chapter 8 ordinary differential equation (ode)

13
SSCE 2393 NUMERICAL METHODS CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE) Farhana Johar, Department of Mathematical Sciences, Faculty of Science, UTM. [email protected]

Upload: others

Post on 13-May-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

SSCE2393NUMERICALMETHODS

CHAPTER8ORDINARYDIFFERENTIAL

EQUATION(ODE)

FarhanaJohar,DepartmentofMathematicalSciences,FacultyofScience,[email protected]

Page 2: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

2

BoundaryValueProblem

OverviewofChapter8

8.1 Introductiontothechapter

8.2 InitialValueProblem(IVP)

8.3 BoundaryValueProblem(BVP)

8.1 IntroductiontoODE

Given ( )yxfy ,=ʹ

Wanttofind y

InitialValueProblem

Page 3: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

3

8.1InitialValueProblem(IVP)

1. Euler’sMethod 1. R-Korder2 2.Taylor’sMtdorder2 2. R-Korder4

8.1.1Taylor’sMethoda) Euler’sMethod(Taylor’sMethodorder1)

)(!

)(!2

)()()( )(2

1 in

n

iiii xynhxyhxyhxyxy ++ʹ́+ʹ+=+ !

iii yhyy ʹ+=+1 i ix iy )( ixy (exact) error 0 Given 0y 1 ! N Exactsol.for ( )xy Absoluteerror(ifneeded)

Taylor’sSeriesMethod

Runge-KuttaMethod

Page 4: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

4

Example:(Doallcalculationin4dcp)1.UseEuler’sMethodtoapproximatethesolutionsforthefollowingIVPs:

a) 25.0with21for2)1(,1 =≤≤=+=ʹ hxyxyy

Giventheactualsolutionis xxxy 2ln += .Computetheabsoluteerror.

b) 25.0with10for1)0(,3sin2cos =≤≤=+= htyttdtdy

Giventheactualsolutionis .343cos

312sin

21)( +−= ttty

Computetheabsoluteerror.2.Theequationfortheupwardvelocityvforarocketisgivenby:

0at0;103001.05000 2

==−−−

= tvgtv

dtdv where

vinm/s,tisthetimeinseconds,andgis9.81m/s2.Usetimestepsof2stosolveforvbytheEulermethod,andproduceatableof(t,v)valuesintimeincrementsof2supto10s.

Page 5: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

5

3.Ifwaterisdrainedfromaverticalcylindricaltankbyopeningavalveatthebase,thewaterwillflowfastwhenthetankisfullandslowdownasitcontinoustodrain.Therateatwhichthewaterleveldropsis:

ykdtdy

−=

wherekisaconstant.Thedepthofthewater,yismeasuredinfeetandtime,tinminutes.Ifk=0.1,determinehowlongittakesthetanktodrainifthewaterlevelisinitially9ft.SolvebyapplyingEuler’smethodanduseastepof4minutes.b)Taylor’sMethodorder2

)(!

)(!2

)()()( )(2

1 in

n

iiii xynhxyhxyhxyxy ++ʹ́+ʹ+=+ !

iiii yhyhyy ʹ́+ʹ+=+ 2

2

1

i ix iy )( ixy (exact) |error|

0 Given 0y 1 ! n

Page 6: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

6

Example:1.UseTaylor’sMethodoforder2toapproximatethesolutionsforthefollowingIVPs:

a) 1 ( ) , (2) 1 for 2 3 with 0.5y x y y x hʹ = + − = ≤ ≤ =

Giventheactualsolutionis(2 )xy x e −= − .Computethe

absoluteerror.

b) 5.0with30for0)0(,23 =≤≤=−=ʹ htyytey t

Page 7: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

7

8.1.2Runge-KuttaMethoda)R-Korder2i)ImprovedEuler’sMethod

211 21

21 kkyy ii ++=+

where

),(1 ii yxhfk = ),( 12 kyhxhfk ii ++=

i ix iy 1k 2k Exact error 0 Given 0y 1 ! N

Page 8: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

8

Example:(Calculationin4dcp)1.EmployImprovedEuler’smethodtosolvethefollowingproblem.Computetheabsoluteerror.

a)221 34 6 , (0) 1, 0 1, ( ) , 0.2

2 2tdy yt t y t y t e h

dt−+ = = ≤ ≤ = − + =

b)4 42 112 , (0) 3, 0 1, ( ) , 0.2

3 3x x xy y e y x y x e e hʹ − = = − ≤ ≤ = + =

Page 9: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

9

ii)MidpointMethod 21 kyy ii +=+ where ),(1 ii yxhfk =

)2

,2

( 12

kyhxhfk ii ++=

iii)Heun’sMethod

yi+1 = yi +14k1 +3k2( )

where

k1 = hf (xi, yi )

k2 = hf (xi +23h, yi +

23k1)

Page 10: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

10

Example:Solvethefollowingfirstorderinitialvalueproblemat

( )0 0.2 0.6x = bymid-pointmethod;

( ) 10,3'2 2 ==+ yeyy x

Giventheexactsolutionis 23

2

76

71 x

x eey−

+= .Determinethe

absoluteerroranddothecalculationin4decimalplaces.

Page 11: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

11

b)R-Korder4

)22(61

43211 kkkkyy ii ++++=+

where ),(1 ii yxhfk =

)2

,2

( 12

kyhxhfk ii ++=

)2

,2

( 23

kyhxhfk ii ++=

),( 34 kyhxhfk ii ++=

i ix iy 1k 2k 3k 4k Exact error 0 Given 1 ! n Example:Solvethefollowingfirstorderinitialvalueproblemat

( ) 4.02.00=x byusingfourth-orderRunge-Kuttamethod;

( ) 10,3'2 2 ==+ yeyy x

Giventheexactsolutionis 23

2

76

71 x

x eey−

+= .Determinethe

absoluteerroranddothecalculationin4decimalplaces.

Page 12: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

12

8.2BoundaryValueProblemConsider2typesofboundarycondition; Without With Differentiation DifferentiationSolvethese2typesofproblembyusingfinitedifferencemethod.

hyy

y iii 2' 11 −+ −≈

211 2

"h

yyyy iiii

−+ +−≈

a)BVPWithoutDifferentiation

( ) ( ) ( ) ( ) ( ) βα ===++ byayxryxqyxpy ,,''' Example:1.Solvethefollowingboundaryvalueproblemat ( )1 0.2 2x = byusingfinitedifferencemethod;

y ''+ 1x

⎝⎜

⎠⎟ y '−

1x 2⎛

⎝⎜

⎠⎟ y = 3 y 1( ) = 2, y 2( ) = 3

Page 13: CHAPTER 8 ORDINARY DIFFERENTIAL EQUATION (ODE)

13

2.Solvethefollowingboundaryvalueproblem;

xyxy =⎟⎠⎞

⎜⎝⎛ −−ʹ́

51

( ) ( ) 5.0,13,21 =−== hyy b)BVPWithDifferentiation

( ) ( ) ( )

( )( ) ( ) 0,

0,

,'''

≠=ʹ+

≠=ʹ+

=++

nbynbmylylaky

xryxqyxpy

β

α

Example:1.Solvetheboundaryvalueproblemat ( )12.00=x byusingfinitedifferencemethod.

y ''+ 2xy '−3y = −6e−x 1+ x2( ), y ' 0( )+ 0y 0( ) = 3, y ' 1( ) = 0

(Exactsolution: ( ) xxexy −= 3 )2.SolvetheBVP; yy =ʹ́ ( ) ( ) 5.0,018.103,175.11 ==ʹ=ʹ hyy .