chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/ch5 rl.pdf · 2021. 2. 14. · section 5.1...

136
Chapter Probability © 2010 Pearson Pren-ce Hall. All rights reserved 3 5

Upload: others

Post on 03-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Chapter

Probability

©  2010  Pearson  Pren-ce  Hall.  All  rights  reserved  

3  5  

Page 2: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Section 5.1 Probability Rules

5-­‐2  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 3: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Probability  is  a  measure  of  the  likelihood  of  a  random  phenomenon  or  chance  behavior.    Probability  describes  the  long-­‐term  propor-on  with  which  a  certain  outcome  will  occur  in  situa-ons  with  short-­‐term  uncertainty.    

Use  the  probability  applet  to  simulate  flipping  a  coin  100  -mes.    Plot  the  propor-on  of  heads  against  the  number  of  flips.    Repeat  the  simula-on.  

5-­‐3  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 4: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Probability  deals  with  experiments  that  yield  random  short-­‐term  results  or  outcomes,  yet  reveal  long-­‐term  predictability.      

The  long-­‐term  propor5on  with  which  a  certain  outcome  is  observed  is  the  probability  of  that  outcome.  

5-­‐4  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 5: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

The  Law  of  Large  Numbers  

As  the  number  of  repe--ons  of  a  probability  experiment  increases,  the  propor-on  with  which  a  certain  outcome  is  observed  gets  closer  to  the  probability  of  the  outcome.  

5-­‐5  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 6: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

In  probability,  an  experiment  is  any  process  that  can  be  repeated  in  which  the  results  are  uncertain.    

The  sample  space,  S,  of  a  probability  experiment  is  the  collec-on  of  all  possible  outcomes.    

An  even  is  any  collec-on  of  outcomes  from  a  probability  experiment.  An  event  may  consist  of  one  outcome  or  more  than  one  outcome.    We  will  denote  events  with  one  outcome,  some-mes  called  simple  events,  ei.  In  general,  events  are  denoted  using  capital  leMers  such  as  E.    

5-­‐6  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 7: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Consider  the  probability  experiment  of  having  two  children.  

(a)  Iden-fy  the  outcomes  of  the  probability  experiment.  (b)  Determine  the  sample  space.  (c)  Define  the  event  E  =  “have  one  boy”.  

EXAMPLE Identifying Events and the Sample Space of a Probability Experiment

(a)   e1  =  boy,  boy,  e2  =  boy,  girl,  e3  =  girl,  boy,  e4  =  girl,  girl  (b)   {(boy,  boy),  (boy,  girl),  (girl,  boy),  (girl,  girl)}  (c)   {(boy,  girl),  (girl,  boy)}  

5-­‐7  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 8: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐8  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 9: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

A  probability  model  lists  the  possible  outcomes  of  a  probability  experiment  and  each  outcome’s  probability.    A  probability  model  must  sa-sfy  rules  1  and  2  of  the  rules  of  probabili-es.    

5-­‐9  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 10: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

EXAMPLE          A  Probability  Model  

In  a  bag  of  peanut  M&M  milk  chocolate  candies,  the  colors  of  the  candies  can  be  brown,  yellow,  red,  blue,  orange,  or  green.    Suppose  that  a  candy  is  randomly  selected  from  a  bag.  The  table  shows  each  color  and  the  probability  of  drawing  that  color.    Verify  this  is  a  probability  model.    

Color   Probability  

Brown   0.12  

Yellow   0.15  

Red   0.12  

Blue   0.23  

Orange   0.23  

Green   0.15  

•   All  probabili-es  are  between  0  and  1,  inclusive.  

•   Because  0.12  +  0.15  +  0.12  +  0.23  +  0.23  +  0.15  =  1,  rule  2  (the  sum  of  all  probabili-es  must  equal  1)  is  sa-sfied.  

5-­‐10  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 11: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

If  an  event  is  a  certainty,  the  probability  of  the  event  is  1.  

If  an  event  is  impossible,  the  probability  of  the  event  is  0.  

An  unusual  event  is  an  event  that  has  a  low  probability  of  occurring.  

5-­‐11  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 12: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

True or false. The following represents a probability model.

A.  True

B.  False

Cell Phone Provider

Probability

AT&T 0.271 Sprint 0.236 T–Mobile 0.111 Verizon 0.263

Slide  5-­‐  12  

Page 13: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

True or false. The following represents a probability model.

A.  True

B.  False

Cell Phone Provider

Probability

AT&T 0.271 Sprint 0.236 T–Mobile 0.111 Verizon 0.263

Slide  5-­‐  13  

Page 14: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐14  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 15: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐15  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 16: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Pass  the  PigsTM  is  a  Milton-­‐Bradley  game  in  which  pigs  are  used  as  dice.  Points  are  earned  based  on  the  way  the  pig  lands.  There  are  six  possible  outcomes  when  one  pig  is  tossed.  A  class  of  52  students  rolled  pigs  3,939  -mes.  The  number  of  -mes  each  outcome  occurred  is  recorded  in  the  table  at  right.    (Source:  hMp://www.members.tripod.com/~passpigs/prob.html)    

EXAMPLE        Building  a  Probability  Model              

Outcome   Frequency  

Side  with  no  dot   1344  

Side  with  dot   1294  

Razorback   767  

TroMer   365  

Snouter   137  

Leaning  Jowler   32  

(a)  Use  the  results  of  the  experiment  to  build  a  probability  model  for  the  way  the  pig  lands.    

(b)  Es-mate  the  probability  that  a  thrown  pig  lands  on  the  “side  with  dot”.    (c)  Would  it  be  unusual  to  throw  a  “Leaning  Jowler”?    

5-­‐16  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 17: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

(a)     Outcome   Probability  

Side  with  no  dot  

Side  with  dot   0.329  

Razorback   0.195  

TroMer   0.093  

Snouter   0.035  

Leaning  Jowler   0.008  

(b)  The  probability  a  throw  results  in  a  “side  with  dot”  is  0.329.    In  1000  throws  of  the  pig,  we  would  expect  about  329  to  land  on  a  “side  with  dot”.    

(c)  A  “Leaning  Jowler”  would  be  unusual.    We  would  expect  in  1000  throws  of  the  pig  to  obtain  “Leaning  Jowler”  about  8  -mes.        

5-­‐17  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 18: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐18  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 19: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

The  classical  method  of  compu-ng  probabili-es  requires  equally  likely  outcomes.      

An  experiment  is  said  to  have  equally  likely  outcomes  when  each  simple  event  has  the  same  probability  of  occurring.  

5-­‐19  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 20: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

EXAMPLE Computing Probabilities Using the Classical Method

Suppose a “fun size” bag of M&Ms contains 9 brown candies, 6 yellow candies, 7 red candies, 4 orange candies, 2 blue candies, and 2 green candies. Suppose that a candy is randomly selected.

(a) What is the probability that it is yellow?

(b) What is the probability that it is blue?

(c) Comment on the likelihood of the candy being yellow versus blue.

(a)  There  are  a  total  of  9  +  6  +  7  +  4  +  2  +  2  =  30  candies,  so  N(S)  =  30.      

(b)  P(blue)  =  2/30  =  0.067.  

(c)  Since  P(yellow)  =  6/30  and  P(blue)  =  2/30,  selec-ng  a  yellow  is  three  -mes  as  likely  as  selec-ng  a  blue.    

5-­‐20  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 21: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

A box contains 6 twenty-five watt light bulbs, 9 sixty-watt light bulbs, and 5 hundred-watt light bulbs. What is the probability a randomly selected light bulb is sixty-watts?

A.  0.45

B.  0.3

C.  0.05

D.  0.25

Slide  5-­‐  21  

Page 22: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

A box contains 6 twenty-five watt light bulbs, 9 sixty-watt light bulbs, and 5 hundred-watt light bulbs. What is the probability a randomly selected light bulb is sixty-watts?

A.  0.45

B.  0.3

C.  0.05

D.  0.25

Slide  5-­‐  22  

Page 23: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐23  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 24: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Use  the  probability  applet  on  your  calculator  (instructor  will  show  you  how)  to  simulate  throwing  a  6-­‐sided  die  100  -mes.    Approximate  the  probability  of  rolling  a  4.    How  does  this  compare  to  the  classical  probability?    Repeat  the  exercise  for  1000  throws  of  the  die.    

EXAMPLE    Using  Simula:on  

5-­‐24  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 25: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐25  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 26: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

The  subjec5ve  probability  of  an  outcome  is  a  probability  obtained  on  the  basis  of  personal  judgment.    

For  example,  an  economist  predic-ng  there  is  a  20%  chance  of  recession  next  year  would  be  a  subjec-ve  probability.    

5-­‐26  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 27: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

In  his  fall  1998  ar-cle  in  Chance  Magazine,  (“A  Sta-s-cian  Reads  the  Sports  Pages,”  pp.  17-­‐21,)  Hal  Stern  inves-gated  the  probabili-es  that  a  par-cular  horse  will  win  a  race.  He  reports  that  these  probabili-es  are  based  on  the  amount  of  money  bet  on  each  horse.  When  a  probability  is  given  that  a  par-cular  horse  will  win  a  race,  is  this  empirical,  classical,  or  subjec-ve  probability?    

EXAMPLE  Empirical,  Classical,  or  Subjec-ve  Probability  

Subjec-ve  because  it  is  based  upon  people’s  feelings  about  which  horse  will  win  the  race.    The  probability  is  not  based  on  a  probability  experiment  or  coun-ng  equally  likely  outcomes.    

5-­‐27  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 28: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Section 5.2 Probability Rules

5-­‐28  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 29: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐29  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 30: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Two  events  are  disjoint  if  they  have  no  outcomes  in  common.    Another  name  for  disjoint  events  is  mutually  exclusive  events.      

5-­‐30  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 31: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

We  osen  draw  pictures  of  events  using  Venn  diagrams.    These  pictures  represent  events  as  circles  enclosed  in  a  rectangle.    The  rectangle  represents  the  sample  space,  and  each  circle  represents  an  event.    For  example,  suppose  we  randomly  select  a  chip  from  a  bag  where  each  chip  in  the  bag  is  labeled  0,  1,  2,  3,  4,  5,  6,  7,  8,  9.    Let  E  represent  the  event  “choose  a  number  less  than  or  equal  to  2,”  and  let  F  represent  the  event  “choose  a  number  greater  than  or  equal  to  8.”    These  events  are  disjoint  as  shown  in  the  figure.    

5-­‐31  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 32: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐32  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 33: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

 The  probability  model  to  the  right  shows  the  distribu-on  of  the  number  of  rooms  in  housing  units  in  the  United  States.    

Number of Rooms in Housing Unit Probability One 0.010 Two 0.032 Three 0.093 Four 0.176 Five 0.219 Six 0.189 Seven 0.122 Eight 0.079 Nine or more 0.080 Source:  American  Community  Survey,  U.S.  Census  Bureau  

EXAMPLE    The  Addi-on  Rule  for  Disjoint  Events  

(a)  Verify  that  this  is  a  probability  model.  

All  probabili-es  are  between  0  and  1,  inclusive.  

0.010  +  0.032  +  …  +  0.080  =  1  

5-­‐33  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 34: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Number of Rooms in Housing Unit Probability One 0.010 Two 0.032 Three 0.093 Four 0.176 Five 0.219 Six 0.189 Seven 0.122 Eight 0.079 Nine or more 0.080

(b)  What  is  the  probability  a  randomly  selected  housing  unit  has  two  or  three  rooms?    

P(two  or  three)    

         =  P(two)  +  P(three)    

         =  0.032  +  0.093  

         =  0.125  

5-­‐34  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 35: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

(c)  What  is  the  probability  a  randomly  selected  housing  unit  has  one  or  two  or  three  rooms?    

Number of Rooms in Housing Unit Probability One 0.010 Two 0.032 Three 0.093 Four 0.176 Five 0.219 Six 0.189 Seven 0.122 Eight 0.079 Nine or more 0.080

P(one  or  two  or  three)      

 =  P(one)  +  P(two)  +  P(three)    

 =  0.010  +  0.032  +  0.093  

 =  0.135  

5-­‐35  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 36: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

The data shows the distance employees of a company travel to work. One of these employees is randomly selected. Determine the probability the employee travels between 10 and 29 miles to work.

A.  0.401

B.  0.566

C.  0.334

D.  0.735

Slide  5-­‐  36  

Distance (miles) Number of employees 0 – 9 124 10 – 19 309 20 – 29 257 30 – 39 78 40 – 49 2

Page 37: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

The data shows the distance employees of a company travel to work. One of these employees is randomly selected. Determine the probability the employee travels between 10 and 29 miles to work.

A.  0.401

B.  0.566

C.  0.334

D.  0.735

Slide  5-­‐  37  

Distance (miles) Number of employees 0 – 9 124 10 – 19 309 20 – 29 257 30 – 39 78 40 – 49 2

Page 38: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

The table shows the favorite pizza topping for a sample of students. One of these students is selected at random. Find the probability the student is female or prefers sausage.

A.  0.458

B.  0.583

C.  0.125

D.  0.556

Slide  5-­‐  38  

Cheese   Pepperoni   Sausage   Total  

Male   8   5   2   15  

Female   2   4   3   9  

Total   10   9   5   24  

Page 39: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

The table shows the favorite pizza topping for a sample of students. One of these students is selected at random. Find the probability the student is female or prefers sausage.

A.  0.458

B.  0.583

C.  0.125

D.  0.556

Cheese   Pepperoni   Sausage   Total  

Male   8   5   2   15  

Female   2   4   3   9  

Total   10   9   5   24  

Slide  5-­‐  39  

Page 40: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐40  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 41: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐41  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 42: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐42  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Suppose  that  a  pair  of  dice  are  thrown.    Let  E  =  “the  first  die  is  a  two”  and  let  F  =  “the  sum  of  the  dice  is  less  than  or  equal  to  5”.    Find  P(E  or  F)  using  the  General  Addi-on  Rule.  

EXAMPLE    Illustra-ng  the  General  Addi-on  Rule  

Page 43: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐43  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 44: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐44  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 45: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Complement  of  an  Event  

Let  S  denote  the  sample  space  of  a  probability  experiment  and  let  E  denote  an  event.  The  complement  of  E,  denoted  EC,  is  all  outcomes  in  the  sample  space  S  that  are  not  outcomes  in  the  event  E.    

5-­‐45  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 46: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Complement  Rule  

If  E  represents  any  event  and  EC  represents  the  complement  of  E,  then    

P(EC)  =  1  –  P(E)  

5-­‐46  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 47: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

According  to  the  American  Veterinary  Medical  Associa-on,  31.6%  of  American  households  own  a  dog.    What  is  the  probability  that  a  randomly  selected  household  does  not  own  a  dog?  

P(do  not  own  a  dog)  =  1  –  P(own  a  dog)  

                         =  1  –  0.316  

                         =  0.684  

EXAMPLE Illustrating the Complement Rule

5-­‐47  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 48: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

The data to the right represent the travel time to work for residents of Hartford County, CT.

(a) What is the probability a randomly selected resident has a travel time of 90 or more minutes?

EXAMPLE              Compu-ng  Probabili-es  Using  Complements    

Source: United States Census Bureau

There  are  a  total  of    

24,358  +  39,112  +  …  +  4,895  =  393,186    

residents  in  Harvord  County,  CT.  

The  probability  a  randomly  selected  resident  will  have  a  commute  -me  of  “90  or  more  minutes”  is  

5-­‐48  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 49: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

(b)  Compute  the  probability  that  a  randomly  selected  resident  of  Harvord  County,  CT  will  have  a  commute  -me  less  than  90  minutes.  

P(less  than  90  minutes)  =  1  –  P(90  minutes  or  more)  

                                                                                     =  1  –  0.012  

                                                                                     =  0.988  

5-­‐49  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 50: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Section 5.3 Independence and Multiplication Rule

5-­‐50  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 51: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐51  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 52: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Two  events  E  and  F  are  independent  if  the  occurrence  of  event  E  in  a  probability  experiment  does  not  affect  the  probability  of  event  F.    Two  events  are  dependent  if  the  occurrence  of  event  E  in  a  probability  experiment  affects  the  probability  of  event  F.  

5-­‐52  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 53: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

EXAMPLE        Independent  or  Not?  

(a)  Suppose  you  draw  a  card  from  a  standard  52-­‐card  deck  of  cards  and  then  roll  a  die.    The  events  “draw  a  heart”  and  “roll  an  even  number”  are  independent  because  the  results  of  choosing  a  card  do  not  impact  the  results  of  the  die  toss.  

(b)    Suppose  two  40-­‐year  old  women  who  live  in  the  United  States  are  randomly  selected.  The  events  “woman  1  survives  the  year”  and  “woman  2  survives  the  year”  are  independent.    

(c)  Suppose  two  40-­‐year  old  women  live  in  the  same                    apartment  complex.    The  events  “woman  1  survives  the      

year”  and  “woman  2  survives  the  year”  are  dependent.      

5-­‐53  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 54: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐54  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 55: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐55  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 56: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

The  probability  that  a  randomly  selected  female  aged  60  years  old  will  survive  the  year  is  99.186%  according  to  the  Na-onal  Vital  Sta-s-cs  Report,  Vol.  47,  No.  28.    What  is  the  probability  that  two  randomly  selected  60  year  old  females  will  survive  the  year?  

EXAMPLE Computing Probabilities of Independent Events

The  survival  of  the  first  female  is  independent  of  the  survival  of  the  second  female.    We  also  have  that  P(survive)  =  0.99186.    

5-­‐56  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 57: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

A  manufacturer  of  exercise  equipment  knows  that  10%  of  their  products  are  defec-ve.  They  also  know  that  only  30%  of  their  customers  will  actually  use  the  equipment  in  the  first  year  aser  it  is  purchased.  If  there  is  a  one-­‐year  warranty  on  the  equipment,  what  propor-on  of  the  customers  will  actually  make  a  valid  warranty  claim?    

EXAMPLE Computing Probabilities of Independent Events

We  assume  that  the  defec-veness  of  the  equipment  is  independent  of  the  use  of  the  equipment.    So,    

5-­‐57  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 58: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐58  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 59: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

The probability that a randomly selected female aged 60 years old will survive the year is 99.186% according to the National Vital Statistics Report, Vol. 47, No. 28. What is the probability that four randomly selected 60 year old females will survive the year?

P(all  four  survive)    

       =  P  (1st  survives  and  2nd  survives  and  3rd  survives  and  4th  survives)  

     =  P(1st  survives)  .  P(2nd  survives)  .  P(3rd  survives)  .  P(4th  survives)  

     =  (0.99186)  (0.99186)  (0.99186)  (0.99186)      

     =  0.9678  

EXAMPLE Illustrating the Multiplication Principle for Independent Events  

5-­‐59  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 60: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐60  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 61: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

The  probability  that  a  randomly  selected  female  aged  60  years  old  will  survive  the  year  is  99.186%  according  to  the  Na-onal  Vital  Sta-s-cs  Report,  Vol.  47,  No.  28.    What  is  the  probability  that  at  least  one  of  500  randomly  selected  60  year  old  females  will  die  during  the  course  of  the  year?  

P(at  least  one  dies)  =  1  –  P(none  die)  

                                                                     =  1  –  P(all  survive)  

                                                                     =  1  –  0.99186500  

                                                                     =  0.9832  

EXAMPLE Computing “at least” Probabilities

5-­‐61  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 62: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

Forty-four percent of college students have engaged in binge drinking. If five college students are randomly selected, what is the probability that at least one of the five has engaged in binge drinking?

A.  0.055

B.  0.216

C.  0.945

D.  0.016

Slide  5-­‐  62  

Page 63: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

Forty-four percent of college students have engaged in binge drinking. If five college students are randomly selected, what is the probability that at least one of the five has engaged in binge drinking?

A.  0.055

B.  0.216

C.  0.945

D.  0.016

Slide  5-­‐  63  

Page 64: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐64  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 65: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Section 5.4 Conditional Probability and the General Multiplication Rule

5-­‐65  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 66: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐66  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 67: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Condi5onal  Probability  

The  nota-on  P(F  |  E)  is  read  “the  probability  of  event  F  given  event  E”.    It  is  the  probability  of  an  event  F  given  the  occurrence  of  the  event  E.    

5-­‐67  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 68: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

EXAMPLE              An  Introduc-on  to  Condi-onal  Probability  

Suppose  that  a  single  six-­‐sided  die  is  rolled.    What  is  the  probability  that  the  die  comes  up  4?  Now  suppose  that  the  die  is  rolled  a  second  -me,  but  we  are  told  the  outcome  will  be  an  even  number.    What  is  the  probability  that  the  die  comes  up  4?    

First  roll:                                                S  =  {1,  2,  3,  4,  5,  6}    

Second  roll:                                            S  =  {2,  4,  6}                                            

5-­‐68  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 69: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐69  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 70: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

EXAMPLE              Condi-onal  Probabili-es  on  Belief  about  God  and  Region  of  the  Country  

A  survey  was  conducted  by  the  Gallup  Organiza-on  conducted  May  8  –  11,  2008  in  which  1,017  adult  Americans  were  asked,  “Which  of  the  following  statements  comes  closest  to  your  belief  about  God  –  you  believe  in  God,  you  don’t  believe  in  God,  but  you  do  believe  in  a  universal  spirit  or  higher  power,  or  you  don’t  believe  in  either?”    The  results  of  the  survey,  by  region  of  the  country,  are  given  in  the  table  below.    

Believe  in  God  

Believe  in  universal  spirit  

Don’t  believe  in  either  

East   204   36   15  

Midwest   212   29   13  

South   219   26   9  

West   152   76   26  

(a)  What  is  the  probability  that  a  randomly  selected  adult  American  who  lives  in  the  East  believes  in  God?    

(b) What  is  the  probability  that  a  randomly  selected  adult  American  who  believes  in  God  lives  in  the  East?    

5-­‐70  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 71: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Believe  in  God  

Believe  in  universal  spirit  

Don’t  believe  in  either  

East   204   36   15  

Midwest   212   29   13  

South   219   26   9  

West   152   76   26  

(a)  What  is  the  probability  that  a  randomly  selected  adult  American  who  lives  in  the  East  believes  in  God?    

(b)    What  is  the  probability  that  a  randomly  selected  adult  American  who  believes  in  God  lives  in  the  East?    

5-­‐71  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 72: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

In  2005,  19.1%  of  all  murder  vic-ms  were  between  the  ages  of  20  and  24  years  old.    Also  in  1998,  16.6%  of  all  murder  vic-ms  were  20  –  24  year  old  males.    What  is  the  probability  that  a  randomly  selected  murder  vic-m  in  2005  was  male  given  that  the  vic-m  is  20  -­‐  24  years  old?  

EXAMPLE              Murder  Vic-ms  

= 0.869

5-­‐72  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 73: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

The table shows the favorite pizza topping for a sample of students. What is the probability that a randomly selected student who was male preferred pepperoni?

A.  0.333

B.  0.375

C.  0.6

D.  0.556

Slide  5-­‐  73  

Cheese   Pepperoni   Sausage   Total  

Male   8   5   2   15  

Female   2   4   3   9  

Total   10   9   5   24  

Page 74: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

The table shows the favorite pizza topping for a sample of students. What is the probability that a randomly selected student who was male preferred pepperoni?

A.  0.333

B.  0.375

C.  0.6

D.  0.556

Slide  5-­‐  74  

Cheese   Pepperoni   Sausage   Total  

Male   8   5   2   15  

Female   2   4   3   9  

Total   10   9   5   24  

Page 75: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Section 5.5 Counting Techniques

5-­‐75  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 76: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

76

One,  two,  three,  we’re…  

Coun-ng    

Page 77: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

77

Counting problems are of the following kind: “How many different 8-letter passwords are there?”

“How many possible ways are there to pick 11 soccer players out of a 20-player team?” Most importantly, counting is the basis for computing probabilities of discrete events.

“What is the probability of winning the lottery?”

BASIC COUNTING PRINCIPLES

Page 78: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

78

The sum rule: If a task can be done in n1 ways and a second task in n2 ways, and if these two tasks cannot be done at the same time, then there are n1 + n2 ways to do either task.

BASIC COUNTING PRINCIPLES

Example: The department will award a free computer to either a student or a teacher. How many different choices are there, if there are 530 students and 45 teachers? There are 530 + 45 = 575 choices.

Page 79: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

79

Generalized sum rule: If we have tasks T1, T2, …, Tm that can be done in n1, n2, …, nm ways, respectively, and no two of these tasks can be done at the same time, then there are n1 + n2 + … + nm ways to do one of these tasks.

BASIC COUNTING PRINCIPLES

Page 80: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

80

The product rule: Suppose that a procedure can be broken down into two successive tasks. If there are n1 ways to do the first task and n2 ways to do the second task after the first task has been done, then there are n1n2 ways to do the procedure.

BASIC COUNTING PRINCIPLES

Page 81: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

81

Example: How many different license plates are there that contain exactly three English letters ? Solution: There are 26 possibilities to pick the first letter, then 26 possibilities for the second one, and 26 for the last one. So  there  are  26⋅26⋅26  =  17576  different  license  plates.  

BASIC COUNTING PRINCIPLES

Page 82: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

82

Generalized product rule: If we have a procedure consisting of sequential tasks T1, T2, …, Tm that can be done in n1, n2, …, nm ways, respectively, then there are n1 ⋅ n2 ⋅ … ⋅ nm ways to carry out the procedure.

BASIC COUNTING PRINCIPLES

Page 83: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 83

Tree Diagrams How many bit strings of length four do NOT have two consecutive 1s?

There are 8 strings.

0

1

1

0

0

0

1

1

1

0

0

1

0

1

Page 84: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

84

The pigeonhole principle: If (k + 1) or more objects are placed into k boxes, then there is at least one box containing two or more of the objects. Example 1: If there are 11 players in a soccer team that wins 12-0, there must be at least one player in the team who scored at least twice. Example 2: If you have 6 classes from Monday to Friday, there must be at least one day on which you have at least two classes.

THE PIGEONHOLE PRINCIPLE

Page 85: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

85

The generalized pigeonhole principle: If N objects are placed into k boxes, then there is at least one box containing at least N/k of the objects. Example 1: In a 60-student class, at least 12 students will get the same letter grade (A, B, C, D, or F).

THE PIGEONHOLE PRINCIPLE

Page 86: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

86

Example 2: Assume you have a drawer containing a random distribution of a dozen brown socks and a dozen black socks. It is dark, so how many socks do you have to pick to be sure that among them there is a matching pair?

Solution: There are two types of socks, so if you pick at least 3 socks, there must be either at least two brown socks or at least two black socks.

Generalized pigeonhole principle: 3/2 = 2.

THE PIGEONHOLE PRINCIPLE

Page 87: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

How many 4-letter television call signs are possible, if each sign must start with either a K or a W?

A.  35,152

B.  456,976

C.  16

D.  104

Slide  5-­‐  87  

Page 88: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

How many 4-letter television call signs are possible, if each sign must start with either a K or a W?

A.  35,152

B.  456,976

C.  16

D.  104

Slide  5-­‐  88  

Page 89: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

There are 15 dogs entered in a show. How many ways can first, second, and third place be awarded?

A.  45

B.  455

C.  2,730

D.  3,375

Slide  5-­‐  89  

Page 90: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

There are 15 dogs entered in a show. How many ways can first, second, and third place be awarded?

A.  45

B.  455

C.  2,730

D.  3,375

Slide  5-­‐  90  

Page 91: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐91  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 92: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

92

Permuta-ons  and  Combina-ons  How many ways are there to pick a set of 3 people from a group of 6? The answer to this depends on whether we want the order in which they are picked to matter or not. For example, picking person C, then person A, and then person E leads to the same group as first picking E, then C, and then A. There are 6 choices for the first person, 5 for the second one, and 4 for the third one, so there are 6⋅5⋅4 = 120 ways to do this. Since in the original statement, it does not seem that order is important. This is not the correct result! However, these cases are counted separately in the above equation.

Page 93: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

93

So how can we compute how many different subsets of people can be picked (that is, we want to disregard the order of picking) ? To find out about this, we need to first look at permutations. A permutation of a set of distinct objects is an ordered arrangement of these objects. An ordered arrangement of r elements of a set is called an r-permutation.

Permuta-ons  and  Combina-ons  

Page 94: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

94

Example: Let S = {1, 2, 3}. The arrangement 3, 1, 2 is a permutation of S. The arrangement 3, 2 is a 2-permutation of S.

The number of r-permutations of a set with n distinct elements is denoted by P(n, r) or nPr . We can calculate P(n, n) with the product rule: P(n, n) = n⋅(n – 1)⋅(n – 2) ⋅…⋅3⋅2⋅1. (n choices for the first element, (n – 1) for the second one, (n – 2) for the third one…)

Permuta-ons  and  Combina-ons  

Page 95: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

95

Example: 8P3 = (8⋅7⋅6⋅5⋅4⋅3⋅2⋅1)/(5⋅4⋅3⋅2⋅1) = 8⋅7⋅6 = 336 General formula: P(n, r) = n!/(n – r)! = nPr Knowing this, we can return to our initial question: How many ways are there to pick a set of 3 people from a group of 6 (disregarding the order of picking)?

Permuta-ons  and  Combina-ons  

Page 96: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

A combination is an arrangement, without regard to order, of n distinct objects without repetitions. The symbol nCr represents the number of combinations of n distinct objects taken r at a time, where r < n.

5-­‐96  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 97: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

97

An r-combination of elements of a set is an unordered selection of r elements from the set. Thus, an r-combination is simply a subset of the set with r elements. Example: Let S = {1, 2, 3, 4}. Then {1, 3, 4} is a 3-combination from S.

The number of r-combinations of a set with n distinct elements is denoted by C(n, r) or nCr.

Example: C(4, 2) = 6, since, for example, the 2-combinations of a set {1, 2, 3, 4} are {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

PERMUTATIONS AND COMBINATIONS

Page 98: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

98

How can we calculate C(n, r)? Consider that we can obtain the r-permutation of a set in the following way: First, we form all the r-combinations of the set ���(there are C(n, r) such r-combinations). Then, we generate all possible orderings in each of these r-combinations (there are P(r, r) such orderings in each case). Therefore, we have: P(n, r) = C(n, r)⋅P(r, r)

PERMUTATIONS AND COMBINATIONS

Page 99: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

99

C(n, r) = nCr = P(n, r)/P(r, r) = n!/(n – r)!/(r!/(r – r)!) = n!/(r!(n – r)!) Now we can answer our initial question: How many ways are there to choose a set of 3 people from a group of 6 (disregarding the order of picking)? C(6, 3) = 6!/(3!⋅3!) = 720/(6⋅6) = 720/36 = 20 There are 20 different ways, that is, 20 different groups to be picked.

PERMUTATIONS AND COMBINATIONS

Page 100: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

100

Corollary: Let n and r be nonnegative integers with r ≤ n. Then C(n, r) = C(n, n – r).

Note that “choosing a group of r people from a group of n people” is the same as “splitting a group of n people into a group of r people and another group of (n – r) people”.

PERMUTATIONS AND COMBINATIONS

Page 101: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

101

Example: A soccer club has 8 female and 7 male members. For today’s match, the coach wants to have 6 female and 5 male players on the grass. How many possible configurations are there?

8C6 ⋅ 7C5

= 28⋅21 = 588

PERMUTATIONS AND COMBINATIONS

Page 102: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐102  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 103: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Determine the value of 9C3.

5-­‐103  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 104: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

The United States Senate consists of 100 members. In how many ways can 4 members be randomly selected to attend a luncheon at the White House?

5-­‐104  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 105: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

There are 13 students in a club. How many ways can four students be selected to attend a conference?

A.  17,160

B.  52

C.  28,561

D.  715

Slide  5-­‐  105  

Page 106: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Copyright  ©  2010  Pearson  Educa-on,  Inc.  

There are 13 students in a club. How many ways can four students be selected to attend a conference?

A.  17,160

B.  52

C.  28,561

D.  715

Slide  5-­‐  106  

Page 107: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

Section 5.6 Bayes’s Rule

The material in this section is available on the CD that accompanies the text.

5-­‐107  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 108: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐108  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 109: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐109  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 110: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

EXAMPLE              Introduc-on  to  the  Rule  of  Total  Probability  

At a university 55% of the students are female and 45% are male 15% of the female students are business majors 20% of the male students are business majors

What percent of students, overall, are business majors?

●  The percent of the business majors in the university contributed by females   55% of the students are female   15% of those students are business majors   Thus 15% of 55%, or 0.55 • 0.15 = 0.0825 or 8.25% of the total

student body are female business majors

●  Contributed by males   In the same way, 20% of 45%, or 0.45 • 0.20 = .09 or 9% are

male business majors

5-­‐110  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 111: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

●  Altogether   8.25% of the total student body are female business majors   9% of the total student body are male business majors

●  So … 17.25% of the total student body are business majors

EXAMPLE              Introduc-on  to  the  Rule  of  Total  Probability  

5-­‐111  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 112: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

•  Another  way  to  analyze  this  problem  is  to  use  a  tree  diagram  

Female

Male

0.55

0.45

EXAMPLE              Introduc-on  to  the  Rule  of  Total  Probability  

5-­‐112  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 113: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

EXAMPLE              Introduc-on  to  the  Rule  of  Total  Probability  

Female

Male

0.55

0.45

Business

Not Business

Business

Not Business

0.55•0.15

0.55•0.85

0.45•0.20

0.45•0.80

5-­‐113  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 114: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐114  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Multiply out, and add the two business branches

EXAMPLE              Introduc-on  to  the  Rule  of  Total  Probability  

Business

Not Business

Business

Not Business

Female

Male

0.55

0.45

0.55•0.15

0.55•0.85

0.45•0.20

0.45•0.80

0.0825

0.0900

0.4675

0.3600

0.0825

0.0900

Total = 0.1725

0.4675

0.3600

Page 115: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

•  This  is  an  example  of  the  Rule  of  Total  Probability  

               P(Bus)  =  55%  •  15%  +  45%  •  20%  

       =  P(Female)  •  P(Bus  |  Female)  

               +  P(Male)  •  P(Bus  |  Male)  

•  This  rule  is  useful  when  the  sample  space  can  be  divided  into  two  (or  more)  disjoint  parts  

5-­‐115  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 116: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

●  A partition of the sample space S are two non-empty sets A1 and A2 that divide up S

●  In other words   A1 ≠ Ø   A2 ≠ Ø   A1 ∩ A2 = Ø (there is no overlap)   A1 U A2 = S (they cover all of S)

5-­‐116  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 117: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

●  Let E be any event in the sample space S ●  Because A1 and A2 are disjoint, E ∩ A1 and

E ∩ A2 are also disjoint ●  Because A1 and A2 cover all of S, E ∩ A1

and E ∩ A2 cover all of E ●  This means that we have divided E into two disjoint

pieces E = (E ∩ A1) U (E ∩ A2)

5-­‐117  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 118: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

●  Because E ∩ A1 and E ∩ A2 are disjoint, we can use the Addition Rule

P(E) = P(E ∩ A1) + P(E ∩ A2) ● We now use the General Multiplication Rule on

each of the P(E ∩ A1) and P(E ∩ A2) terms P(E) = P(A1) • P(E | A1) + P(A2) • P(E | A2)

5-­‐118  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 119: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

P(E) = P(A1) • P(E | A1) + P(A2) • P(E | A2) ●  This is the Rule of Total Probability (for a

partition into two sets A1 and A2) ●  It is useful when we want to compute a

probability (P(E)) but we know only pieces of it (such as P(E | A1))

●  The Rule of Total Probability tells us how to put the probabilities together

5-­‐119  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 120: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐120  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 121: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

●  The general Rule of Total Probability assumes that we have a partition (the general definition) of S into n different subsets A1, A2, …, An   Each subset is non-empty   None of the subsets overlap   S is covered completely by the union of the subsets

●  This is like the partition before, just that S is broken up into many pieces, instead of just two pieces

5-­‐121  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 122: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐122  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 123: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

●  In a particular town   30% of the voters are Republican   30% of the voters are Democrats   40% of the voters are independents

●  This is a partition of the voters into three sets   There are no voters that are in two sets (disjoint)   All voters are in one of the sets (covers all of S)

EXAMPLE              The  Rule  of  Total  Probability  

●  For a particular issue   90% of the Republicans favor it   60% of the Democrats favor it   70% of the independents favor it

●  These are the conditional probabilities   E = {favor the issue}   The above probabilities are P(E | political party)

5-­‐123  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 124: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

●  The total proportion of votes who favor the issue

0.3 • 0.9 + 0.3 • 0.6 + 0.4 • 0.7 = 0.73

●  So 73% of the voters favor this issue

5-­‐124  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 125: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐125  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 126: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

•  In  our  male  /  female  and  business  /  non-­‐business  majors  examples  before,  we  used  the  rule  of  total  probability  to  answer  the  ques-on  

What  percent  of  students  

are  business  majors?  

•  We  solved  this  problem  by  analyzing  male  students  and  female  students  separately  

5-­‐126  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 127: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

•  We  could  turn  this  problem  around  •  We  were  told  the  percent  of  female  students  who  are  business  majors  

•  We  could  also  ask  

What  percent  of  business  majors  

are  female?  

•  This  is  the  situa-on  for  Bayes’s  Rule  

5-­‐127  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 128: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

●  For this example   We first choose a random business student (event E)   What is the probability that this student is female?

(partition element A1) ●  This question is asking for the value of P(A1 | E) ●  Before, we were working with P(E | A1) instead

  The probability (15%) that a female student is a business major

5-­‐128  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 129: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

•  The  Rule  of  Total  Probability  – Know  P(Ai)  and  P(E  |  Ai)  

– Solve  for  P(E)  •  Bayes’s  Rule  

– Know  P(E)  and  P(E  |  Ai)  – Solve  for  P(Ai  |  E)  

5-­‐129  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 130: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

•  Bayes’  Rule,  for  a  par--on  into  two  sets  U1  and  U2,  is  

•  This  rule  is  very  useful  when  P(U1|B)  is  difficult  to  compute,  but  P(B|U1)  is  easier  

5-­‐130  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 131: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐131  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 132: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

5-­‐132  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

The  business  majors  example  from  before  

Business

Not Business

Business

Not Business

Female

Male

0.55

0.45

0.55•0.15

0.55•0.85

0.45•0.20

0.45•0.80

0.0825

0.0900

Total = 0.1725

0.4675

0.3600

EXAMPLE              Bayes’s  Rule  

Page 133: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

●  If we chose a random business major, what is the probability that this student is female?   A1 = Female student   A2 = Male student   E = business major

● We want to find P(A1 | E), the probability that the student is female (A1) given that this is a business major (E)

EXAMPLE              Bayes’s  Rule  

5-­‐133  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 134: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

●  Do it in a straight way first   We know that 8.25% of the students are female

business majors   We know that 9% of the students are male business

majors   Choosing a business major at random is choosing

one of the 17.25% ●  The probability that this student is female is

8.25% / 17.25% = 47.83%

EXAMPLE              Bayes’s  Rule  (con-nued)  

5-­‐134  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 135: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

●  Now do it using Bayes’s Rule – it’s the same calculation

●  Bayes’s Rule for a partition into two sets (n = 2)

  P(A1) = .55, P(A2) = .45   P(E | A1) = .15, P(E | A2) = .20   We know all of the numbers we need

EXAMPLE              Bayes’s  Rule  (con-nued)  

5-­‐135  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved    

Page 136: Chapter 35rlhawkmath.pbworks.com/w/file/fetch/65144718/Ch5 RL.pdf · 2021. 2. 14. · Section 5.1 Probability Rules 52 ©"2010"Pearson"Pren-ce"Hall."All"rights" reserved""

EXAMPLE              Bayes’s  Rule  (con-nued)  

5-­‐136  ©  2010  Pearson  Pren-ce  Hall.  All  rights  

reserved