chapters solutions

22
C h a p t e r 1 A n a l y s i s o f S t r e s s 1 . 1 . P = 4 . 2 7 k N 1 . 4 . P = 3 2 . 5 k N , θ = 2 6 . 5 6 ° 1 . 6 . P a l l = 3 8 . 3 k N 1 . 8 . σ x = 1 5 6 M P a , τ x y = 1 3 1 M P a 1 . 1 0 . σ x = 1 3 . 1 5 M P a , τ x y = 1 5 . 6 7 M P a 1 . 1 1 . F = 6 7 . 3 2 k N / m 3 1 . 1 4 . F x = F y = F z = 0 1 . 2 1 . a . σ = 1 5 3 . 3 M P a , b . σ = 2 3 . 1 M P a 1 . 2 6 . a . σ 1 = 1 2 1 M P a , σ = 7 1 M P a , τ m a x = 9 6 M P a b . σ 1 = 2 0 0 M P a , σ 2 = 5 0 M P a , τ m a x = 1 2 5 M P a 1 . 3 1 . a . σ x = 3 8 . 6 8 M P a , σ y = 1 2 . 1 2 M P a , τ x y = 7 M P a b . σ 1 = 4 0 . 4 1 M P a , σ 2 = 1 0 . 3 9 M P a , 1 . 3 4 . P = 3 π p r 2 1 . 3 7 . τ m a x = 4 8 M P a , θ p = 2 9 ° 1 . 3 8 . σ w = 6 1 . 5 M P a , τ w = 2 6 . 3 M P a 1 . 4 2 . a . σ = 0 . 2 3 7 τ o , τ = 0 . 3 4 7 τ o b . σ 1 = 3 . 7 3 2 τ o , σ 2 = 0 . 2 6 8 τ o , 1 . 4 4 . σ 1 = σ 2 = 5 1 . 9 6 M P a , 1 . 4 6 . σ 1 = 4 6 . 1 7 M P a , σ 2 = 1 3 . 8 3 M P a ,

Upload: suhayb1988

Post on 10-Dec-2015

224 views

Category:

Documents


2 download

DESCRIPTION

advance mechanics

TRANSCRIPT

Page 1: Chapters Solutions

Chapter 1 Analysis of Stress

1.1. P = 4.27 kN

1.4. P = 32.5 kN, θ = 26.56°

1.6. Pall = 38.3 kN

1.8. σx′ = 156 MPa, τx′y′ = –131 MPa

1.10. σx′ = –13.15 MPa, τx′y′ = –15.67 MPa

1.11. F = 67.32 kN/m3

1.14. Fx = Fy = Fz = 0

1.21.

a. σ = 153.3 MPa,

b. σ = 23.1 MPa

1.26.

a. σ1 = 121 MPa, σ = –71 MPa, τmax = 96 MPa

b. σ1 = 200 MPa, σ2 = –50 MPa, τmax = 125 MPa

1.31.

a. σx = 38.68 MPa, σy = 12.12 MPa, τxy = 7 MPa

b. σ1 = 40.41 MPa, σ2 = 10.39 MPa,

1.34. P = 3πpr2

1.37. τmax = 48 MPa, θp = 29°

1.38. σw = 61.5 MPa, τw = 26.3 MPa

1.42.

a. σ = –0.237τo, τ = 0.347τo

b. σ1 = 3.732τo, σ2 = –0.268τo,

1.44. σ1 = –σ2 = 51.96 MPa,

1.46. σ1 = 46.17 MPa, σ2 = 13.83 MPa,

Page 2: Chapters Solutions

1.49.

a. σx = 100 MPa, τxy = –30 MPa

b. σ1 = 110 MPa,

1.53. P = 1069 kN, p = 467 kPa

1.55.

a. σx = 186 MPa,

b. σ1 = 188 MPa, τmax = 101 MPa,

1.58. p = 494 kPa

1.62. σ1 = 66.06 MPa, l1 = 0.956, m1 = 0.169, n1 = 0.242

1.64. σ1 = 24.747 MPa, σ2 = 8.48 MPa, σ3 = 2.773 MPa, l1 = 0.647, m1 = 0.396, n1 = 0.652

1.69.

a. σ1 = 12.049 MPa, σ2 = –1.521 MPa, σ3 = –4.528 MPa, l1 = 0.618, m1 =

0.533, n1 = 0.577

1.73. σ = 52.25 MPa, τ = 36.56 MPa

1.75.

a. τ13 = 8.288 MPa, τ12 = 6.785 MPa, τ23 = 1.503 MPa

1.79. σoct = 12 MPa, τoct = 9.31 MPa

1.82.

a. σ1 = 108.3 MPa, σ2 = 51.7 MPa, σ3 = –50 MPa,

1.85. σ = –12.39 MPa, τ = 26.2 MPa, px = 16.81 MPa, py = –3.88 MPa, pz = –23.30 MPa

Page 3: Chapters Solutions

Chapter 2 Strain and Material Properties

2.4. c0 = 2a0, c1 = 2(a1 + b0)

2.9.

a. εx = 667 µ, εy = 750 µ, γxy = –1250 µ

b. ε1 = 1335 µ, ε2 = 82 µ,

2.11. ε1 = 758 µ, ε2 = –808 µ,

2.13. ∆QB = 0.008 mm, ∆AC = 0.016 mm

2.15.

a. γmax = 200 µ, θs = 45°

b. εx = 350 µ, εy = 250 µ, γxy = –173 µ

2.17. ε1 = –59 µ, ε2 = –1141 µ,

2.21.

a. J1 = –3 × 10–4, J2 = –44 × 10

–8, J3 = 58 × 10–12

b. εx′ = 385 µ

c. ε1 = 598 µ, ε2 = –126 µ, ε3 = –772 µ

d. γmax = 1370 µ

2.28.

a. ∆L = 5.98 mm,

b. ∆d = –0.014 mm

2.33.

a. ε1 = 1222 µ, ε2 = 58 µ

b. γmax = 1164 µ,

c. (γmax)t = 1222 µ

2.36. ∆BD = 0.283/E m

2.39. εx = 522 µ, εy = 678 µ, γxy = –1873 µ

Page 4: Chapters Solutions

2.41. σx = 72 MPa, σy = 88 MPa, σz = 40 MPa, τxy = 16 MPa, τyz = 64 MPa, τxz = 0

2.46. (b) ∆V = –2250 mm3

2.48. σ3: σ2: σ1 = 1 : 1.086:1.171, σ1 = 139.947 MPa, σ2 = 129.757 MPa, σ3 = 119.513

MPa

2.52. εx = γ(a – x)/E, εy = –vεx, σx = γ(a – x), γxy = τxy = σy = 0. Yes.

2.55. U1 = P2L/2EA, U2 = 5U1/8, U3 = 5U1/12

2.61.

a. U = 60.981T2a/πd4G,

b. U = 2.831 kN · m

2.67. Uov = 3.258 kPa, Uod = 38.01 kPa

2.69.

Page 5: Chapters Solutions

Chapter 3 Problems in Elasticity

3.1.

(b)

3.2.

3.14. All conditions, except on edge x = L, are satisfied.

3.16.

3.19. Yes, ε1 = 32.8 µ,

3.20. σx = σy = EαT1/(v – 1), εz = 2vαT1/(1 – v) + αT1

3.24. Px = –161.3 kN

3.31.

a. (σx)elast. = P/0.512L, (σx)elem. = P/0.536L

b. (σx)elast. = P/1.48L, (σx)elem. = P/3.464L

3.33.

a. (σ)elast. = 19.43F/L, (σx)elem. = 20.89F/L

(τxy)elast. = 5.21F/L, (τxy)elem. = 2.8F/L

3.38. r = 6.67 mm, d = 26.7 mm

3.42. T = 153.5 N · m

3.47.

a. σ1 = 36.5 MPa,

b. τmax = 16.96 MPa,

Page 6: Chapters Solutions

c. σoct = 11.3 MPa, τoct = 17.85 MPa

3.49.

a. σc = 1233 MPa,

b. σc = 1959 MPa

3.51. σc = 418 MPa, b = 0.038 mm

3.53. a = 2.994 mm, b = 1.605 mm, σc = 505.2 MPa

3.58. σc = 1014.7 MPa

Page 7: Chapters Solutions

Chapter 4 Failure Criteria

4.1. Pall = 707 kN

4.3.

a. Yes,

b. No

4.6.

a. σyp = 152.6 MPa,

b. σyp = 134.9 MPa

4.8. t = 8.45 mm

4.9.

a. d = 27.95 mm,

b. d = 36.8 mm

4.11.

a. T = 31.74 kN · m,

b. T = 26.05 kN · m

4.14.

a. R = 932 N,

b. R = 959 N

4.16.

a. p = 6.466 MPa,

b. p = 5.6 MPa

4.22. (b) σ1 = 75 MPa, σ2 = –300 MPa

4.25.

a. τ = σu/2,

b.

Page 8: Chapters Solutions

4.30. t = 9.27 mm

4.36. p = 11.11 MPa

4.39. t = 0.973 mm

4.43. Pmax = 18.7 kN

4.46. τmax = 274.3 MPa, φmax = 4.76°

Page 9: Chapters Solutions

Chapter 5 Bending of Beams

5.4. Mo = 266.8 N · m

5.6.

a. P = 3.6 kN,

b. P = 3.36 kN

5.9.

a. φ = –12.17°,

b. σA = 136.5 MPa

5.10. (b) σx = px3/Lth2,

(c) (σx)elast. = 0.998(σx)elem.

5.13. p = 3.88 kN/m

5.14. P = 9320 N

5.16. (a) σA = 35.3 MPa,

(b) σB = 23.5 MPa

(b) rZ = –205.48 m

5.19.

a. τmax/σmax = h/L,

b. pall = 10.34 kN/m

5.20. P = 15.6 kN

5.24. e = 4R/π

5.28. R = –13pL/32

5.30. v = Mox2(x – L)/4EIL, RB = 3Mo/2L

5.34. P = 1.614 kN

5.35.

a. σmax = –177 MPa,

Page 10: Chapters Solutions

b. σmax = –176.2 MPa

5.45.

a. σθ = –182.3P,

b. δp = 215.65P/E m

Page 11: Chapters Solutions

Chapter 6 Torsion of Prismatic Bars

6.2. D = 60.9 mm

6.6. (τmax)B = 130.4 MPa

6.13. T = 1.571 kN · m

6.14.

a. τe > τc;

b. Te > Tc

6.16. T = 256.5 kN · m

6.18. k = Gθ/2a2(b –1)

6.21. θA = aT/2r4G, θB = 2θA

6.23.

6.26. τmax = 76.8 MPa, θ = 0.192 rad/m

6.32.

a. C = 2.1 × 10–7G, τmax = 112,860T

6.33. θ = 0.1617 rad/m

6.35. θ = 2T/9Ga3t

6.37. τmax = 5.279 MPa, θ = 0.0131 rad/m

6.39. τ2 = τ4 = τmax = 50.88 MPa, θ = 0.01914 rad/m

Page 12: Chapters Solutions

Chapter 7 Numerical Methods

7.3. τB = 0.0107Gθ

7.6. v(L) = 7PL3/32EI

7.10. vmax = 0.01852pL3/EI

7.12. vB = –Pa3/16EI, θA = –Pa

2/16EI

7.14. vmax = 1.68182ph4/EI, θmax = –0.02131pL

3/EI

7.15. RA = RB = P/2, M = PL/8

7.18. (b) u2 = 2PL/11AE, u3 = –3PL/11AE

(c) R1 = 2P/11, R4 = 9P/11

7.19. (b) u2 = PL/9AE, u3 = PL/18AE

(c) R1 = 2P/3, R4 = P/3

7.24. (c) u2 = 0.9 mm, v2 = –3.02 mm

(d) R1x = 4.5 kN, R1y = 6 kN, R3y = –4.5 kN

(e) F12 = –7.5 kN, F23 = 36 kN

7.27. v2 = –5pL4/384EI

7.29. v2 = –5pL3/48EI, θ2 = PL

2/8EI

7.32. (c) v3 = –7PL3/12EI, θ3 = –3PL

2/4EI, θ2 = –PL2/4EI

(d) R1 = –3P/2, R2 = 5P/2, M1 = PL/2, M2 = –PL

7.35. (c) u2 = 1.0 mm, v2 = –3.9 mm

(d) R1x = 7.63 kN, R1y = 10.18 kN, R3x = –7.5 kN, R3y = 0

7.42. {σx, σy, τxy}a = {66.46, 6.65, –92.12} MPa

Page 13: Chapters Solutions
Page 14: Chapters Solutions

Chapter 8 Axisymmetrically Loaded Members

8.2. pi = 51.2 MPa

8.3.

a.

b. rx = 27.12 mm

8.5.

a. pi = 1.6po,

b. pi = 1.16po

8.7. t = 0.59 m

8.11.

a. t = 0.825di,

b. ∆d = 0.0074 mm

8.13.

a.

b.

8.16. T = 5.073 kN · m

8.21. ∆ds = 0.23δ0 m

8.23. σθ,max = 1.95EbEs(T2 – T1)/(Es + 3Eb)105

8.26.

a. pi = 155.6 MPa,

b. pi = 179.3 MPa

8.30. Shaft: σθ = σr = –49.4 MPa

Cylinder: σθ,max = 63.8 MPa, σr,max = 49.4 MPa

8.32. T = 101.79 N · m

Page 15: Chapters Solutions

8.36. ω = 36,726 rpm

8.40.

a. σθ,max = 108.68 MPa,

b. ω = 4300 rpm

8.44.

a. σθ,max = 554.6 MPa

Page 16: Chapters Solutions

Chapter 9 Beams on Elastic Foundations

9.1. P = 51.18 kN

9.3.

9.5. vmax = 3.375 mm, σmax = 103.02 MPa

9.6. P = 41.7 kN

9.8. σmax = 196.3 kN

9.11.

9.14. v = –MLf2(βx)/2β2EI

9.16.

a. v = 10 mm;

b. vL = 15 mm, vR = 5 mm

9.17. vC = 0.186 mm

9.18. vC = 2.81 × 10–8 m, θE = 5 × 10–7 rad

Page 17: Chapters Solutions

Chapter 10 Applications of Energy Methods

10.3. vp = (11Pc1a4/12E) + (7Pc2a

3/3E) + (Pa3/3EI2)

10.6. δA = 3PL3/16EI, θA = 5PL

2/16EI

10.9. δD = Fab2/8EI

10.11.

10.14. δD = 8.657WL/AE

10.17. vc = pL4/96EI

10.18. NBD = 0.826P, NAB = –0.131P, NBC = 0.22P

10.23. RA = –3Mo/2L, RB = 3Mo/2L, MA = Mo/2

10.27. RA = 4poL/10, MA = poL2/15, RB = poL/10

10.29.

10.32. δE = 41.5(P/AK)3

10.37. NA = P/2π, MA = PR/4

10.43. v = Px2(3L – x)/6EI

10.44. v = Pc2(L – c)2/4EIL

Page 18: Chapters Solutions

Chapter 11 Stability of Columns

11.1. F = 357.5 kN

11.3. Fall = 12.93 kN

11.5. σcr = 183.2 MPa

11.9. L = 4.625 m

11.12.

a. 6.25%,

b. Pall = 17.99 kN

11.15.

a. σcr = 34 MPa,

b. σall = 35.25 MPa

11.17. Le = L

11.19.

a. ∆T = δ/2αL,

b. ∆T = (δ/2αL) + (π2I/4L2Aα)

11.21. Bar BC fails as a column; Pcr = 1297 N

11.23. σcr = 59.46 MPa

11.31.

a. σmax = 93.71 MPa, vmax = 150.6 mm

11.33. P = 0.89π2EI/L2

11.35. Pcr = 12EI/L2

11.37. Pcr = 9EI1/4L

2

11.38.

Page 19: Chapters Solutions

11.43. Pcr = 16EI1/L2

Page 20: Chapters Solutions

Chapter 12 Plastic Behavior of Materials

12.2. α = 42.68°

12.5. σmax = 3Mh/4I

12.7.

a. Pmax = 471 kN,

b. (δAB)p = 0, (δBC)p = 7.66 mm

12.9. P = 189.8 kN

12.13. M = 11ah2σyp/54

12.15.

a. Myp = 15.36 kN · m, M = 21.12 kN · m

12.18. f = 1.7

12.19. f = 1.4

12.22. P = 46.18 kN

12.25. Pu = 9Mu/2L

12.28.

a. Mu = 2Myp,

b. Mu = 16b(b3 – a3)Myp/3π(b

4 – a4)

12.36. to = 6.3 mm

12.41.

a. pu = 25.53 MPa,

b. pu = 29.48 MPa

Page 21: Chapters Solutions

Chapter 13 Plates and Shells

13.2. εmax = 1250 µ, σmax = 274.7 MPa

13.4. (b) w = Ma(x2 – y2)/2D(1 – v)

13.6. (b) po = 12.05 kPa

13.8. w = Mo(a2 – r2)/2D(1 + v), σr,max = σθ,max = 6Mo/t

2

13.10. n = 3.33

13.11.

13.12. d = 3.85 mm, Mmax = 320 N

13.16.

a. t = 18.26 mm,

b. wmax = 0.336 mm

13.21. p = 1.2 MPa

13.23.

a. t = 11.11 mm,

b. t = 15.6 mm,

c. t = 17.1 mm

13.29. σmax = 2.48 MPa

13.30.

13.31. t = 0.791 mm

13.34.

Page 22: Chapters Solutions