the

frequency of rib fractures, brain injuries, and pelvic fractures was similar, but

for senior occupants rib fractures were the most frequent, followed by pelvic

fractures and brain injuries.

Comparison of the odds ratios between the number of occupants who

sustaining femur fractures versus head and thoracic injury, for one or two

front seat occupants, respectively, showed a trend for the nearside occupant’s

risk of head injury to decrease, and the risk of thoracic injury to increase, when

a neighboring occupant was present. However, the difference was not

statistically significant.

WorldSID Response Compared to Post Mortem Human Subjects

Time zero was set to when WorldSID was in contact with the impactor,

intruding structure, or side airbag, showed that spine velocity for the impactor

tests at 3 m/s was similar to the dummy response in the modern car-to-car

test (Study IV). In the 1 m/s impact spine velocity was lower than what was

observed in the crash tests (See Figure 18).

Figure 18. Comparison of average WorldSID T1 and T12 spine velocity for impactor and crash tests.

Page 38: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

30

During the impactor tests shoulder peak force was similar for PMHS and

WorldSID at 3 m/s (Study III). In contrast to the PMHS, where peak force

decreased as impact location decreased to mid thorax, the WorldSID peak

force was lowest at the shoulder and highest at mid-thorax. For the 1 m/s

impacts, WorldSID peak force followed the same trend as in 3 m/s impacts,

shoulder lowest, and mid thorax highest, but lower in magnitude. However,

peak forces for the PMHS were similar in magnitudes regardless of impact

location (Figure 19).

Figure 19. Comparison of impactor force for WorldSID and PMHS in impactor tests.

Impact direction did not affect peak force levels for the WorldSID. Neither did

impact direction affect the external deflection measurement (Study III).

External chest deflection for the WorldSID, measured at a 3 m/s impact, was

slightly higher than for the PMHS, although within the spread of the three

subjects tested. Lowest deflection was measured for shoulder impacts, and

highest at mid thorax for both dummy and PMHS. At 1 m/s the WorldSID

external chest deflection was significantly smaller than for the PMHS for all

impact locations (See Figure 20).

Page 39: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

31

Figure 20. Comparison of external chest deflection for WorldSID and PMHS at 3 m/s (left) and 1 m/s (right) impactor tests.

In Study IV the difference in response between WorldSID and PMHS was

further investigated. To better understand the response to the localized

impacts at 3 m/s and 1 m/s chest deflection versus spine displacement was

compared for WorldSID and PMHS. In the PMHS tests the ratio between

chest deflection and spine displacement was found to be similar regardless of

impact level, with higher chest deflection at 3 m/s than at 1 m/s impact. For

the WorldSID impact location affected the ratio, as did the impact speed.

Comparing WorldSID to PMHS results showed that at 1 m/s more of the

impact energy was used to move the spine than in the PMHS, especially for

the impact at shoulder level (See Figure 21).

Figure 21. Chest deflection versus spine displacement for PMHS (left) and WorldSID

(right) for all lateral impactor tests.

Crash Tests

In the crash tests performed in Study V, peak chest deflection was always

measured on the struck side at a lateral delta-v similar to NCAP severity. At a

higher delta-v peak deflections on the inboard and outboard side were similar,

and in some tests peak deflection occurred at the inboard side as the result of

Page 40: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

32

interaction with the neighboring occupant. Outboard and inboard peak chest

deflections are shown in Figure 22.

Figure 22. Outboard and inboard WorldSID peak deflection with respect to lateral delta-v.

For a 45-year-old the injury risk based on outboard peak deflection was below

10%, except for the SUV test with high intrusion (Figure 23). In the Euro

NCAP tests the injury risk was below 5%. For a 67-year-old injury risk based

on outboard deflection was found to be above 10% in one of the Pole tests, as

well as in all other tests. Occupant-to-occupant loading resulted in notable

injury risk for a senior occupant in the non-Euro NCAP tests.

Figure 23. AIS3+ thoracic injury risk based on outboard and inboard peak deflection for a 45-year-old occupant (solid bars), and a 67-year-old occupant (striped bars).

0

10

20

30

40

50

60

70

80

20 25 30 35 40 45 50

Pe

ak D

efl

ect

ion

[m

m]

Lateral Delta-V [km/h]

Outboard Max Cd

Inboard Max Cd

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

AIS

3+

inju

ry r

isk

[%]

Test Number

Outboard deflection

Inboard deflection

Page 41: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

33

General Discussion

The aim of this thesis was to provide guidelines for improved side impact

protection. With the development of advanced safety systems it is important

to relate in-crash occupant protection to pre-crash countermeasures in order

to identify areas to prioritize for improved safety according to the Safe System

Approach and Vision Zero. Hence the integrated safety chain was used as the

theoretical framework to point out cornerstones of the extensive area of side

impact occupant protection.

Injuries, Injury Risk and Severity Levels

Since the introduction of side airbags, and the accompanied structural

changes during the last years, the risk of sustaining a fatal or serious injury in

a nearside crash has been reduced (McCartt and Kyrychenko 2007, Jakobsson

et al. 2010, Stigson and Kullgren 2011, D'Elia 2013, Kahane 2014). However,

serious injuries still occur, and senior occupants are overrepresented in

accident data (Studies I and II). Due to the frailty and fragility of senior

occupants the protection level of current side airbags could be different for

non-senior occupants, as concluded in Study I. It has been argued that the

risk-reducing effect is lower for senior occupants as compared to non-senior

occupants, and that the side airbag could be a potential injury source for this

population (Griffin et al. 2012). Based on the results in Study I it was

concluded that to enhance side impact protection the protection level of the

side airbag should be improved within current (2016) rating test severity, as

well as to improve occupant protection at higher severities. Improving

protection for higher severity levels does not necessarily imply developing

airbags for higher impact speeds. As presented in the background there are

infrastructural countermeasures, as well as AEB systems that can reduce crash

severity. These countermeasures could be more efficient than an in-crash

system, and, therefore, the results from real life data need to be put in a larger

perspective using the integrated safety chain.

Shifting focus from fatal and serious injuries to moderate injuries (AIS2+)

sustained in modern, side airbag-equipped cars, showed that head, thorax,

and pelvic injuries were the most frequent, especially for senior occupants

(Study II). These findings are in line with results from other studies where real

life data was analyzed, stratified by age, for a mixed sample of airbag- and non-

airbag-equipped vehicles (Ridella et al. 2012, Carter et al. 2014). Study II also

concluded that the presence of a neighboring occupant tended to increase the

risk of thoracic injury to the nearside occupant. This was due to sequential

bilateral loading when the occupant was struck first on the outboard side by

Page 42: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

34

the airbag and intruding structures, and then on the inboard side by the

neighboring occupant. An additional side airbag on the inboard side has been

shown to mitigate the loading for, and from, a farside occupant (Newland et

al. 2008).

Summarizing the results of Studies I and II shows that although a risk

reducing effect could be seen, the most frequent injured body regions in side

airbag-equipped vehicles remains unchanged. Fatal accidents still occur at

severity levels above current rating procedures (Study I, Sunnevång et al.

2011), and injurious crashes occur at severity levels within the current rating

procedures (Study II). In both studies seniors were injured or killed at lower

severities than non-senior occupants. Injury sources listed were side interior,

A- or B-pillar, and for injurious cases, other objects such as trees and bullet

hoods. This implies that although energy control and loading distribution has

changed, resulting in fewer fatal injuries, the overall crash characteristics,

injury mechanisms, and injury distribution, do not appear to have changed.

To evaluate nearside occupant risk of injury for varying crash severities and

crash modes, the WorldSID AIS3+ injury risk was measured in crash tests

performed at different impact speeds, as well as in different impact

configurations (Sunnevång et al. 2010, Study V). In Study V it was shown that

the AIS3+ injury risk to the head and thorax, measured by the WorldSID, was

very low in the current (2016) rating procedures, when IRC for a 45-year-old

occupant was applied. Using risk curves representing a senior occupant (67

years old in Study V based on published IRCs) show that at delta-v above 30

km/h, intrusion above 350 mm, the AIS3+ thoracic injury risk was above 10%

(Figure 23), based on outboard deflection. Above delta-v 35 km/h the thoracic

AIS3+ injury risk due to occupant-to-occupant interaction was found to be

above 20%. With today’s side airbag protection level, car-to-car side crashes

above an impact speed of 60 km/h should be avoided through other

countermeasures. The injury risk obtained from interaction with the

neighboring occupant also implies that WorldSID is suitable for assessment

of injury risk due to occupant-to-occupant interaction, and that this loading

condition needs to be taken into consideration for future enhancement of side

impact protection (Study V).

The variation of tests included in Study V points out the variation in occupant

loading due to vehicle compatibility and structural behavior, and as a result, a

variation in delta-v and intrusion. This variation is also present in the accident

data, but it is difficult to approximate real life conditions with one laboratory

test setup. To improve overall occupant protection in side crashes, head

injuries, rib fractures, and pelvic fractures need to be assessed using a

Page 43: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

35

biofidelic crash test dummy with biomechanical limits based on occupant

injury risk from real life data.

In the WorldSID/PMHS comparison performed in Studies III and IV two

severity levels were evaluated. One, as the representative of a consumer rating

test (3 m/s), and one low severity crash, or representing a pre-crash triggered

side airbag, (1 m/s). The WorldSID showed a potential for reflecting PMHS

deflection and kinematics at the higher severity level, including oblique

loading, but not at the lower severity (Study III). For low severity levels the

WorldSID design tends to over represent spine displacement, resulting in

significantly lower chest deflection compared to the PMHS (Study IV). At 3

m/s the ratio is similar between PMHS and WorldSID, with slightly higher

degrees of spine displacement at shoulder impact. Based on these results it is

important to know the severity levels for which the dummy is used, and in

what range of impact severities dummy biofidelity is evaluated. With available

thoracic injury risk curves for different ages, as well as the ability to handle

oblique loading, there are possibilities for designing more advanced

protection systems. However in low severity impacts (as the 1 m/s impactor

tests are considered non-injurious) deflection could be underestimated, based

on one PMHS compared to the WorldSID (Study IV).

In Study V the WorldSID assessed injury risks comparable to what was

expected from the field data (Study II). The WorldSID also showed similar

force and deflection responses to the PMHS in the high speed impactor tests

(Studies III and IV). The ability to measure oblique loading, and loading due

to occupant-to-occupant loading provides further opportunities for improved

side impact protection using WorldSID as an evaluation tool.

Analysis Using the Integrated Safety Chain

Crash avoidance, mitigation, and controlled energy transfer to the occupant

needs to be evaluated on a systemic level, and the integrated safety chain is

one available method. Non-compliance to speed limits is one of the greatest

challenges in reaching set targets of reduced traffic injuries. To enforce

compliance with speed limits, speed cameras offer one solution. Replacing

traditional intersections with roundabouts, and supporting infrastructure

design is another. For speed control and intersection support systems, smart

infrastructure communication with the vehicle, or vehicle-to-vehicle

communication, could be used in the future. All countermeasures should,

however, ensure that in the event of a crash the occupant injury risk is below

the set threshold based on biomechanical tolerance.

Page 44: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

36

There are several systems in vehicles with different levels of technical

readiness that could be employed to reduce the number of side crashes.

Depending on the system, they act in different phases of the integrated safety

chain. Focusing on the driver, health monitoring through vital sign

measurements can prevent incidents due to illness such as cardiac failure or

hypoglycemia. Driver monitoring systems can already detect driver attention,

and if the driver’s eyes are on the road. Such systems can determine a level of

fitness to drive, which enables adaption vehicle support systems such as

warnings and interventions. All these countermeasures can be evaluated using

the integrated safety chain framework.

Nearside Crashes in the Integrated Safety Chain

The following section presents a demonstration of how to apply the integrated

safety approach on side crashes, particularly by replacing intersections with

roundabouts, implementation of an intersection assist system, introduction of

intersection AEB (0,8g), AEB+ (1,5g), and improved side airbag performance

(Figure 24).

Figure 24. Countermeasures for side impacts used to demonstrate the integrated approach for nearside crashes.

To assess the injury-reducing effect of the presented countermeasures

accident data from a representative sample should be used. In this example

the 12354 AIS2+ injured occupants from Study II are used for demonstrating

the application of the theoretical framework. Of the 12354 nearside injured

occupants 8793 occupants were injured in intersection related crashes. By

including risk reduction as presented in other publications the overall

reduction of injured occupants can be evaluated, as shown in Figure 25. It

should be noted that in this demonstration countermeasures are evaluated

independently. For a full assessment using the integrated safety chain the

altered characteristics of each phase of the chain should be taken into

Page 45: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

37

consideration. This was not possible with the data available for the present

analysis.

Starting with deviation from safe driving replacing intersections with

roundabouts and thereby controlling speed would reduce the total number of

crashes, as well as avoid or mitigate those resulting in injuries. Based on

results from previous studies it can be assumed that roundabouts reduce

injurious intersection crashes by 70% (Persaud et al. 2000, Gross et al. 2014).

For the remaining intersection crashes, in roundabouts or in remaining

traditional intersections, an intersection assist system informing the driver

when approaching an intersection, showing a safe gap, or highlighting traffic

signs for yield or right of way, could be effective. There is no established

effectiveness for such systems on the road, but could be comparable to blind

spot detection, or monitoring systems showing a 5-15% reduction of injurious

crashes (IIHS 2015a, 2015b). In the present example a 10% reduction is

assumed from an intersection assist system.

In a critical situation, as well as when a crash is unavoidable, an AEB system

could prevent or mitigate a crash. An additional analysis of the accident data

from Study I was used to show the potential of an intersection AEB system,

using two braking levels (Figure 16 and Figure 17). Applying the reduction of

delta-v from the AEB and AEB+ on the injury risk function, and then

calculating the new incidence, showed that 70-90% of fatalities could be

prevented depending on the brake level. In the demonstration of the

integrated approach this effectiveness is applied to the total population in

Figure 25, where AEB is used in a critical situation, and AEB+ when a crash is

unavoidable. The above examples were demonstrated for the entire dataset

from Study I. However, the distribution of fatal crashes was different when

divided into a senior and non-senior group. Full implementation of well

performing AEB systems is therefore assumed to avoid a larger proportion of

the crashes in which senior occupants are injured or killed. It should be noted

that the AEB benefit calculated in this thesis was based on fatal accidents,

unlike previous findings on intersection AEB, which focused on all crashes

regardless of injury outcome (Sander 2016). The high benefit found, based on

this data sample (70-90%), implies that AEB could have a greater effect on

crashes with severe injury outcome.

Using injury risk functions developed for senior occupants when developing

and evaluating side airbag protection level will most likely increase. Previous

studies on pre-crash deployed seat, airbag and belt systems in side impact

have shown a 20 % overall injury risk reduction using the EUROSID2, and up

to 90% reduction of thoracic injury risk using the WorldSID dummy

Page 46: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

38

(Hierlinger et al. 2016, Pipkorn and Sunnevång 2016). The present analysis

estimated a 20% benefit for the aforementioned actions, which is believed to

be somewhat conservative.

Figure 25. Example of different countermeasures for nearside crashes in the integrated safety chain.

As shown in Figure 25 the above mentioned countermeasures would result in

a substantial reduction of injured nearside occupants. Even if the absolute

Page 47: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

39

levels of benefit are crude examples, based on different data samples, the

example demonstrates how an integrated approach can be used to identify

effects from different countermeasures improving side impact safety.

Following the recommendation to limit travel speed to 50 km/h at places

where vehicle trajectories cross requires good infrastructural design.

According to the EuroRAP rating roundabouts could allow speeds above 50

km/h, since the design reduces the speed to acceptable levels, while

maintaining traffic flow. Lateral displacement when entering an intersection

must be designed to achieve the desired speed reduction. Standardized

roundabout design limiting speed and motion of the vehicles, will also lead to

more standardized crash scenarios for the remaining crashes, which is easier

to reflect in consumer rating. Roundabouts will serve as a countermeasure for

controlling impact energy, and hence occupant loading. In conjunction with,

or regardless of, roundabouts, automated emergency braking will have a

substantial effect on side crashes. If both vehicles were equipped with this

feature, a large amount of crashes could be avoided. As shown in Figure 16 an

ideal AEB system could reduce delta-v by approximately 10 km/h, which

represents a 20 km/h lower impact speed. With a 50 km/h speed limit where

vehicle trajectories cross, such a system would reduce the impact speed to 30

km/h. Keeping the restriction on a survivable level at the impact speed of 50

km/h could allow the speed limit to be increased to 70 km/h in situations

where no vulnerable road users are present.

Even if electronic stability control reduces a large number of loss-of-control

crashes these types of crashes will still occur, resulting in high intrusion levels.

Although less frequent, these need to be considered for the in-crash protection

system. Improving the side airbag protection level in high severity crashes

would also have an effect on impacts with heavy goods vehicles. These crashes

are not covered in the present thesis. Pre-triggering of airbags inside the

compartment or outside of the vehicle’s side can reduce occupant loading to

the head, chest, and pelvis. However, pre-triggered systems need to be

evaluated using the WorldSID, and preferably also using PMHS or human

body model simulations, since loading from the pre-triggered system might

be different than what the dummy is validated for.

Improved Protection for the Remaining Unavoidable Crashes

Once beyond the point of no return, that is, when a crash is inevitable, injury

mitigation is imperative. Not only from societal, but also from a consumer

perspective. In a future transport system, with integrated safety features and

fully automated vehicles that allow occupants to engage in tasks other than

Page 48: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

40

driving, moderate injuries (AIS2+ and injuries leading to medical

impairment) will be unacceptable. If a crash occurs, the injury outcome should

be low, regardless of the occupant’s age, gender, or stature.

Intersection crashes involving senior occupants should be one of the focuses

for enhanced side impact occupant protection. The focus on senior occupants

is recommended due to the continuously increasing global life expectancy

(Roser 2016). In 2030 it is estimated that 20% of all drivers will be above 65

years old (Lyman et al. 2002). There is no universal solution to avoid all

intersection crashes, but with speed reduction and energy control due to

infrastructural design and AEB for intersections, a substantial portion of these

crashes can be avoided. More importantly, in the remaining crashes crash

severity will be lower, and thereby survivable. Hence there is a need for

improved protection within this severity range.

Loading from the intruding structure, as well as from a neighboring occupant,

should be evaluated. There is also a need to identify and assess low severity

injuries resulting in long-term, but not life-threatening, medical impairment

for future cars with higher levels of automation. Taking into account all of the

above, and a more diverse population than in current ratings (focusing on the

mid-size male), could result in multiple test modes to ensure acceptable injury

risk to occupants in a variety of impacts. It should be pointed out that virtual

simulations using human body models could be used for such an evaluation.

Biofidelity evaluations of the WorldSID 50 percentile male compared to the

currently (US NCAP), and previously (Euro NCAP) used EuroSID2 dummy,

have shown that the WorldSID is more humanlike in its responses (Compigne

et al. 2004, Yoganandan and Pintar 2008, Ruhle 2009). The kinematic

behavior in farside impacts has also been evaluated and shown to better

represent a human response compared to previous dummies (Fildes et al.

2002, Pintar et al. 2007). The comparison of WorldSID and PMHS, as in

Studies III and IV, support the previous findings, although the WorldSID

response in the low speed impact differed compared to a PMHS impacted at

the same speed. Hence, rather than focusing on high severity crashes for

restraint systems and biofidelity evaluations there is a need to understand

human responses at lower severities, especially when addressing senior

occupant safety due to their fragility and frailty, but also to find reliable injury

criteria for less severe injuries leading to long-term medical impairment.

With nearside occupant protection currently only evaluating struck side

loading, there is a need for assessing injuries due to occupant-to-occupant

interaction, which was demonstrated in Study V. Although argued that a

passenger presence contribute to an overall injury risk reduction for senior

Page 49: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

41

driver crash involvement (Bédard and Meyers 2004, Braitman et al. 2014), a

passenger becomes a contributing factor to the injuries sustained by elderly

occupants in side crashes.

Implication of Results

Since it is difficult to prevent vehicle trajectories to cross within the traffic

system, side impacts remain a common crash type, leading to fatal and severe

injuries. By using an integrated approach to evaluate countermeasures it was

shown that there are countermeasures capable of substantially reducing the

number of crashes, decreasing crash severity, and thereby reducing the

number of fatal and serious injuries.

By keeping the vehicle on the road with ESC a large portion of the impacts to

fixed object and trees can be eliminated, reducing the median delta-v. Further

development of current AEB systems to brake in an intersection, or

roundabout crash, would reduce fatalities by up to 70%. Remaining crashes

would occur at a lower speed, and with less impact variations than in current

intersection crashes. With the aforementioned countermeasures the

implication of increased crash severity in consumer rating tests to address

injuries observed in the accident data should be revised. Focus should be on

AIS2+ head, thorax, and pelvic injuries as well as injuries resulting in long-

term consequences. Evaluation of occupant protection in these future

scenarios could be performed using available regulation and rating

procedures with slight modifications. Maintaining current severity levels,

there remains a need for variation of impact angle, impact location, and

farside and occupant-to-occupant protection to ensure robust protection

performance. In addition to age, occupant size and gender should be taken

into account.

The WorldSID with demonstrated improved biofidelity, as well as injury risk

functions representing a senior occupant, is a better option than the ES-2re

for assessing nearside occupant injuries. With bilateral equipment it is

feasible to evaluate loading to the occupant from the intruding structure as

well as from a neighboring occupant; and improved biofidelity makes it

suitable for assessing farside occupant protection. However, there is a need

for both biofidelity evaluations at lower severities to address less severe

injuries, and improved biomechanical knowledge of injury mechanisms

leading to medical impairment, and injury risk functions for less severe

injuries.

Page 50: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

42

Limitations

In this section limitations of the thesis will be discussed. Limitations are

included in the publications for each study, but only briefly discussed below.

In Study I, older cars (prior to FMVSS 214), cars with side airbag (>2%) and

unbelted occupants were included to collect as large a data sample as possible

for investigating the age factor. Results should be considered as an average of

the time period. The hypothetical model was created to evaluate the potential

effect of adjusting the sample to a modern airbag-equipped fleet. In Study II,

considering less severely injured occupants in side-equipped vehicles, the

sample size was too small to statistically derive injury risk functions with

respect to crash severity. There is a substantial portion of cases in the

NASS/CDS data with missing information on crash severity. Hence,

intersection AEB evaluation was performed using the data from Study I. For

cases with a calculated delta-v it should be noted that an over-estimation of

delta-v was found when comparing NASS/CDS cases with a Winsmash

generated delta-v compared to EDR data (Johnson and Gabler 2014).

In Study II and III the three PMHSs were tested repeatedly to limit the effect

of inter-subject variability. Palpation after each test was used to check for rib

fractures, but it was not possible to determine in which test the exact injury

occurred. Another limitation to these studies was that only one PMHS was

impacted at the lower severity (1 m/s). The same subjects were impacted at

the higher severity on the opposite side, and responses were similar to the two

other subjects impacted in the same configuration. Hence the subject was not

considered an outlier.

In study V the limited availability of a second WorldSID, and hence use of

EuroSID2 and THOR as the neighboring occupant, was a limitation. If a

second WorldSID had been used as the farside occupant, injury risk to that

occupant would have been estimable, and related to the nearside occupant

risk. The occupant-to-occupant interaction would also have been similar in

the different tests.

To fully explore side impacts using the integrated safety chain

countermeasures should be evaluated as dependent of each other. American

accident data was used in Studies I and II. This database does not cover long

term consequences. Also, the traffic situation in the US differs from Europe,

and to Sweden in particular. Intersections are larger in the US with higher

speed limits, and although roundabouts exist, they are not as widely

implemented. Intersection crashes in the US occur in urban areas, while in

Page 51: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

43

Sweden intersection crashes with fatal and severe outcomes occur mainly on

rural roads with higher speeds than in urban areas.

Future Research

To assess side crashes with the integrated safety chain where countermeasures

are linked, the dose response model needs to be updated with a large sample

of crashes with modern cars, for which crash severity is well documented.

Such a study should, however, take into consideration the bullet vehicle type,

and only include side airbag-equipped vehicles, since structural

improvements were often made in conjunction with the introduction of side

airbags. Such a study should also take into account the limitations of using

delta-v for a mixed fleet of bullet vehicles (Johnson and Gabler 2014).

Considering WorldSID as a valid tool for injury assessment in side crashes,

the AIS3+ thoracic injury risk for a senior occupant in a nearside crash was

found to be low in car-to-car crashes resulting in a delta-v below 30 km/h.

Risk of head injury was also low except when the two occupants’ heads

collided. (Study V). Therefore, there is also a need to develop AIS2+ risk

functions for the WorldSID head and thorax to assess injuries at lower

severities. It is believed that by preventing large rib cage deformations,

fractures as well as lung injuries can be avoided. Fractures due to occupant-

to-occupant interaction should also be evaluated. Hence, there is a need for

investigating biomechanical tolerances for the thorax when loaded first by an

intruding structure (or airbag), and then by a neighboring occupant.

Conclusions and Recommendations

Working with injury prevention, human tolerances constitute the limits of the

transport system, and more specifically vehicle support and protection

systems. Despite the introduction of side impact protection systems, injuries

to the head, thorax and pelvis are still frequent (Studies I and II). Future focus

for side impact injury mitigation should be on intersection crashes, improved

occupant protection for senior occupants, and protection for and from the

farside occupant. Based on accident data only, one conclusion is that the

airbag needs to protect at higher severities than currently tested. However,

instead of developing structures and airbags for high-speed crashes, it is

important to consider alternative countermeasures, and hence the need for an

integrated approach to side impacts.

Analyzing nearside crashes using the integrated safety chain shows that speed

management through roundabouts is an efficient countermeasure, reducing

Page 52: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

44

the number of injurious crashes as well as reducing variations in crash

severity. In combination with an intersection AEB a large part of side crashes

could be avoided or crash severity mitigated. Restraint systems should

therefore be improved for both nearside and farside occupants, focusing on

reducing injury risk for brain injuries, rib fractures, and pelvic fractures,

within the severity levels of current rating procedures. Such a system could be

designed using the WorldSID, and would benefit non-senior as well as senior

occupants.

The WorldSID dummy reproduces humanlike responses in lateral and oblique

impacts as shown in Study III. However, at low crash severity chest deflection

could be underestimated, which should be considered when evaluating, for

instance, pre-crash inflated side airbags (Study IV). Setting biomechanical

injury risk levels using injury risk curves derived for senior occupants, and

measuring bilateral deflection, provides opportunities for future

enhancement of in-crash occupant protection in side crashes (Study V).

A holistic approach for side crashes, as outlined in this thesis, resulted in the

following recommended guidelines for improved side impact protection:

Develop intersection assist systems to support, alert, or warn the driver

of a potentially hazardous situation.

Implement intersection AEB systems for crash avoidance, and more

importantly, injury mitigation.

Implement infrastructural changes to reduce and control speed, as well

as impact conditions, at intersections.

Implement countermeasures for injuries due to occupant-to-occupant

interaction.

Improve occupant protection by addressing AIS2+ head, thorax and

pelvic injuries for the senior occupant.

Page 53: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

45

Acknowledgements

This thesis was funded by Autoliv and two projects within Fordonsstrategisk

Forskning och Innovation (FFI). I could not have achieved this without the

support and encouragement of so many people. I would like to express my

sincere gratitude to you all, and give special thanks to:

Ola Boström, my manager, co-supervisor and mentor, for providing me with

the opportunity of becoming a researcher, and for always being there for

encouraging and challenging discussions.

Maria Krafft, my supervisor, for your inspiration and endless patience, as well

as invaluable guidance, insightful comments, and holistic perspective. I could

not have done this without you!

Erik Rosén, my co-supervisor and colleague. For excellent discussions, and for

letting me pick your awesome brains on everything.

Mats Lindkvist, my co-supervisor. For different perspectives and enthusiasm.

John Bolte, my co-supervisor, for expertise in biomechanics and overall

encouragement, as well as the welcoming atmosphere when visiting the IBRC.

Jan Olsson, for the opportunity to become a PhD student and for valuable

advice.

Helena Stigson, for your thorough review and support from the mid-seminar

and onwards, and for your wise guidance and encouragement professionally

and personally.

Katarina Bohman and Rikard Fredriksson, for teaching me well about

biomechanics and authorship in the former Biomechanics & Restraints group.

It is my party at last!

All my colleagues at Autoliv for making work fun, challenging and interesting,

while achieving great things!

Mark Rosenfeld, for valuable suggestions and advice with the English

language, and text editing of the thesis and included papers.

Claes Tingvall for valuable feedback at the mid-seminar and onwards.

Page 54: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

46

Colleagues at Chalmers and Safer, particularly Johan Davidsson and Johan

Iraeus, for interesting discussions and an inspiring work environment.

Colleagues at the Swedish Road Administration, Anders Lie and Johan

Strandroth for valuable input and “helicopter” views.

Colleagues at Volvo Car Corporation, Ulf Lechelt and Lotta Jakobsson for

support and collaboration that resulted in this thesis.

All my friends who always make life fun and exciting. Special thanks to Ann-

Sofie, Linda and Ann-Ingeborg for academic pep talks. Also a special thanks

to Ida for high class entertainment.

My mother Lena for always believing in me, and my father Christer who awoke

my interest in technology, and would have loved seeing the end result of this

journey.

My extended family, of which I am so happy to be a part of. David and Nicklas

for being encouraging friends and perfect fathers to our children, and Lilian

and Monika for their care and support.

My fantastic wife Paula for your patience and constant reminder that there is

more to life than work, and our beloved children Joel and Alva for never-

ending love and happy faces. You are my everything.

“Whatever the problem, be

part of the solution. Don’t

just sit around raising

questions and pointing out

obstacles.”

― Tina Fey, Bossypants

Page 55: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

47

References

AAAM, Abbreviated Injury Scale 2008. Des Plaines IL, 2008.

Arbelaez R, Baker B, Nolan J. Delta Vs for IIHS side impact crash tests and

their relationship to real-world crash severity. 17th International Technical

Conference of the Enhanced Safety of Vehicles (ESV). Technical paper 05-

0049, 2005.

Augenstein J, Digges K, Bahouth G, Dalmotas D, Perdeck E, Stratton J.

Investigation of the Performance of Safety Systems for Protection of the

Elderly. Ann Adv Automot Med. 2005:Oct49:361–369.

Bédard M, Meyers J. The influence of passengers on older drivers involved in

fatal crashes. Exp Aging Res. 2004 Apr-Jun;30(2):205-15.

Belin M-Å (2012) Public Road Safety Policy Change and its Implementation –

Vision Zero a Road Safety Policy Innovation, Thesis for the degree of Doctor

in Philosophy, ISBN 978-91-7457-743-3, Karolinska Institutet, Stockholm,

Sweden.

Bohman K, Håland Y, Aldman B. Reduction of head rotational motions in side

impacts due to the inflatable curtain ~ A way to bring down the risk of diffuse

brain injury, 16th International Technical Conference of the Enhanced Safety

of Vehicles (ESV). Windsor, Canada, 1998.

Bohman K, Rosén E, Sunnevång C, Boström O. Rear Seat Occupant Thorax

Protection in Near Side Impacts. Ann Adv Automot Med. 2009:Oct;53:3-12.

Boström O, Gabler C, Digges K, Fildes B, Sunnevång C. Injury reduction

opportunities of far-side impact countermeasures. Ann Adv Automot Med.

2008:Oct;52:289-300.

Braitman K, Chaudhary N, McCartt A. Effect of passenger presence on older

drivers' risk of fatal crash involvement. Traffic Inj Prev. 2014;15(5):451-6.

Brumbelow M, Mueller B, Arbelaez R. Occurrence of serious injury in real-

world side impacts of vehicles with good side-impact protection ratings.

Traffic Inj Prev. 2015;16 Suppl 1:pp.125-32, 2015.

Page 56: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

48

CARHS Companion 2016. Downloaded from:

https://www.carhs.de/en/companion-poster/product/safetycompanion-

2016-pdf.html

Carter P, Flannagan C, Reed M, CunninghamR, Rupp J. Comparing the effects

of age, BMI and gender on severe injury(AIS 3+) in motor-vehicle crashes.

Accid Anal Prev. 2014;72:46-160.

Chicchino J. Effectiveness of Forward Collision Warning and Autonomous

Emergency Braking Systems in Reducing Front-to-Rear Crash Rates.

Insurance Institute for Highway Safety, August 2016.

Daniels S, Brijs T, Nuyts E, Wets G. Explaining variation in safety performance

of roundabouts. Accid Anal Prev. 2007;42(2):393-402.

D'Elia A, Newstead S, Scully J. Evaluation of vehicle side airbag effectiveness

in Victoria, Australia. Accid Anal Prev. 2013;54:67-72

Digges K, Gabler H, Mohan P, Alonso B. Characteristics of the injury

environment in far-side crashes. Adv Automot Med. 2005;Oct49:185–197.

Eigen AM, Digges K, Samaha RR. Safety Changes in the US Vehicle Fleet since

Model Year 1990, Based on NASS Data. Adv Automot Med. 2012;56:241-251.

EC. European Commission. Traffic Safety Basic Facts on Main Figures,

European Commission, Directorate General for Transport, June 2015a.

EC. European Commission. Traffic Safety Basic Facts on Junctions, European

Commission, Directorate General for Transport, June 2015b.

Eugensson A, Brännström M, Frasher D, Rothoff M, Solyom S, Robertsson A.

Environmental, Safety, Legal and Societal Implications of Autonomous

Driving Systems. 23rd International Technical Conference of the Enhanced

Safety of Vehicles (ESV). Technical Paper No. 13-0467, 2013.

Euro NCAP. Oblique Pole Side Impact Testing Protocol. European New Car

Assessment Programme (Euro NCAP), version 7.0.2, November 2015a.

Euro NCAP. Side Impact Mobile Deformable Barrier Testing Protocol.

European New Car Assessment Programme (Euro NCAP), version 7.1.1,

November 2015b.

Evans L. (1991) Traffic Safety and the Driver. Van Nostrand Reinhold.

Page 57: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

49

New York, NY. ISBN 0-442-00163-0.

Evans L. Safety belt effectiveness: the influence of crash severity and selective

recruitment. Accid Anal Prev. 1996;28:423–433.

Fildes B, Linder A, Douglas C, Digges K, Morgan R, Gabler C, Duma S, Stitzel

J, Boström O, Sparke L, Smith S and Newland C. Occupant Protection in Far-

Side Crashes. 19th International Technical Conference of the Enhanced Safety

of Vehicles (ESV). Technical Paper No. 05-0299, 2005.

Fildes B, Sparke L, Boström O, Pintar F, Yoganandan N, Morris A. Suitability

of current side-impact test dummies in far-side impacts. Proc. International

Conference on the Biomechanics of Impact (IRCOBI); September 18–20,

2002; pp. 43–56.

Fildes B, Keall M, Bos N, Lie A, Page Y, Pastor C, Pennisi L, Rizzi M, Thomas

P, Tingvall C. Effectiveness of Low-speed Autonomous Emergency Braking in

Real-world Rear-end Crashes. Accid Anal Prev. 2015;81:24–29.

Frampton R, Welsh R, Thomas P. Belted driver protection in frontal impact -

what has been achieved and where do future priorities lie? Ann Adv Automot

Med. 2002;Oct46:93-109.

Gabler C, Digges K, Fildes B and Sparke L. Side Impact Injury Risk for Belted

Far-Side Passenger Vehicle Occupants. 2005 SAE International Congress &

Exposition, Detroit, USA.

Global New Car Assessment Programme (Global NCAP). Available at

www.globalncap.org\about. Accessed online June 14, 2016.

Griffin R, Huisingh C, McGwin G, Reiff D. Association between side impact

airbag deployment and risk of injury: a matched cohort study using the CIREN

and the NASS-CDS. J Trauma Acute Care Surg. 2012;73:914–918.

Gross F, Lyon C, Persaud B, Srinivasan R. Safety effectiveness of converting

signalized intersections to roundabouts. Accid Anal Prev. 2013;50:234-41.

Gustafsson M, Stigson H, Krafft M, Kullgren A. Risk of Permanent Medical

Impairment (RPMI) in Car Crashes Correlated to Age and Gender. Traffic Inj

Prev 2015;16(4):353-361.

Haddon W. Advances in the Epidemiology of Injuries as a basis for Public

Policy. Public Health Reports 1980;95:411-421.

Page 58: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

50

Hierlinger T, Lienkamp M, Unger J, Unselt T. Potential of a pre-crash lateral

occupant movement in side collisions of (electric) minicars. Traffic Inj Prev.

2015;16 Suppl 1:S153-8.

Humanetics Crash Test Dummies for Side Impacts. Available at:

http://www.humaneticsatd.com/crash-test-dummies/side-impact. Accessed

online September 25, 2016.

Hydén C, Várhelyi A. The effects on safety, time consumption and

environment of large scale use of roundabouts in an urban area: a case study.

Accid Anal Prev. 2000;32:11–23.

Håland Y (1994). Car-to-Car Side Impacts: Occupant injuries, test methods,

and the development and evaluation of protective systems. Thesis for the

degree of Doctor in Philosophy, ISBN 91-7032-976-1, Chalmers University of

Technology, Gothenburg, Sweden.

IIHS (2015a). Insurance Institute for Highway Safety - Highway Loss Data

Institute. Honda Accord collision avoidance features. Bulletin Vol. 32, No. 7:

April 2015. http://www.iihs.org/iihs/topics/t/crash-avoidance-

technologies/hldi-research. Accessed online July 7, 2016.

IIHS (2015b). Insurance Institute for Highway Safety - Highway Loss Data

Institute. Mazda collision avoidance features. Bulletin Vol. 32, No. 7: April

2015. http://www.iihs.org/iihs/topics/t/crash-avoidance-technologies/hldi-

research. Accessed online July 7, 2016.

IIHS. Insurance Institute for Highway Safety. Side Impact Crashworthiness

Evaluation. Crash Test Protocol (Version VIII). July 2016.

Isaksson-Hellman I, Lindman M. The Effect of a Low-Speed Automatic Brake

System Estimated From Real Life Data. Ann Adv Automot Med. 2012;56.

ISO/TR 9790. (1999) Road vehicles- Anthropomorphic Side Impact Dummy

– Lateral Response Requirements to Assess Biofidelity of the Dummy.

Technical Report No. 9790, International Standards Organization, American

National Standards Institute, New York, NY, 1999.

ISO/TC22/SC12/WG5/WorldSID Task group. Biofidelity ranking comparison

WorldSID vs. ES-2re. Technical Document TGN538, 2008.

Page 59: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

51

Jakobsson L, Lindman M, Svanberg B, Carlsson H. Real World Data Driven

Evolution of Volvo Cars' Side Impact Protection Systems and their

Effectiveness. Ann Adv Automot Med 2010;Oct54:127-36.

Johnson S, Gabler C. Evaluation of NASS-CDS side crash delta-V estimates

using event data recorders. Traffic Inj Prev. 2014;15(8):827-34.

Kallberg V-P, Allsop R, Ward H, van der Horst R, Varhelyi A.

Recommendations for Speed Management on European Roads.

Transportation Research Board (TRB), 1999.

Kahane C. Fatality Reduction by Safety Belts for Front-Seat Occu-pants of

Cars and Light Trucks, Technical Report. National Highway Traffic Safety

Administration, DOT HS 809 199. Washington, D.C. 2000

Kahane C. Lives Saved by the Federal Motor Vehicle Safety Standards and

Other Vehicle Safety Technologies, 1960-2002 – Passenger Cars and Light

Trucks. National Highway Traffic Safety Administration, DOT HS 809 833.

Washington D.C. 2004.

Kahane C. An Evaluation of Side Impact Protection. National Highway Traffic

Safety Administration. Washington, DOT HS 810748, D.C. 2007.

Kahane C. Relationships between Fatality Risk, Mass, and Footprint in Model

Year 2000-2007 Passenger Cars and LTVs – Final Report. National Highway

Traffic Safety Administration, DOT HS 811 665. Washington D.C. 2012.

Kent R, Basem H, Matsuoka F (2005a). On the Fatal Crash Experience of

Older Drivers. Ann Adv Automot Med, 2005;Oct45:371–391.

Kent R, Viano D, Crandall J (2005b). The Field Performance of Frontal Air

Bags: A Review of the Literature. Traffic Inj Prev. 2005;6(1):1-23.

Kent R, Woods W, Boström O. Fatality risk and the presence of rib fractures.

Ann Adv Automot Med. 2008;53:73-84.

Kim T, Shaw G, Lessley D, Park G, Crandall J, Svendsen A, Whitcomb B,

Ayyagari M, Mishra P, Markusic C. Biofidelity evaluation of WorldSID and ES-

2re under side impact conditions with and without airbag. Accid Anal Prev.

2016;90:140-51.

Kullgren A. (1998) Validity and Reliability of Vehicle Collision Data: Crash

Pulse Recorders for Impact Severity and Injury Risk Assessment in Real Life

Page 60: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

52

Frontal Collisions. Doctor in Philosophy Thesis. Karolinska Institutet,

Stockholm.

Kullgren A. Dose-response models and EDR data for assessment of injury risk

and effectiveness of safety systems. Proc. International Conference on the

Biomechanics of Impact (IRCOBI); September 2008:3-14.

Kullgren A., Lie A. and Tingvall, C. Comparison Between Euro NCAP Test

Results and Real-World Crash Data. Traffic Inj Prev. 2010;11(6):587 – 593.

Lie A (2012a) Managing traffic safety – An approach to the evaluation of new

vehicle safety systems, Thesis for the degree of Doctor in Philosophy, ISBN

978-91-7457-711-2, Karolinska Institutet, Stockholm, Sweden.

Lie A (2012b). Nonconformities in Real-World Fatal Crashes— Electronic

Stability Control and Seat Belt Reminders. Traffic Inj Prev. 2012;13(3):308-

314.

Lord D, Schalkwyk I, Chrysler S, Staplin L. A strategy to reduce older driver

injuries at intersections using more accommodating roundabout design

practices. Accid Anal Prev. 2007;39:427–432.

Luzon-Narro J, Arregui-Dalmases C, Hernando LM, Core E, Narbona A,

Selgas C. Innovative passive and active countermeasures for near side crash

safety. Int. Journal of Crashwortiness, 2014;19(3):209-221.

Lyman S, Ferguson S, Braver E, Williams A. Older driver involvements in

police reported crashes and fatal crashes: trends and projections. Traffic Inj

Prev 2002;8:116–20.

Mandavilli S, McCartt A, Retting A. Crash Patterns and Potential Engineering

Countermeasures at Maryland Roundabouts. Traffic Inj Prev. 2009;8(1):44-

50.

McCartt A, Kyrychenko S. Efficacy of Side Airbags Reducing Driver Deaths in

Driver-Side Car and SUV Collisions. Traffic Inj Prev. 2007; (8):162-170.

McGwin G, Metzger J, Rue L. The influence of side airbags on the risk of head

and thoracic injury after motor vehicle collisions. J Trauma,

2004;Mar;56(3):512-6.

Page 61: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

53

Newland C, Belcher T, Boström O, Gabler C, Cha J-G, Wong H-L, Tylco S, Dal

Nevo R. Occupant-to-Occupant Interaction and Impact Injury Risk in Side

Impact Crashes. Stapp Car Crash J. 2008;52.

NHTSA (2012a). National Highway Traffic Safety Administration. Laboratory

Test Procedure for the New Car Assessment Program Side Impact Rigid Pole

Test. Rev. 09/19/2012. Washington D.C.

NHTSA (2012b). National Highway Traffic Safety Administration. Laboratory

Test Procedure for the New Car Assessment Program Side Impact Moving

Deformable Barrier Test. Rev. 09/19/2012. Washington D.C.

NHTSA. National Highway Traffic Safety Administration. Traffic Safety Facts

2013. Washington,D.C. Dec 2014. DOT HS 812 139

NHTSA (2015a). National Highway Traffic Safety Administration. New Car

Assessment Program (NCAP), Request for Comments. National Highway

Traffic Safety Administration, Department of Transportation, [Docket No.

NHTSA-2015-0119]. Washington D.C.

NHTSA (2015b). National Highway Traffic Safety Administration. National

Automotive Sampling System (NASS) General Estimates System (GES)

Analytical User’s Manual 1988–2014. November 2015 Washington D.C. DOT

HS 812 215.

Norin H. (1995) Evaluating the crash safety level component in cars. Doctor

in Philosophy Thesis. Karolinska Institutet, Stockholm.

Oxley J, Corben B, Koppel S, Fildes B, Jacques N, Symmons M & Johnston I.

Cost-effective infrastructure measures on rural roads. Report No. 217.

Monash University Accident Research Centre, 2004.

Persaud B, Retting R, Gårder P, Lord D. Crash Reductions Following

Installation of Roundabouts in the United States. Insurance Institute for

Highway Safety, Arlington, 2000.

Persaud B, Retting R, Gårder P, Lord D. Safety Effect of Roundabout

Conversions in the United States: Empirical Bayes Observational Before-After

Study. Transportation Research Record: Journal of the Transportation

Research Board, Vol. 1751, 2014.

Page 62: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

54

Petitjean A, Troisseille X, Petit P, Irwing A, Hassan J, Praxl N. Injury risk

curves for the WorldSID 50th male dummy. Stapp Car Crash J. 2009;53:443-

476.

Petitjean A, Troisseille X, Praxl N, Hynd D, Irwing A. Injury risk curves for the

WorldSID 50th male dummy. Stapp Car Crash J. 2012;56:323–347.

Pintar F, Yoganandan N, Stemper B, Boström O, Rouhana S, Digges K, Fildes

B. Comparison of PMHS, WorldSID, and THOR-NT responses in simulated

far side impact. Stapp Car Crash J. 2007 Oct;51:313-60.

Pipkorn B (1996). Car-to-Car Side Impacts: Development and Validation of

Mathematical Models and their Usability for Protective System Design. Thesis

for the degree of Doctor in Philosophy, ISBN 91-7197-286-2, Chalmers

University of Technology, Gothenburg, Sweden.

Pipkorn B, Fredriksson R, Olsson J. Bumper Bag for SUV to Passenger Vehicle

Compatibility and Pedestrian Protection. 20th International Technical

Conference of the Enhanced Safety of Vehicles (ESV). Paper No. 07-0056,

2007.

Pipkorn B, Sunnevång C. Protection Systems for Seniors. Submitted to the 13th

International Symposium and Exhibition on Sophisticated Car Occupant

Safety Systems, November 2016.

Polders E, Daniels S, Casters W, Brijs T. Identifying crash patterns on

roundabouts. Traffic Inj Prev. 2015;16(2):202-7.

Prasad P, Dalmotas D, Chouinard A. Side Impact Regulatory Trends, Crash

Environment and Injury Risk in the USA. Stapp Car Crash J. 2015;Nov;59:91-

112.

Retting R, Bhagwant N, Persaud B, Gårder P & Lord D. Crash and Injury

Reduction Following Installation of Roundabouts in the United States.

American Journal of Public Health, 2001;91:628-631.

Ridella S, Rupp J, Poland K. Age-related differences in AIS 3± crash injury

risk, types, causation and mechanisms. Proc. International Conference on the

Biomechanics of Impact (IRCOBI); September, 2012.

Roser M (2016). Life Expectancy. Published online at OurWorldInData.org.

Retrieved from: http://ourworldindata.org/data/population-growth-vital-

statistics/life-expectancy/ [Online Resource]

Page 63: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

55

Ruhle H, Moorhouse K, Donnolly B, Stricklin J. Comparison of Worldsid and

ES-2re Biofidelity using an updated Biofidelity Ranking System. Proceedings

of the 21st International Technical Conference of the Enhanced Safety of

Vehicles (ESV). Technical Paper No. 09-0563, 2009.

Samaha R, Elliott D. NHTSA Side Impact Research: Motivation for Upgraded

Test Procedures. 18th International Technical Conference of the Enhanced

Safety of Vehicles (ESV). Technical Paper No. 492, 2003.

Sander U, Boström O. Analysis of Far-side Impacts in Europe – Occurrence,

Injury outcome and Countermeasures. Proceedings of the 10th International

Symposium and Exhibition on Sophisticated Car Occupant Safety Systems,

2010.

Sander U. Opportunities and limitations for collision intervention at

intersections – A study of real world ‘left turn across path’ accidents.

Submitted to Accident Analysis and Prevention, 2016.

Sharma D, Stern S, Brophy J, Choi E-H. An Overview of NHTSA’s Crash

Reconstruction Software WinSmash. 20th International Technical Conference

of the Enhanced Safety of Vehicles (ESV). Technical Paper No. 07-0211, 2007.

Sakshaug L, Laureshyn A, Svensson Å, Hydén C. Cyclists in roundabouts—

Different design solutions. Accid Anal Prev. 2010;42(4):1338–1351.

Schöneburg R, Baumann K-H, Justen R. Pre-Safe - The Next Step in the

Enhancement of Vehicle Safety. 18th International Technical Conference of the

Enhanced Safety of Vehicles Conference (ESV). Technical Paper No. 410,

2003.

Schöneburg R, Paurevic M, Fehring M, Richert J, Bogenrieder R. From a

Preventive to a Pre-Impacting Restraint System. 24th International Technical

Conference of the Enhanced Safety of Vehicles Conference (ESV). Technical

Paper No. 15-0374, 2015.

Stigson H, Kullgren A. Effect of side impact protection in reducing injuries.

Paper presented at: 22nd International Technical Conference of the Enhanced

Safety of Vehicles Conference (ESV). Technical paper No. 11-0319, 2011.

Stigson H (2009) A safe road transport system – Factors influencing injury

outcome for car occupants, Thesis for the degree of Doctor in Philosophy,

ISBN 978-91-7409-433-6, Karolinska Institutet, Stockholm, Sweden.

Page 64: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

56

Stigson H, Gustafsson M, Sunnevång C, Krafft M, Kullgren A. Differences in

Long-term Medical Consequences Depending on Impact Direction Involving

Passenger Cars. Traffic Inj Prev. 2015;16 Suppl 1:S133-9.

Strandroth J, Sternlund S, Tingvall C, Johansson R, Rizzi M, Kullgren A. A new method to evaluate future impact of vehicle safety technology in

Sweden. Stapp Car Crash J. 2012;56.

Subit D, Duprey S, Lau S, Guillemot H, Lessley D, Kent R. Response of the

Human Torso to Lateral and Oblique Constant-Velocity Impacts. Ann Adv

Automot Med. 2010;54:27-40. Sunnevång C, Rosén E, Boström O, Lechelt U. Thoracic Injury Risk as a Function of Crash Severity - Car-to-car Side Impact Tests with WorldSID Compared to Real-life Crashes, Ann Adv Automot Med. 2010;54:159-68. Sunnevång C, Boström O, Lie A, Stigson H (2011). Census study of fatal car-to-car intersection crashes in Sweden involving modern vehicles. Traffic Inj Prev. 2011;12:333–338. Swedish Government. Nollvisionen och det trafiksäkra samhället [Vision Zero and the Traffic Safe Society], Government Bill 1996/97:137 and Committee Report 1997/98:TU4.

SRA. Swedish Road Administration. Dödsolyckor med bilar utrustade med

sidokrockkuddar. Publikation 2006:55

Swedish Road Administration. Vägtrafikskador 2009 och Vägrafikskador

2015. Available at: http://www.trafa.se/vagtrafik/vagtrafikskador/ Accessed

online June 14, 2016.

Tingvall C The “Vision Zero” – A road transport system free from health

losses. Transportation, traffic safety and health: the new mobility,

Proceedings of the 1st International Conference Gothenburg, Sweden, 1995.

Tingvall C, Lie A, Johansson R. Traffic safety in planning - a multi-

dimensional model for the Zero Vision, Proc. Transportation, Traffic safety

and Health. New Mobility Second International Conference. 1996, pp. 61-69

Tingvall C (1997). The “Vision Zero” – a Road Transport System Free from

Health Losses. In Transportation, Traffic Safety and Health: the New

Mobility. Editors: van Holst H, Nygren Å, Thord R.

Page 65: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

57

Tingvall C, Krafft M, Lie A, Kullgren A. The Role of Impact Velocity and

Change of Velocity in Side Impacts. 18th International Technical Conference

of the Enhanced Safety of Vehicles Conference (ESV). Technical Paper No.

219, 2003.

Tingvall C. Distraction from the View of Governmental Policy Making. In:

Driver Distraction: Theory, Effects, and Mitigation. Editor(s): Kristie Young,

Monash University, Clayton, Victoria, Australia; John D. Lee, University of

Iowa, USA; Michael A. Regan, French National Institute for Transport and

Safety Research (INRETS), Lyon, France / Monash University, Accident

Research Centre, Melbourne, Australia. CRC Press, 2008.

Thomas P, Frampton R. Injury Patterns In Side Collisions – A New Look With

Reference To Current Test Methods And Injury Criteria. Stapp Car Crash J.

Technical paper 99SC01, 1999.

Tylko S, German A, Dalmotas D. WorldSID responses in oblique and

perpendicular pole tests. 19th International Technical Conference of the

Enhanced Safety of Vehicles (ESV). Technical Paper No. 05-0256, 2005.

Tylko S, German A, Dalmotas D, Bussières A. Improving Side Impact

Protection: Response of the ES-2RE and WorldSID in a Proposed Harmonized

Pole Test. Proceedings of the International Research Council on the

Biomechanics of Impact (IRCOBI) Conference, pp. 213-224, 2006.

UN. United Nations General Assembly, Resolution proclaiming a Decade of

Action for Road Safety 2011-2020 (A/64/L.44/Rev.1). United Nations: New

York. 2010.

UN. United Nations 2015. Transforming Our World: The 2030 Agenda for

Sustainable Development. A/RES/70/1. Downloaded from:

https://sustainabledevelopment.un.org/content/documents/21252030%20

Agenda%20for%20Sustainable%20Development%20web.pdf, October 9,

2016

Vadeby A, Brüde U Korsningsutformning – En kunskapsöversikt. VTI

Rapport 554, 2006.

Vadeby A, Björketun U. Säker framkomlighet Trafiksäkerhetseffekter 2013

och 2014. VTI notat 7-2016.

Page 66: Characteristics of nearside car crashes an integrated ...umu.diva-portal.org/smash/get/diva2:1039698/FULLTEXT01.pdf · Characteristics of nearside car crashes – an integrated approach

58

Welsh R, Morris A, Hassan A. Struck side crashes involving post-regulatory

European passenger cars - crash characteristics and injury outcomes. Int.

Journal of Vehicle Safety. 2007;2:103-115.

WHO. World Health Organization. Global Status Report On Road Safety 2015.

ISBN 978 92 4 156506 6.

Viano D, Parentaeu C. Severe-to-Fatal Injury Risks in Crashes With Two

Front-Seat Occupants by Seat Belt Use. Traffic Inj Prev. 2010;11(3):294-299.

Viano D, Ridella S. Significance of Intersection Crashes for Older Drivers.

Society for Automotive Engineers, Warrendale, PA. SAE SP-1174, paper

960457, 1996.

VTI. Swedish National Road and Transport Research Institute. Uppföljning

av mötesfria vägar - slut-rapport [Evaluation of collision-free roads]. 2009.

Available at: http://www.vti.se/sv/publikationer/pdf/uppfoljning-av-

motesfria-vagar--slutrapport.pdf. Accessed online March 25, 2016.

Xinghua L, Chunsheng M, Jingwen H, Qing Z. Impact direction effect on

serious-to-fatal injuries among drivers in near-side collisions according to

impact location: Focus on thoracic injuries, Accid Anal Prev. 2012;48:442-

450.

Yoganandan N, Pintar FA, Zhang J, Gennarelli TA. Lateral impact injuries

with side airbag deployments—a descriptive study. Accid Anal Prev.

2007;39:22–27.

Yoganandan N, Pintar F. Deflections from two types of human surrogates in

oblique side impacts. Ann Adv Automot Med, 2008;52:301-313.

Yoganandan N, Arun M, Halloway D, Pintar F, Maiman D, Szabo A, Rudd R

(2014). Crash characteristics and injury patterns of restrained front seat

occupants in far-side impacts. Traffic Inj Prev. 2014;15 Suppl 1:S27-34.

Zhou Q, Rouhana S, Melvin J. Age Effects on Thoracic Injury Tolerance. Stapp

Car Crash J. Technical Paper No. 962421, 1996.

Öhlund A, Palmertz C, Korner J, Nygren M, Bohman K. The inflatable curtain

(IC) - A new head protection system in side impacts. 16th International

Technical Conference on the Enhanced Safety of Vehicles (ESV). Technical

Paper No. 98 S8 W 29, 1998.