chapter 9 ref and air condition

36
٥ ﺍﻝﺒﺎﺏ ﺍﻝ ﺘﺎﺴﻊ ﺤﺴﺎﺏ ﺍﻷﺤﻤﺎل ﺍﻝﺤﺭﺍﺭﻴﺔHeat Loads Calculation ﺤﺴﺎﺏ ﺍﻷﺤﻤﺎل ﺍﻝﺤﺭﺍﺭﻴﺔ ﻓﻰ ﺘﻁﺒﻴﻘﺎﺕ ﺍﻝﺘﺒﺭﻴﺩ ﻭﺘﻜﻴﻴﻑ ﺍﻝﻬﻭﺍﺀ ﹰ ﻭﺘﺩﻓﺌ ﻝﻠﻤﺒﺎﻨﻰ ﻜﺄﺤﻤﺎل ﺘﺒﺭﻴﺩ ﺼﻴﻔﺎ ﻭﻏﺭﻑ ﺍﻝﺤﻔﻅ ﻭﺍﻝﺘﺠﻤﻴﺩ ﻭﻜﺫﻝﻙ ﺍﻝﺜﻼﺠﺎﺕ ﺍﻝﻤﻨﺯﻝﻴﺔ ﻭﺍﻝﻤﺠﻤﺩﺍﺕ ﻤﻥ ﺍﻷﻫﻤﻴﺔ ﻝﺩﻗﺔ ﺸﺘﺎﺀ ﺨﺘﻴﺎﺭ ﻤﻌﺩﺍﺕ ﺍﻝﺘﺒﺭﻴﺩ ﻭﺍﻝﺘﻜﻴﻴﻑ ﻭﻭ ﺤﺩﺍﺕ ﻤﻨﺎﻭﻝﺔ ﺍﻝﻬﻭﺍﺀ ﻝﻜﻰ ﺘﺤﻘﻕ ﻤﺘﻁﻠﺒﺎﺕ ﺍﻝﺘﺸﻐﻴل ﻭﺍﻝﺭﺍﺤﺔ ﺍﻝﺤﺭﺍﺭﻴﺔ ﻭﺍﻝﺘﻭﺯﻴﻊ ﺍﻝﺠﻴﺩ ﻝﻠﻬﻭﺍﺀ ﻓﻰ ﺍﻝﻤﻜﺎﻥ ﺍﻝﻤﻜﻴﻑ ، ﻭﻴﺠﺏ ﺍﻷﺨﺫ ﻓﻰ ﺍ ﻋﺘﺒﺎﺭ ﺍﻝﻅﺭﻭﻑ ﺍﻝﻤﻨﺎﺨﻴﺔ ﺍﻝﺘﻰ ﺘﺘﺤﻘﻕ ﻋﻨﺩﻫﺎ ﺃﻗﺼﻰ ﺭﺘﻔﺎﻉ ﻓﻰ ﺩﺭﺠﺔ ﹰ ﻭﺃﺩﻨﻰ ﺍﻝﺤﺭﺍﺭﺓ ﻭﺍﻝﺭﻁﻭﺒﺔ ﺼﻴﻔﺎ ﻨﺨﻔﺎﺽ ﻝﺩﺭﺠﺔ ﺍﻝﺤﺭﺍﺭﺓ، ﺤﻴﺙ ﻨﺠﺩ ﻤﻥ ﺤﺴﺎﺒﺎﺕ ﺍﻝﻁﺎ ﺸﺘﺎﺀ ﻗﺔ ﺍﻝﺸﻤﺴﻴﺔ ﻓﻰ ﻨﺼﻑ ﺍﻝﻜﺭﺓ ﺍﻝﺸﻤﺎﻝﻰ ﺃﻥ ﺃﻁﻭل ﻴﻭﻡ ﻓﻰ ﺍﻝﻌﺎﻡ ﻫﻭ21 ﻴﻭﻨﻴﻭ ﻭﺃﻗﺼﻰ ﺭﺘﻔﺎﻉ ﻓﻰ ﺩﺭﺠﺔ ﺍﻝﺤﺭﺍﺭﺓ ﻭﺍﻝﺭﻁﻭﺒﺔ ﻴﺤﺩﺙ ﻓﻰ ﺸﻬﺭ ﻴﻭﻝﻴﻭ، ﻭﺃﻥ ﺃﻗﺼﺭ ﻴﻭﻡ ﻓﻰ ﺍﻝﻌﺎﻡ ﻫﻭ21 ﺩﻴﺴﻤﺒﺭ، ﻭﺃﺒﺭﺩ ﻴﻭﻡ ﻴﺤﺩﺙ ﻓﻰ ﺸﻬﺭ ﻴﻨﺎﻴﺭ ﻭﻓﺒﺭﺍﻴﺭ، ﻭﺃﻥ ﺃﻗﺼﻰ ﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ﻋﻠﻰ ﻤﺩﺍﺭ ﺍﻝﻴﻭﻡ ﺘﺤﺩﺙ ﺍﻝﺴﺎﻋﺔ ﺍﻝﺜﺎﻨﻴﺔ ﺃﻭ ﺍﻝ ﺜﺎﻝﺜﺔ ﺒﻌﺩ ﺍﻝﻅﻬﺭ، ﻭﺃﻥ ﺃﻗﺼﻰ ﹰ ﻝ ﻜﻤﻴﺔ ﺤﺭﺍﺭﺓ ﺘﺩﺨل ﺇﻝﻰ ﺍﻝﻐﺭﻓﺔ ﺘﺒﻌﺎ ﺸﻌﺎﻉ ﺍﻝﺸﻤﺴﻰ ﺍﻝﻤﺒﺎﺸﺭ ﻭﺍﻝﻤﻨﺘﺸﺭ ﺍﻝﺴﺎﻗﻁ ﻋﻠﻰ ﺍﻷﺴﻁﺢ ﺍﻝﺨﺎﺭﺠﻴﺔ ﻝﻠﻤﺒ ﻨﻰ ﻭﺍﻝﺘﻰ ﺘﻨﺘﻘل ﺨﻼل ﺍﻝﺠﺩﺭﺍﻥ ﻭﺍﻷﺴﻘﻑ ﺘﺤﺩﺙ ﺤﻭﺍﻝﻰ ﺍﻝﺴﺎﻋﺔ ﺍﻝﺜﺎﻝﺜﺔ ﺃﻭ ﺍﻝﺭﺍﺒﻌﺔ ﺒﻌﺩ ﺍﻝﻅﻬﺭ ﺒﺴﺒﺏ ﺍﻝﺘﺨﻠﻑ ﺍﻝﺯﻤﻨﻰ ﺃﻭ ﻅﺎﻫﺭﺓ ﺍﻝﺘﻭﻫﻴﻥ ﻭﻫﻭ ﺍﻝﻔﺭﻕ ﺍﻝﺯﻤ ﻨﻰ ﺒﻴﻥ ﺴﻘﻭﻁ ﺍﻷﺸﻌﺔ ﺍﻝﺸﻤﺴﻴﺔ ﻋﻠﻰ ﺍﻝﺠﺩﺭﺍﻥ ﻭ ﻨﺘﻘﺎﻝﻬﺎ ﺇﻝﻰ ﹰ ﻷﻥ ﺍﻝﻁﺎﻗﺔ ﺍﻝﺤﺭﺍﺭﻴﺔ ﺍﻝﺴﺎﻗﻁﺔ ﻋﻠﻰ ﺍﻝﺠﺩﺭﺍﻥ ﻤﻥ ﺍﻝﺨﺎﺭﺝ ﺘﻨﺘﻘل ﺇﻝﻰ ﺩﺍﺨل ﺍﻝﻐﺭﻓﺔ ﺩﺍﺨل ﺍﻝﻐﺭﻓﺔ، ﻭﻨﻅﺭﺍ ﺒﻌﺩ ﺯﻤﻥ ﻤﺘﺄﺨﺭ ﻋﻥ ﺯﻤﻥ ﺴﻘﻭﻁﻬﺎ ﻋﻠﻰ ﺍﻷﺴﻁﺢ ﺍﻝﺨﺎﺭﺠﻴﺔ ﻓﺈﻥ ﻨﺘﻘﺎل ﺍﻝﺤﺭﺍﺭﺓ ﻴﺤﺩﺙ ﻓﻰ ﻁﻭﺭ ﻏﻴﺭ ﻤﺴﺘﻘﺭ ﻭﻴﺼﻌﺏ ﺤﺴﺎﺒﻬﺎ ﺒﺎﻝﻁﺭﻕ ﺍﻝ ﻌﺎﺩﻴﺔ ﻭﺴﻭ ﹰ ﻋﻥ ﺫﻝﻙ ﺠﺩﺍﻭل ﺠﻤﻌﻴﺔ ﺍﻝﻤﻬﻨﺩﺴﻴﻥ ﺍﻷﻤﺭﻜﻴﺔ ﻑ ﻨﺴﺘﺨﺩﻡ ﻋﻭﻀﺎ ﻝﻠﺘﺩﻓﺌﺔ ﻭﺍﻝﺘﺒﺭﻴﺩ ﻭﺘﻜﻴﻴﻑ ﺍﻝﻬﻭﺍﺀASHRAE . ﺃﺤﻤﺎل ﺘﻜﻴﻴﻑ ﺍﻝﻬﻭﺍﺀ) s Air Conditioning Load ( ﹰ ﺤﻴﺙ ﻴﺘﻡ ﺘﺒﺭﻴﺩ ﺍﻝﻬﻭﺍﺀ ﻭﻨﺯﻉ ﺍﻝﺭﻁﻭﺒﺔ ﻤﻨﻪ ﺃﺤﻤﺎل ﺘﻜﻴﻴﻑ ﺍﻝﻬﻭﺍﺀ ﺘﻨﻘﺴﻡ ﺇﻝﻰ ﺃﺤﻤﺎل ﺘﻜﻴﻴﻑ ﺍﻝﻬﻭﺍﺀ ﺼﻴﻔﺎ ﻝﻠﺘﺨﻠﺹ ﻤﻥ ﺍﻝﺤﻤل ﺍﻝﺤ ﺭﺍﺭﻯ ﻝﻠﻐﺭﻓﺔ ﺤﻴﺙ ﻴﺘﻡ ﺘﺴﺨﻴﻥ ﺍﻝﻬﻭﺍﺀ ﻭﺇﻀﺎﻓﺔ ، ﺃﻤﺎ ﺃﺤﻤﺎل ﺘﻜﻴﻴﻑ ﺍﻝﻬﻭﺍﺀ ﺸﺘﺎﺀ ﺭﻁﻭﺒﺔ ﺇﻝﻴﻪ ﻹﻀﺎﻓﺔ ﺤﻤل ﺤﺭﺍﺭﻯ ﻝﻠﻐﺭﻓﺔ. ﺃﺤﻤﺎل ﺘﻜﻴﻴﻑ ﺍﻝﻬﻭﺍﺀ ﺼﻴﻔ) s Summer Air Conditioning Load ( ﺤﻤل ﺍﻝﺘﺒﺭﻴﺩ ﻝﻠﻐﺭﻓﺔ ﻓﻰ ﺍﻝﺼﻴﻑ ﻴﺘﻀﻤﻥ ﺃﺤﻤﺎل ﺩﺍﺨﻠﻴﺔ ﻭﺃﺤﻤﺎل ﺨﺎﺭﺠﻴﺔ ﻭﻜﻼﻫﻤﺎ ﺤﻤل ﺤﺭﺍﺭﻯ ﺇﻝﻰ ﺍﻝﻐﺭﻓﺔ ﻴﺠﺏ ﺍﻝﺘﺨﻠﺹ ﻤﻨﻪ ﻝﻠﺤﻔﺎﻅ ﻋﻠﻰ ﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ﺍﻝﻐﺭﻓﺔ ﺜﺎﺒﺘﺔ ﻓﻰ ﺤﺩﻭﺩ2 24 ± = C T o R ، ﻭﺭﻁﻭﺒﺔ ﻨﺴﺒﻴﺔ5 % 50 ± = R φ .

Upload: yousef-elsharkawy

Post on 16-Nov-2015

149 views

Category:

Documents


39 download

DESCRIPTION

حساب الأحمال الحرارية

TRANSCRIPT

  • Heat Loads Calculation

    21

    21

    .ASHRAE

    )sAir Conditioning Load(

    .

    )sSummer Air Conditioning Load(

    24 2 = CT oR

    5 % 50 =R.

  • ) GainsExternal Heat(

    .

    )Heat Transmission Through Walls(

    )- (

    :

    Fig. 9-1 Heat transmission through walls

    oi hk

    x

    k

    x

    k

    x

    hU

    111

    3

    3

    2

    2

    1

    1 +

    +

    +

    += (9-1)

    # "! k x

    io hh , % &! U*1 0 - # "& + *(& )

    : TQ - # "&

    TUAQTrans = (9-2)

    T A

    .

  • )4.29()5.25().( +++= oR TTKLMCLTDT (9-3)

    2 CLTD Cooling load temperature difference

    Co 5.25 Co 4.29 Co 6.11

    o 40

    CLTD ) -( 21

    .

    LM

    o 40 o 24 ) - (

    .

    K 1 =K 85.0 =K

    . K=65.0

    RT oT

    :

    cmmo PTTT = (9-4)

    Tm Pc

    ,min,max ooC TTP CP=11~14 =

    Tm

    ).- (

    :

    [ ] FTTKLMCLTDT oR +++= )4.29()5.25().( (9-5)

  • F )-( CLTD

    F=75.0

    K=1 K

    .K=5.0

    )dowsTransmission through Win(

    wQ

    oi A x hh ,

    :

    io hk

    x

    hU

    111 ++= (9-6)

    )( max CLFSHGFSCTUAQW += (9-7)

    )4.29()5.25( ++= oR TTCLTDT (9-8)

    U 1.25

    .ASHRAE

    CLTD ).-(

    Sc Shading coefficient

    mm 3

    ) -(

    .

    maxSHGF Solar Heat Gain Factor Maximum

    mm 3

    )-( )-( )-(

    o 24 o 23 .

    CLF

    M L

  • CLF ) -( H

    .

    )Infiltration and Ventilation Loads(

    .

    )ateRiltration Inf(

    Tight

    ) -( )- ( Loose Medium

    )- (

    Va )/( sm

    Ro TT . ,

    )( Va RoA TTcbaN ++= (9-9)

    abc : &infm )-( , ,

    = VNm Ainf& (9-10)

    . AN V ,

    ) ateRVentilation(

    : &venm )-(

    = VNm Pven && (9-10)

    &V PN

    .

    LeakQ Leakage Load,

  • LeakSQ ,

    LeakLQ . ,

    )()( inf, RoPvenLeakS TTCmmQ a += && (9-11)

    fgRovenLeakL hmmQ += )()( inf, && (9-12)

    LeakLLeakSLeak QQQ ,, += (9-13)

    aP

    C fgh

    .

    ) GainsInternal Heat(

    .

    )Lighting Load(

    10~20 /2 mWLR =

    .

    CLFLFFQ RbuLight = (9-14)

    Utilization factor uF

    . 1

    bF 1.2 1

    1.37

    .

    CLF

    Convective heat

    CLF

  • ASHRAE

    hr 16~5 8.0~98.0=CLF.

    )Appliances Load(

    AppQ

    = )1( PowerQApp (9-15)

    .

    )Loadcy Occupan(

    PerQ

    PerSQ PerLQ , ,

    .

    CLFHNQ SPPerS =, (9-16)

    LPPerL HNQ =, (9-17)

    LH SH PN

    ) - (

    . % 75 % 85

    CLF

    CLF=6.0 ~ 0.97

    .

    )System Load(

  • Safety factor

    % 20~5=SF.

    )Total Heat Load(

    .LQ SQ TotalQ

    =i

    iSS QQ1

    , , =i

    iLL QQ1

    ,

    LSTotal QQQ += (9-18)

    ) Heat FactorRoom Sensible(

    Fig. 9-2 Room sensible heat factor, RSHF in Summer

    15

    40 , & 60 % == oo

    o CT

    RS ) -(

    .

    LS

    S

    Total

    S

    QQ

    Q

    Q

    QRSHF

    +== (9-19)

  • 24 2 R = CT oR 50 %5 =R

    CTT S oRS )10~5(=

    RS S=85~95% .

    )Winter Air Conditioning Load(

    10 , & 90 % == oo

    o CT

    S )- (

    CTT oRS )10~5(+= .

    SQ)(

    . R

    :

    LQ)( .

    RS R .

    LQ+)( .

    RS R \ .

  • Fig. 9-3 Room sensible heat factor, RSHF in Winter

    LQ+)(

    R

    LQ)(

    R

    .

    Example 9-1

    The room shown below is theater, calculate the total cooling load TQ and room

    sensible heat factor, RSHF , if the number of persons are 500. The room is at

    latitude of N 30 o , 21 of July, and solar time of hr 15 . The room is maintained at

    dbt 24 Co and RH % 50 , the ambient conditions are dbt 38 Co and wbt 25 Co . The

    ceiling is from heavy concrete of cm 20 , cm 5 ceramic slab and cm 3 cement layer

    from inside. The walls are from common bricks of cm 20 and cm 3 cement layer

    from inside and outside. The floor is from concrete of cm 10 over unconditioned

    space, cm 5 ceramic slab and cm 3 cement layer from outside. The inside and

    outside convective heat transfer coefficient is KmWhi ./ 92= and KmWho ./ 22

    2= .

    The light intensity is 2/ 15 mW of floor area and fluorescent. The appliances load is

  • kW 10 . The air density is 3/ 18.1 mkg and specific heat of KkgkJ ./ 1005 . The water

    evaporation heat is kgkJ / 2570 .

    Data: 500 wbt, 25 ,dbt 38 ,% 50 ,dbt 24 oo ===== PooRo

    R NCtCtRHCt N 30 o , 21 July, Solar time hr 15 , KmWhi ./ 9

    2= , KmWho ./ 222=

    Light of 2/ 15 mW , 3/ 18.1 mkga = , KkgkJC aP ./ 1005= , kgkJh fg / 2570= Required: RSHFQT ,

    Solution Data from ASHRAE tables for Daily range, M and walls density Medium.

    Latitude N 30 o E W S N Ceiling Glass Light Persons CCLTD o 13 8 8 5 18 8

    LM -0.4 -0.4 -2.0 0.5 0.5 0 K 0.85 1 F 1 Sc 0.64 Glass windows and doors

    2max / mWSHGF 678 678 207 128 866

    CLF 0.20 0.53 0.50 0.82 0.92 0.97 Data of construction materials properties Material

    Thermal conductivity

    KmW ./

    Material

    Thermal conductivity

    KmW ./ Asphalt 0.75 Ceramic 0.67 Common Bricks 0.73 Glass 1.4 Face Bricks 1.32 Polystyrene 0.035 Hall Bricks 0.813 Corkboard 0.043 Concrete 1.1 Foam glass 0.044 Cement layer 0.72 Wood 0.116

  • Heat transmission through walls

    oi hk

    x

    k

    x

    k

    x

    hU

    111

    3

    3

    2

    2

    1

    1 +

    +

    +

    +=

    22

    1

    72.0

    03.0

    73.0

    2.0

    72.0

    03.0

    9

    11 ++++=U

    KmWU ./ 946.1 2=

    )4.29()5.25().( +++= oR TTKLMCLTDT

    CTNo 76.14)4.2938()245.25(85.0)5.05( =+++=

    CTEo 81.20)4.2938()245.25(85.0)4.013( =++=

    CTWo 56.16)4.2938()245.25(85.0)4.08( =++=

    CTSo 2.15)4.2938()245.25(85.0)0.28( =++=

    WTUAQ NNN 941.1068476.14)361330(946.1 ===

    WTUAQ EEE 423.1978281.20)5.133361340(946.1 ===

    WTUAQ WWW 33.1617756.16)5.1341340(946.1 ===

    WTUAQ SSS 569.111362.15)5.1331330(946.1 ===

    WQWalls 263.57781569.1113633.16177423.19782941.10684 =+++=

    Heat transmission through ceiling

    oi hk

    x

    k

    x

    k

    x

    hU

    111

    3

    3

    2

    2

    1

    1 +

    +

    +

    +=

    22

    1

    67.0

    05.0

    1.1

    2.0

    72.0

    03.0

    9

    11 ++++=U

    KmWU ./ 199.2 2=

    FTTKLMCLTDT oRC +++= )]4.29()5.25().[(

    CTCo 6.281)]4.2938()245.25(1)5.018[( =+++=

    WTUAQ CCCeiling 094.754826.28)3040(199.2 ===

    Heat transmission through floor

    oi hk

    x

    k

    x

    k

    x

    hU

    111

    3

    3

    2

    2

    1

    1 +

    +

    +

    +=

    22

    1

    72.0

    03.0

    1.1

    1.0

    67.0

    05.0

    9

    11 ++++=U

  • KmWU ./ 749.2 2=

    CTTT RoFo 142438)( ===

    WTUAQ FFFloor 2.4618314)3040(749.2 ===

    Heat transmission through doors

    Assume the doors from wood with 4 cm thickness.

    oi hk

    x

    hU

    111 ++=

    22

    1

    116.0

    04.0

    9

    11 ++=U

    KmWU ./ 994.1 2=

    WTUAQ NDNDN 766.52976.14)36(994.1 ===

    WTUAQ EDEDE 913.74681.20)36(994.1 ===

    WQDoors 679.1276913.746766.529 =+=

    Transmission Load

    WQTrans 236.180723679.12762.46183094.75482263.57781 =+++=

    Solar heat gains through glass windows

    Assume clear glass of 3 mm thickness and Venetian medium shading.

    oi hk

    x

    hU

    111 +

    +=

    22

    1

    4.1

    003.0

    9

    11 ++=U

    KmWU ./ 301.6 2=

    )4.29()5.25( ++= oRG TTCLTDT

    CTGo 1.18)4.2938()245.25(8 =++=

    )( max CLFSHFGScTUAQ GGG +=

    WQGE 609.4468)5.067864.01.18301.6)(5.133( =+=

    WQGW 525.8457)82.067864.01.18301.6)(5.134( =+=

    WQGS 544.2487)53.020764.01.18301.6)(5.133( =+=

    WQGlass 678.15413544.2487525.8457609.4468 =++=

  • Ventilation and Infiltration

    Room volume, 3 15600133040 mV == , and tight room

    From table (9-11), 36.0=AN air change rate,

    skgVNm A / 841.118.1156003600

    36.0inf === &

    From tables (9-14), (9-15), smoking persons and seated rest, ventilation is,

    skgVNm Pven / 425.418.110)5.7500(3 === &&

    )()( inf, RoPvenLeakS TTCmmQ a += &&

    WQ LeakS 62.88162)2438(1005)425.4841.1(, =+=

    fgRovenLeakL hmmQ += )()( inf, &&

    WQ LeakL 824.8373810257010)5.97.14()425.4841.1(33

    , =+=

    Lighting Load

    RbuLight LCLFFFQ =

    WQLight 19872)4030(1592.02.11 ==

    Appliances Load

    WPowerQApp 10000==

    Persons Load

    WHCLFNQ SPPerS 363757597.0500, ===

    WHNQ LPPerL 2000040500, ===

    Sensible, Latent and Total Load

    =i

    iSS QQ1

    ,

    kWWQ

    Q

    S

    S

    547.350 534.350546

    36375100001987262.88162678.15413236.180723

    ==+++++=

    kWWQQi

    iLL 739.103 824.10373820000824.837381

    , ==+==

    kWQTotal 286.454739.103547.350 =+=

    Room sensible heat factor

  • % 2.777716.0286.454

    547.350 ===Total

    S

    Q

    QRSHF

    Ct oS 14=.

    From Psychrometric chart, the air properties are,

    kgmkgkJhkgkJh ooR / 9023.0 v,/ 4.76 ,/ 1.483===

    Process SR is parallel to RSHF = 0.772, and Ct oS 14= .

    % 84 ,/ 3.8 ,/ 5.34 === SdaSS kggkgkJh

    Assume safety factor of 5 %, and the supply air flow rate is,

  • kWQTotal 477779.46405.1 ==

    skghh

    Qm

    SR

    Totala / 83.33341.48

    477 =

    =

    =&

    The ventilation air for persons is skgmm oven / 425.4== && .

    The return air should be, skgmmm oaR / 405.29 425.483.33 === &&&

    Heat balance of mixing point m to calculate enthalpy of state m,

    maRRoo hmhmhm &&& =+

    mh=+ 83.334.48405.294.76425.4

    damm kggkgkJh / 2.10 ,/ 1.52 ==

    Process mS, cooling and dehumidification from m to S and straight to saturation

    conditions to locate the apparatus dew point ADP,

    CADPtkggkgkJh oadaaa 8.9 ,/ 8.7 ,/ 5.28 ====

    Cooling coil capacity,

    TRhhm

    RC Sma 117.1705.3

    )5.341.52(83.33

    5.3

    )(==

    =

    &

    Cooling coil efficiency,

    % 58.747458.05.281.52

    5.341.52 ===

    =am

    Smcoil hh

    hh

    Bypass factor,

    % 42.252542.07458.011 ==== coilBF

    Condensate water,

    min/ 857.36010)3.82.10(83.33 ),( 3 kgmmm wSmaw ===

    &&&

    Winter Heating Load)(

    @ @?

  • Heat transmission through walls

    KmWU ./ 946.1 2=

    . 1739)5.1310362(132)3040[( 2mA =++=

    WTUAQWalls 504.54145)248(1739946.1 ===

    Heat transmission through ceiling

    KmWU ./ 199.2 2=

    WTUAQCeiling 8.42220)248()3040(199.2 ===

    Heat transmission through floor

    KmWU ./ 749.2 2=

    WTUAQFloor 8.52780)248()3040(749.2 ===

    Heat transmission through doors

    Assume the doors from wood with 4 cm thickness.

    KmWU ./ 994.1 2=

    WTUAQDoors 544.1148)248()36(2994.1 ===

    Transmission Load is,

    WQTrans 648.150295544.11488.527808.42220504.54145 ==

    Heat transmission through glass windows

    Assume clear glass of 3 mm thickness and Venetian medium shading.

    KmWU ./ 301.6 2=

    WTUAQGlass 72.4536)248()5.1310(301.6 ===

    Ventilation and Infiltration

    Room volume, 3 15600133040 mV == , and is tight room

    From table (9-12), 41.0=AN , the infiltration (air change rate),

    skgVNm A / 096.218.1156003600

    41.0inf === &

    From tables (9-14), (9-15), smoking persons and seated rest, ventilation is,

    skgVNm Pven / 425.418.110)5.7500(3 === &&

    )()( inf, RoPvenLeakS TTCmmQ a += &&

  • WQ LeakS 68.104857)248(1005)425.4096.2(, =+=

    fgRovenLeakL hmmQ += )()( inf, &&

    WQ LeakL 556.5647010254710)5.91.6()425.4096.2(33

    , =+=

    Lighting Load

    RbuLight LCLFFFQ =

    WQLight 19872)4030(1592.02.11 ==

    Appliances Load

    WPowerQApp 10000==

    Persons Load

    WHCLFNQ SPPerS 363757597.0500, ===

    WHNQ LPPerL 2000040500, ===

    Sensible, Latent and Total Load

    36375100001987268.10485772.4536648.1502951

    , +++== i

    iSS QQ

    kWWQS 443.193 048.193443 ==

    kWWQQi

    iLL 471.76 556.7647020000556.564701

    , ==+==

    kWQTotal 914.269471.76443.193 ==

    LQ)( SQ)(

    .

    Room sensible heat factor

    % 67.717167.0914.269

    443.193 ===

    Total

    S

    Q

    QRSHF

    Ct oS 34=.

  • From Psychrometric chart, the air properties are,

    daooR kggkgkJhkgkJh / 1.6 ,/ 23 ,/ 1.48 ===

    Process SR is parallel to 7167.0=RSHF , and Ct oS 34= .

    % 34 ,/ 11 ,/ 5.62 === SdaSS kggkgkJh

    For sensible heating process in secondary heater 2S, state 2 at 90 RH.

    % 90 ,/ 11 ,/ 45 222 === dakggkgkJh

    Assume safety factor of 5 %, and the supply air flow rate is,

    kWQTotal 41.283914.26905.1 ==

  • skghh

    Qm

    RS

    Totala / 681.191.485.62

    41.283 =

    =

    =&

    The ventilation air for persons is skgmm oven / 425.4== && .

    The return air should be, skgmmm oaR / 256.15 425.4681.19 === &&&

    Heat balance of mixed point m,

    maRRoo hmhmhm &&& =+

    mh=+ 681.191.48256.1523425.4

    Ctkggskgh omdamm 3.20 ,/ 7.8 ,/ 46.42 ===

    Process 12, adiabatic air washer from 1 to 2 at 90 % RH, dam kggkgkJh / 7.8 ,/ 45 11 ===

    Process 12a, adiabatic air washer from 1 to 2 to a at 100 % RH,

    State a, Ctkgg oadaa 16 ,/ 5.11 ==

    kWhhmPower ma 50)46.4245(681.19)( 11 === &

    kWhhmPower Sa 418.344)455.62(681.19)( 22 === &

    % 14.828214.07.85.11

    7.8112 ==

    =

    =ma

    mwasher

    The water consumed in the adiabatic air washer is,

    min/ 716.26010)7.811(681.19)( 32 kgmm maw ===&&

    .

    )e LoadCold Storag(

    Cold storage

    .

  • )External Heat Loads(

    )Transmission Load(

    .

    )( TTTUAQ RoTran += (9-19)

    U A Ro TT ,

    T

    T ) -(

    ASHRAE 1998.

    )Infiltration Load(

    infQ

    sm &InfV ASHRAE 1998 /3.

    ( )5.1

    3.0

    5.05.04inf )/(1

    2/1)(1021.2

    +=

    oRRogHAV

    & (9-20)

    ( ) RRoInfInf hhVQ = & (9-21)

    A H Ro hh Ro , ,

    . g

    )Product Load(

  • .

    [ ])()( 21Pr TTCLTTTCTimem

    Q fPbfPaP

    od ++= (9-22)

    Time Pm

    fT 1T PaC

    2T .

    LT kgkJ Co 0 334 /

    ) -(

    .

    )on HeatRespirati(

    .

    hPs RmQ =Re (9-23)

    hR ASHRAE 1998

    )-( Co 25 Co 0

    Co 10

    .

    )Internal Heat Load(

    )Loadcy Occupan(

    PerQ

    ASHRAE 1998

    .Watt

    PRPPer FTNQ = )6-(272 (9-24)

  • PN CT oR PF

    PF=1

    25.1=PF .

    )Appliances Load(

    . ASHRAE 1998

    ( ) = 1PowerQApp (9-25)

    )Safety Factor(

    5~20 %

    2.1~05.1=SF

    .

    =i

    iTotal QSFQ1

    (9-26)

    )Cooling Time(

    khLBi =/

    ASHRAE 1998

    .

    +

    +

    =4

    12

    2

    1

    1 Bi

    T

    H

    T

    H

    hA

    V

    s

    (9-27)

    Where )(1 fiPa TTCH = , )(2 cfPb TTCLTH +=

    mfi T

    TTT

    +=

    21 , mf TTT = 2 , khLBi /=

  • V h sA Bi

    k L

    iT mT fT cT

    PbPa LT CC ,

    .

    Example 9-2

    Estimate the product load of kg 1500 beef from Co 18 to Co 18 in hr 6 .

    Data: kgmP 1500= , CTo 181 = , CT

    o 182 = , hr 6

    Required: odQPr

    Solution

    From table (9-17), Beef properties are,

    kgkJCkgkJCCTkgkJLT PbPao

    f / 72.1 ,/ 43.3 , 7.1 ,/ 231 ====

    )()([ 21Pr TTCLTTTCtime

    mQ fPbfpa

    Pod ++=

    kWQ od 61.22))]18(7.1(72.1231))7.1(18(43.3[36006

    1500Pr =++

    =

    Example 9-3

    Cold storage of 3 82015 m maintains at dbt 4 Co and RH % 70 . The outside

    conditions are dbt 35 Co and wbt 26 Co . The wall consists of cm 20 common

    bricks, cm 5.7 cork board, and cm 3 cement layer at inside and outside surfaces. The

    ceiling consists of cm 20 concrete, cm 10 cork board, cm 10 ceramic layer, and

    cm 3 cement layer at inside surface. The floor consists of cm 10 concrete, cm 5 cork

    board, cm 5 ceramic layer. The inside convection heat transfer coefficient is

    KmW ./ 9 2 and outside is KmW ./ 23 2 . A 75 tons of Potatoes received at Co 30 are

    to be cooled to Co 10 in hr 35 . Lighting load is W 800 and W 1500 fan motor with

    efficiency of % 75 . Assume 4 workers of part work and safety factor of % 15 .

    Data: Room 3 82015 m , inside dbt 4 Co and RH % 70 , outside dbt 35 Co

    and wbt 26 Co , hi= KmW ./ 9 2 , ho= KmW ./ 23 2 , 75 ton of Potatoes

  • from Co 30 to Co 10 , Time is hr 35 , W 800 Lighting and W 1500 fan motor,

    efficiency % 75 , SF is % 15 .

    Required: Cooling Load, TotalQ

    Solution

    Transmission Load

    Overall heat transfer coefficient for walls, Ceiling and Floor and load,

    )( , 111 TTTUAQhk

    x

    hU Rooi+=++=

    Walls, KmWUU

    ./ 443.0 23

    1

    7.0

    03.0

    043.0

    075.0

    73.0

    2.0

    7.0

    03.0

    9

    11 2=+++++=

    WQE 8.24804)4-(35 820 443.0 =+=

    WQW 8.24804)4-(35 820 443.0 =+=

    WQS 44.1807)34-(35 815 443.0 =+=

    WQN 96.16474)-(35 815 443.0 ==

    WQwalls 841796.164744.18078.24808.2480 =+++=

    Ceiling, KmWUU

    ./ 3504.0 23

    1

    67.0

    1.0

    043.0

    1.0

    1.1

    2.0

    7.0

    03.0

    9

    11 2=+++++=

    WQC 8.4204)94-(35 2015 3504.0 =+=

    Floor, KmWUU

    ./ 1133.0 67.0

    05.0

    043.0

    05.0

    1.1

    1.0

    9

    11 2=+++=

  • WQF 69.10534)-(35 2015 1133.0 ==

    kWWQQQQ FCWallsTrans 676.13 49.1367569.10538.42048417 ==++=++=

    Infiltration Load

    kgkJhmkg oo / 19.80 ,/ 114.13 == , kgkJhmkg RR / 84.12 ,/ 266.1

    3 ==

    KTKT oR 308 , 277 ==

    ( )5.1

    3.0

    5.05.04inf )/(1

    2/1)(1021.2

    +=

    oRRogHAV

    &

    ( )5.1

    3.0

    5.05.04inf )114.1/266.1(1

    2266.1/114.11)481.9)(43(1021.2

    += V&

    smV / 10573.5 33inf=&

    ( ) kWhhVQ RRoInfInf 4752.0266.1)84.1219.80(10573.5 3 === &

    Product Load

    [ ] kWTTCTime

    mQ fPa

    Pod 381.37)]1030(14.3[360035

    75000)( 1Pr =

    ==

    Respiration Load

    kWWRmQ hPs 075.3 30757.4175Re ====

    Occupancy Load

    kWWFTNQ PRPPer 24.1 124025.1)46272(4)6-(272 ====

    Lighting Load

    kWWQLight 8.0 800 ==

    Appliances Load

    ( ) kWWPowerQApp 375.0 375)75.01(15001 ====

    Assume 15.1=SF

    kWQTotal 576.65)375.08.024.1075.3381.374752.0676.13(15.1 =++++++=

    Example 9-4

    A piece of beef of 3 102.0165.0279.0 m at Co 07 is to be cooled in air blast freezer

    of Co 25 . The convection heat transfer coefficient is )./( 48 2 KmWh = . Estimate

    the cooling time of the piece to cool its center to Co 20 and product load.

  • Data: Beef of 3 102.0165.0279.0 m , CT oi 07= , CTo

    c 20= , CTo

    m 25=

    )./( 48 2 KmWh =

    Required: Cooling time and odQPr

    Solution

    From table (9-17), the thermo physical properties of beef are,

    )./( 3430 KkgkJCPa = , )./( 1720 KkgkJCPb = , CTo

    f 7.1= , kgJLT / 231000=

    )./( 48 2 KmWh = , )./( 379.0 KmWk = , 3/ 1080 mkg=

    Biot number,

    mL 051.02

    102.0 ==

    459.6379.0

    051.048 ===k

    hLBi

    Room volume, 3 0047.0102.0165.0279.0 mV ==

    Product mass and surface area, kgVmP 076.50047.01080 ===

    2 136611.0165.0279.0102.0)165.0279.0(2 mAs =++=

    3831 / 101743.1))7.1(30(1043.31080)( mJTTCH fiPa ===

    [ ] [ ] 382 / 10835.2))20(7.1(17202310001080)( mJTTCLTH cfPb =+=+=

    CTTT

    T omfi 65.41)25(

    2

    )7.1(35

    21=+=

    +=

    CTTT omf 3.23)25(7.12 ===

    +

    +

    =4

    12

    2

    1

    1 Bi

    T

    H

    T

    H

    hA

    V

    s

    hrs 802.7 4.280874

    459.61

    3.23

    10835.2

    65.41

    101743.1

    136611.048

    0047.0 88 ==

    +

    +

    =

    Product load,

    [ ])()( 21Pr TTCLTTTCtimem

    Q fPbfpaP

    od ++=

    kWQ od 0702.0))]20(7.1(72.1231))7.1(35(43.3[3600802.7

    076.5Pr =++

    =

  • Problems

    1- A waiting hall of 40x30x8 m3 maintained at 24 C and RH= 50 %. Calculate the

    cooling load and RSHF of the hall if the outside condition is 40 C and 30 %

    RH. The heat transmission through walls, ceiling and floor is 16 kW. The solar

    heat gain through windows is 3.5 kW. The lighting density is 12 W/m2 of floor

    area. The number of persons is 100 and 6 kW of appliances. The room is

    medium tightness. The air density is 1.181 kg/m3 and specific heat is 1.005

    kJ/(kg. K). Evaporation heat for water vapor is 2454 kJ/kg.

    2- Room of 5x6x3.5 m3 maintained at 24 C and RH= 50 %. Calculate the cooling

    load and RSHF of the room if the outside condition is 35 C and 40 % RH. The

    heat transmission load is 9 kW. The room has one window of 1.2x1 in 6 m south

    wall and other in 5 m east wall. The lighting load is 200 W. The number of

    persons is 10. The room is medium tightness and wind speed is 4 m/s. The air

    density is 1.16 kg/m3 and specific heat is 1.004 kJ/(kg. K). Evaporation heat for

    water vapor is 2445 kJ/kg.

    3- A training hall of 3 123040 m is maintained at dbt 24 Co and RH % 50 . The

    room is at latitude of N 30 o , 21 of August, solar time of hr 15 and ambient

    condition of dbt 39 Co and wbt 24 Co . The ceiling is from cm 20 concrete, cm 5

    insulation, cm 8 ceramic and cm 3 cement layer from inside. The walls are from

    common bricks of cm 20 , cm 5 insulation and cm 3 cement layer from inside and

    outside. The floor is from concrete of cm 10 over unconditioned space, cm 5

    ceramic and cm 3 cement layer from outside. The inside convection heat transfer

    is KmWhi ./ 82= and outside KmWho ./ 19

    2= . The number of persons is 300 and

    fluorescent light intensity is 2/ 20 mW of floor area. The appliances load is kW 5 .

    The walls 40 m are at North/South directions with one door of m 34 in each

    wall. There are 3 windows in East and West walls of m 25.1 . Calculate the total

    cooling load TotalQ and room sensible heat factor, RSHF in summer. If the ambient

  • condition in winter is dbt 10 Co and RH % 90 , calculate the total cooling load

    TotalQ and RSHF .

    4- A freezing room maintained at -25 oC. Beef of 30 ton at 15 oC to be cooled -25

    oC in 16 hr. Thermal properties of Beef are, freezing point is -1.7 oC, latent heat

    = 231 kJ/kg, specific heat above freezing is 3.43 kJ/(kg. K), and below freezing

    is 1.72 kJ/(kg. K). Heat transmission, air change and other appliances loads are

    estimated to be 6 kW. Estimate the cooling load in TR and assuming safety

    factor of 10 %.

    5- Calculate the cooling load for cold storage at 5 oC dbt and 90 % RH. Outside

    air condition are 30 oC dbt and 24 oC wbt. The room volume is 10x15x6 m3

    with door of 3x4 m2 and overall heat transfer coefficient for the exposed area

    0.32 W/(m2. K). Apples of 20 ton are received at 30 oC and to be cooled to 2

    oC in 18 hr. Lighting of 600 W and 750 W fan motor. There are 6 workers and

    10 % safety factor. Assume the walls 15 m is North and South.

    6- A freezing room of 10x12x6 m3 at -18 oC receives 30 ton of fish at 25 oC to

    frozen it to -16 oC in 12 hrs. The room wall consists of 20 cm hall bricks, 7.5

    cm cork board, and 5 cm cement layer at inside and outside. The ceiling consists

    of 15 cm concrete, 10 cm cork board and 10 cm cement layer. The floor consists

    of 10 cm concrete, 5 cm cork board and 5 cm cement layer. The inside and

    outside heat transfer coefficient is 8 and 19 W/(m2. K). Number of air changes

    per hour is 1 % of the room volume. The lighting load is 400 W and 5 workers.

    Calculate the unit refrigeration capacity with 10 % safety factor.

    7- A tank of milk with dimensions of 3 251510 cm at Co 20 is to be cooled to

    Co 5 . The convection heat transfer coefficient is )./( 55 2 KmWh = and the

    temperature cooling medium is Co 2 . Estimate the cooling time and product

    load.

  • Table (9-1) Walls CLTD oC values from ASHRAE, 1985

    Solar time 6 7 8 9 10 11 12 13 14 15 16 17 18

    Wall group A, common bricks mm 203 , KmWU ./1 379.1~874.0 2= N 7 7 6 6 6 6 6 6 6 6 6 6 6 E 12 11 11 10 10 10 11 11 12 12 13 13 14 S 10 9 9 9 8 8 8 8 8 8 8 9 9 W 14 13 13 12 12 11 11 10 10 10 10 10 11

    Wall group B, common bricks mm 203 , KmWU ./1 714.1 2= N 6 6 6 5 5 5 5 5 5 5 6 6 7 E 10 9 8 8 9 9 10 12 12 13 14 14 15 S 9 8 7 7 6 6 6 6 7 8 9 10 11 W 13 12 11 10 9 9 8 8 8 8 8 9 11

    Wall group C, concrete bricks mm 203 , KmWU ./1 561.1~255.1 2= N 5 5 4 4 4 4 5 5 6 6 7 8 9 E 8 7 7 8 9 11 13 14 15 16 16 17 17 S 7 6 6 5 5 5 5 6 8 9 11 12 13 W 11 10 9 8 7 7 7 7 7 8 9 11 13

    Wall group D, common bricks mm 6.101 , KmWU ./1 356.2 2= N 4 3 3 3 3 4 4 5 6 6 7 8 9 E 5 5 5 7 10 13 15 17 18 18 18 18 18 S 5 4 4 2 3 4 5 7 9 11 13 15 16 W 9 7 6 5 5 5 5 6 6 8 10 13 17

    Wall group E, concrete mm 6.101 , KmWU ./1 811.1 2= N 2 2 2 3 3 4 5 6 7 8 10 10 11 E 3 3 6 10 15 18 20 21 21 20 19 18 18 S 3 2 2 2 3 5 7 10 14 16 18 19 18 W 5 4 3 3 3 4 4 5 6 8 11 15 20

    Wall group F, hall bricks mm 6.101 , KmWU ./1 493.1~914.0 2= N 1 1 2 3 4 5 6 8 9 11 12 12 13 E 1 4 9 16 21 24 25 24 22 20 19 18 17 S 1 1 1 2 4 7 11 15 19 21 22 21 19 W 2 2 2 2 3 4 6 8 11 16 22 27 32

    Ceiling group 3, concrete mm 100 , KmWU ./1 209.1 2= -2 -2 1 5 11 18 25 31 36 39 40 40 37

    Ceiling group 6, concrete mm 152 , KmWU ./1 897.0 2= 2 1 0 2 4 8 13 18 24 29 33 35 36

    Ceiling group 6, concrete mm 203 , KmWU ./1 715.0 2= 8 6 5 4 4 5 7 11 14 18 22 25 28

  • Table (9-2) LM values for latitudes 24o to 40o of walls and roofs ASHRAE, 1989.

    Latitude North

    Month N NE NW

    E W

    SE SW

    S Horizontal

    24

    Dec -2.7 -5.0 -3.8 1.6 7.2 -7.2 Jan/Nov -2.2 -4.4 -3.3 1.6 7.2 -6.1 Feb/Oct -2.2 -3.3 -1.6 1.6 5.5 -3.8 Mar/Sep -1.6 -1.6 -0.5 0.5 2.2 -1.6 Apr/Aug -1.1 0.0 -0.5 -0.5 -1.6 0.0 May/Jul 0.5 1.1 0.0 -1.6 -3.3 0.5

    Jun 1.6 1.6 0.0 -2.2 -2.3 0.5

    32

    Dec -2.7 -5.5 -4.4 1.1 6.6 -9.4 Jan/Nov -2.7 -5.0 -4.4 1.1 6.6 -8.3 Feb/Oct -2.2 -3.8 -2.2 2.2 6.1 -5.5 Mar/Sep -1.6 -2.2 -1.1 1.6 3.8 -2.7 Apr/Aug -1.1 -0.5 0.0 0.0 0.5 -0.5 May/Jul 0.5 0.5 0.0 -0.5 -1.6 0.5

    Jun 0.5 1.1 0.0 -1.1 -2.2 1.1

    40

    Dec -3.3 -5.5 -5.5 0.0 5.5 -11.6 Jan/Nov -2.7 -5.5 -5.0 0.5 6.1 -10.5 Feb/Oct -2.7 -4.4 -3.3 1.6 6.6 -7.7 Mar/Sep -2.2 -2.7 -1.6 2.2 5.5 -4.4 Apr/Aug -1.1 -1.1 0.0 1.1 2.2 1.6 May/Jul 0.0 0.0 0.0 0.0 0.5 0.5

    Jun 0.5 0.5 0.5 0.0 -0.5 1.1 Table (9-3) Percentage of daily range, ASHARE 1997.

    Solar Time, hr Tm % Solar Time, hr Tm % Solar Time, hr Tm % 1:00 87 9:00 71 17:00 10 2:00 92 10:00 56 18:00 21 3:00 96 11:00 39 19:00 34 4:00 99 12:00 23 20:00 47 5:00 100 13:00 11 21:00 58 6:00 98 14:00 3 22:00 68 7:00 93 15:00 0 23:00 76 8:00 84 16:00 3 24:00 82

    Table (9-4) CLTD oC for glass windows

    Solar time, hr CLTD Solar time, hr CLTD Solar time, hr CLTD 6:00 -1 11.00 4 16:00 8 7:00 -1 12.00 5 17:00 7 8:00 0 13.00 7 18:00 7 9:00 1 14.00 7 19:00 6 10:00 2 15.00 8 20:00 4

  • Table (9-5) SC Shading coefficient for glass windows Glass type

    Thickness mm

    Without Shading

    With Shading

    Venetian Blind or Roller Medium Light Dark Medium Light

    SC SC

    Clear

    3 1 0.64

    0.55

    0.59

    0.25

    0.39 6 0.95

    10 0.92 12 0.88

    Absorbent

    3 0.85 0.57

    0.53

    0.45

    0.30

    0.36 6 0.73

    10 0.64 12 0.53

    Table (9-6) SHGFmax W/m

    2 from glass window exposed to solar radiation Month

    Latitude o 24 N NE

    NW E W

    SE SW

    S Horizontal

    January 85 129 599 798 716 675 February 95 252 694 767 606 786 March 107 391 738 675 432 868 April 117 502 719 533 237 893 May 136 562 688 416 145 890 June 174 581 669 369 136 880 July 142 555 672 407 145 877 August 120 492 694 511 227 874 September 110 375 700 650 423 839 October 98 249 666 741 590 770 November 85 133 590 786 707 672 December 82 91 568 779 748 628

    Table (9-7) SHGFmax W/m

    2 from glass window exposed to solar radiation Month

    Latitude o 28 N NE

    NW E W

    SE SW

    S Horizontal

    January 79 110 577 792 751 618 February 91 227 672 776 653 738 March 104 366 729 697 495 836 April 114 476 719 562 297 877 May 126 543 691 454 183 883 June 161 562 672 404 155 877 July 129 536 678 442 180 870 August 120 470 694 543 287 858 September 107 350 691 672 486 808 October 95 224 644 751 637 722 November 82 110 571 779 741 615 December 75 76 543 782 776 565

  • Table (9-8) SHGFmax W/m

    2 from glass window exposed to solar radiation Month

    Latitude o 32 N NE

    NW E W

    SE SW

    S Horizontal

    January 76 91 552 876 776 555 February 85 205 647 782 697 685 March 101 338 716 716 555 795 April 114 461 716 590 363 855 May 120 536 694 489 233 874 June 139 555 675 439 189 871 July 126 527 678 473 227 861 August 117 445 691 571 350 836 September 104 325 678 688 540 770 October 88 199 615 754 678 672 November 76 91 546 773 767 552 December 69 69 511 776 795 498

    Table (9-9) CLF for glass windows without inside shade Solar Time, hr

    N E S W

    L M H L M H L M H L M H

    6.00 0.33 0.34 0.38 0.19 0.18 0.2 0.06 0.08 0.11 0.06 0.09 0.11 7.00 0.42 0.41 0.45 0.37 0.33 0.34 0.09 0.11 0.14 0.07 0.09 0.12 8.00 0.48 0.46 0.49 0.51 0.44 0.45 0.14 0.14 0.17 0.08 0.10 0.13 9.00 0.56 0.53 0.55 0.57 0.50 0.49 0.22 0.21 0.24 0.10 0.11 0.14 10.00 0.63 0.59 0.60 0.57 0.51 0.49 0.34 0.31 0.33 0.11 0.12 0.14 11.00 0.71 0.65 0.65 0.50 0.46 0.43 0.48 0.42 0.43 0.12 0.13 0.15 12.00 0.76 0.70 0.69 0.42 0.39 0.36 0.59 0.52 0.51 0.14 0.14 0.16 13.00 0.80 0.73 0.72 0.37 0.35 0.22 0.65 0.57 0.56 0.20 0.19 0.21 14.00 0.82 0.75 0.72 0.32 0.31 0.29 0.65 0.58 0.55 0.32 0.29 0.30 15.00 0.80 0.76 0.73 0.29 0.29 0.26 0.59 0.53 0.50 0.45 0.40 0.40 16.00 0.79 0.74 0.70 0.25 0.26 0.24 0.50 0.47 0.43 0.57 0.50 0.49 17.00 0.75 0.75 0.70 0.22 0.23 0.22 0.43 0.41 0.37 0.64 0.56 0.54 18.00 0.84 0.79 0.75 0.19 0.21 0.19 0.36 0.36 0.32 0.61 0.55 0.52 19.00 0.61 0.61 0.57 0.15 0.17 0.17 0.28 0.29 0.26 0.44 0.41 0.38 20.00 0.48 0.50 0.46 0.12 0.15 0.15 0.22 0.25 0.22 0.34 0.33 0.30

    L denotes light walls and ceiling of 50.8 mm concrete 146 kg/m2 floor area, M denotes

    walls and ceiling of 101.6 mm concrete 341 kg/m2 floor area,, H denotes walls and ceiling of 152.4 mm concrete 653 kg/m2 floor area,.

  • Table (9-10) CLF for glass windows with inside shade

    Solar time, hr N E S W Horizontal 6.00 0.73 0.47 0.09 0.06 0.12 7.00 0.66 0.72 0.16 0.09 0.27 8.00 0.65 0.8 0.23 0.11 0.44 9.00 0.73 0.76 0.38 0.13 0.59 10.00 0.80 0.62 0.58 0.15 0.72 11.00 0.86 0.41 0.75 0.16 0.81 12.00 0.89 0.27 0.83 0.17 0.85 13.00 0.89 0.24 0.8 0.31 0.85 14.00 0.86 0.22 0.68 0.53 0.81 15.00 0.82 0.2 0.50 0.72 0.71 16.00 0.75 0.17 0.35 0.82 0.58 17.00 0.78 0.14 0.27 0.81 0.42 18.00 0.91 0.11 0.19 0.61 0.25 19.00 0.24 0.06 0.11 0.16 0.14 20.00 0.18 0.05 0.09 0.12 0.12

    Table (9-11) Summer air change rate, McQuiston 1985. Outdoor Design Temperature, oC

    29 32 35 38 41 43 Type

    AN Number of air change from room volume per hour Tight 0.33 0.34 0.35 0.36 0.37 0.38 Medium 0.46 0.48 0.50 0.52 0.54 0.56 Loose 0.68 0.70 0.72 0.74 0.76 0.78

    Note: values for wind velocity of 3.4 m/s and indoor temperature of 24 oC. Table (9-12) Winter air change rate, McQuiston 1985. Outdoor Design Temperature, oC

    10 4 -1 -7 -12 -18 Type

    AN Number of air change from room volume per hour Tight 0.41 0.43 0.45 0.47 0.49 0.51 Medium 0.69 0.73 0.77 0.81 0.85 0.89 Loose 1.11 1.15 1.20 1.23 1.27 1.3

    Note: values for wind velocity of 6.7 m/s and indoor temperature of 20 oC. Table (9-13) Constants of Eq. (9-9) for number of air change per hour. Type a b c Tight 0.15 0.010 0.007 Medium 0.20 0.015 0.014 Loose 0.25 0.020 0.022

  • Table (9-14) Ventilation rate for persons.

    Place No. of persons per 2 100 m of floor area

    Ventilation per person in lit/s Non smoking persons Smoking persons

    Offices 7 2.5 10 Conference or waiting halls

    60 3.5 17.5

    Seated rooms 30 2.5 7.5 Table (9-15) Heat gains from occupants.

    Activity

    Metabolic rate

    WQP ,

    Heat Liberated, W Room dry bulb temperature, oC

    20 22 24 26

    SH LH SH LH SH LH SH LH

    Seated rest 115 90 25 80 35 75 40 65 50 Office work 140 100 40 90 50 80 40 70 70 Standing 150 105 45 95 55 82 68 72 78 Restaurant 160 110 50 100 60 85 75 75 85 Light work 235 130 105 115 120 100 135 80 155 Dancing 265 140 125 125 140 105 160 90 175

    Table (9-16) CT o to compensate solar effect on transmission load for cold storage Surface types East West South Ceiling Dark colored surfaces 5 5 3 11 Medium colored surfaces 4 4 3 9 Light colored surfaces 3 3 2 5

    Dark colored surfaces as slate roofing, tar roofing, and black paint. Medium colored surfaces as unpainted wood, brick, red tile, dark cement, and red, gray or green paint. Light colored surfaces as white stone, light colored cement, and white paint.

  • Table (9-17) Thermal properties of some common foods

    Product Moisture %

    hR

    tonW /

    LT kgkJ /

    fT

    Co

    PaC

    KkgkJ ./ PbC

    KkgkJ ./

    Water 100 - 334 0.0 4.18 2.06 Beans, 1.68 3.06 0.6- 235 58 70.2 Beets, 1.68 3.77 1.1- 293 34.9 87.6 Cabbage, 1.97 3.94 0.9- 308 93.1 92.2 Carrots, 1.93 3.77 1.4- 293 93.1 87.8 Cauliflower, 1.97 3.89 0.8- 307 100.4 91.9 Corn, 1.77 3.32 0.6- 254 332.2 76 Garlic, 1.76 3.31 0.8- 196 27.2 58.6 Leaks, 1.97 3.98 0.7- 277 159.1 83 Mushrooms, 1.97 3.89 0.9- 307 210 91.8 Okra, 1.93 3.85 1.8- 299 259 89.6 Onions, 1.93 3.77 0.9- 300 14.7 89.7 Peas, 1.97 3.89 1.1- 307 163.4 91.9 Potatoes, 1.68 3.14 1.3- 243 15 72.8 Potatoes, 1.82 3.63 0.6- 264 41.7 79 Peppers, 1.97 3.94 0.7- 308 42.7 92.2 Spinach, 2.01 3.94 0.3- 306 173 91.6 Tomatoes, 2.01 3.98 0.6- 311 60.6 93 Turnip, 1.97 3.89 1.1- 307 28.1 91.9 Apples, 1.84 3.6 1.1- 280 35.9 83.9 Apricots, 1.93 3.68 1.1- 288 33 86.3 Bananas, 1.76 3.35 0.8- 248 59.7 74.3 Grapes, 1.83 3.6 1.6- 272 16 81.3 Lemon, 1.93 3.85 1.4- 292 47 87.4 Mangos, 1.93 3.77 0.9- 273 133.4 81.7 Watermelon, 2.01 4.06 0.4- 306 22.3 91.5 Orange, 1.93 3.77 0.8- 275 40.3 82.3 Peaches, 1.93 3.77 0.9- 293 46.6 87.7 Pears, 1.89 3.75 1.6- 280 23.3 83.8 Strawberries 91.6 145.5 306 -0.8 3.89 1.14 Egg, 1.95 3.83 0.6- 293 - 87.8 Cod, 2.05 3.77 2.2- 271 - 81.2 Tuna, 1.72 3.18 2.2- 228 - 68.1 Mackerel, 1.55 2.76 2.2- 212 - 63.6 Beef, 1.72 3.43 1.7- 231 - 69.0 Chicken, 1.55 3.31 2.8- 220 - 66.0 Milk, 1.94 3.85 0.6- 293 - 87.7

    hR , respiration heat in tonW / at average temperature of Co 15~10 .