chapter 7 transportation energy use and environmental … · • transportation is the second...

28
7-1 CHAPTER 7 Transportation Energy Use and Environmental Impacts Highlights The energy required to move one person one mile or one ton of freight one mile has generally declined over time. Transportation continues to rely almost entirely on petroleum to move people and goods. However, the sector’s dependence has decreased from a peak of 97.3 percent in 1978 to 92.2 percent in 2016. This is due in part to increased blending of domestically produced ethanol in gasoline and improved fuel economy. Increased domestic oil production sharply reduced transportation’s dependence on imported oil, from a high of 60.3 percent in 2005 to 24.8 percent in 2015. The highway mode continues to dominate transportation energy use, accounting for 61.6 percent of total transportation energy use. Transportation is the second largest producer of greenhouse gas emissions (GHG), accounting for 27.0 percent of total U.S. emissions in 2015. Overall, greenhouse gases and the six other most common air pollutant emissions from transportation, with the exception of particulate matter (PM-10), are below their 2000 levels, and continued to decline from 2009 to 2016 due to many factors, including motor vehicle emissions controls and technological advancements, such as electric vehicles have contributed to considerable reductions. Reductions in transportation’s air emissions have contributed to improved air quality in the Nation’s urban areas. On average, air quality was good for 247 days in 2015 compared to 192 days in 2000. Over 97 percent of the U.S. population has potential to be exposed to aviation and interstate highway noise at levels below 50 decibels (equivalent to the sound of a humming refrigerator).

Upload: phungtu

Post on 03-May-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

7-1

CHAPTER 7

Transportation Energy Use and Environmental Impacts

Highlights• Theenergyrequiredtomoveoneperson

onemileoronetonoffreightonemilehasgenerallydeclinedovertime.

• Transportationcontinuestorelyalmostentirelyonpetroleumtomovepeopleandgoods.However,thesector’sdependencehasdecreasedfromapeakof97.3percentin1978to92.2percentin2016.Thisisdueinparttoincreasedblendingofdomesticallyproducedethanolingasolineandimprovedfueleconomy.

• Increaseddomesticoilproductionsharplyreducedtransportation’sdependenceonimportedoil,fromahighof60.3percentin2005to24.8percentin2015.

• Thehighwaymodecontinuestodominatetransportationenergyuse,accountingfor61.6percentoftotaltransportationenergyuse.

• Transportationisthesecondlargestproducerofgreenhousegasemissions(GHG),accountingfor27.0percentoftotalU.S.emissionsin2015.

• Overall,greenhousegasesandthesixothermostcommonairpollutantemissionsfromtransportation,withtheexceptionofparticulatematter(PM-10),arebelowtheir2000levels,andcontinuedtodeclinefrom2009to2016duetomanyfactors,includingmotorvehicleemissionscontrolsandtechnologicaladvancements,suchaselectricvehicleshavecontributedtoconsiderablereductions.

• Reductionsintransportation’sairemissionshavecontributedtoimprovedairqualityintheNation’surbanareas.Onaverage,airqualitywasgoodfor247daysin2015comparedto192daysin2000.

• Over97percentoftheU.S.populationhaspotentialtobeexposedtoaviationandinterstatehighwaynoiseatlevelsbelow50decibels(equivalenttothesoundofahummingrefrigerator).

7-2

Chapter 7: Transportation Energy Use and Environmental Impacts

Thischapterreviewsthepatternsandtrendsintransportationenergyuse,otheraspectsofenergyassociatedwithourNation’stransportationsystem,andtransportation’simpactontheenvironment.EnergyuseiscloselytiedtothetransportationsectorbecausemostvehiclesintheU.S.relyonpetroleumasafuel.Therefore,developmentsindomesticoilproduction,alternativefuels,andimprovementsinvehicleenergyefficienciesplayacriticalroleinthevitalityofthetransportationsystem.Environmentalimpactsunderconsiderationincludegreenhousegas(GHG)emissionscausedbythetransportationsector,petroleumspills,noise,andotherimpacts.Theseenergyandenvironmentalaspectsofthetransportationsystemarealsoimportantmeasuresofperformance,alongwithsuchprimarymeasuresassystemreliability,efficiency,andsafety.

U.S.dependenceonimportedoilistrendinglowerthaninprioryearsasaresultofincreaseddomesticproduction,improvedfueleconomyforvehicles,andthegrowthinalternativeenergysources.U.S.dependenceonimportedoilpeakedat60.3percentin2005,buthassincedecreasedbymorethanhalf,to24.8percentin2015[USDOEEIA2017c].In2015thisdependencewasatitslowestsince1971,butwithincreasingfuelefficiencyandreducedfuelprices,peoplearedrivingmoremilesonaverageanddemandforlessfuel-efficientsportutilityvehicles(SUVs).CarandtruckSUVsachievedarecordmarketshareof38percentinmodelyear2015[USEPA2017f].

In2016theU.S.transportationsectorused27.5quadrillionBtu(Britishthermalunit)of

energy,secondonlytoelectricitygeneration,butdownfromthepeakof28.8quadrillionBtuin2007(figures7-1and7-2).Transportationactivitiesreliedonpetroleumfor92.2percentofthetransportation-relatedenergyusedin2016,downfromarecord97.3percentin1978.In2016,theU.S.consumedmorethan19.6millionbarrelsofoilperday,ofwhich13.9millionbarrels(70.9percent)wereconsumedbytheU.S.transportationsystem[USDOEEIA2017c].Despitetransportation’scontinueddependenceonpetroleum,recenttrendsshowsmallreductionsingreenhousegasemissionsandsharplyreducedemissionsofotherairpollutants.

Greenhousegas(GHG)emissions(carbondioxide,hydrofluorocarbons,methane,andnitrousoxide)havehistoricallycloselyparalleledtransportationenergyuseand,asaresult,were4.9percentlowerin2015thanin2010,whiletransportationsectorGHGemissionsdecreasedby1.2percent[USEPA2017a].Overall,thetransportationsectorcontributed27percentoftotalU.S.GHGemissionsin2015,secondonlytoelectricitygenerationat29percent.TransportationsectorGHGemissionspeakedin2005,buttrendeddownwardinthefollowingyearswithalowpointin2012.Thedeclinewasduetoincreaseduseofalternativefuelsandimprovedfueleconomiesrelatedtomanufacturers’effortstomakedrivingmoreaffordableasfuelpriceswereincreasing.SincethenGHGemissionshavebeguntoincreaseduetoincreasesinbothmilestraveledanduseofsportutilityvehicles(SUVs)andlighttrucksassociatedwithlowerfuelpricesmentionedearlier[USEPA2017a].

7-3

Transportation Statistics Annual Report

FIGURE 7-1 U.S. Energy Use by Sector: 2016

Transportation28.6%

Industrial21.8%

Residential andcommercial

10.8%

Energy input at electric utilities

38.8%

Total = 97.4 Quadrillion Btu

NOTES: The data for Residential, Commercial, and Industrial sectors include only fossil fuels consumed directly. Most renewable fuels are not includ-ed. The data for the Transportation sector includes only fossil and renewable fuels consumed directly. The data for Electric utilities includes all fuels (fossil, nuclear, geothermal, hydro, and other renewables) used by electric utilities.

SOURCE: U.S. Department of Energy, Energy Information Administration, Monthly Energy Review, Table 2-1, Available at http://www.eia.gov/totalen-ergy/ as of April 2017.

FIGURE 7-2 Transportation Energy Use by Energy Source: 1950–2016

0

5

10

15

20

25

30

35

1950 1960 1970 1980 1990 2000 2010

Qua

drill

ion

btus

Coal Natural Gas Petroleum Biomass Electricity

SOURCE: U.S. Department of Energy, Energy Information Administration, Monthly Energy Review, table 2.5. Available at http://www.eia.gov as of April 2017.

7-4

Chapter 7: Transportation Energy Use and Environmental Impacts

Energy Use Patterns and TrendsTransportation’spetroleumdependencedecreasedfrom96.5percentin2005toabout92.1percentin2016,chieflyduetoincreasedblendingofdomesticallyproducedethanolfrombiomassingasoline[USDOEEIA2017c].TodayalmostallgasolinesoldintheUnitedStatescontains10.0percentethanol(E10).Nearlyalltransportation-relatednaturalgasconsumption,showninfigure7-2,isusedtofuelpipelinecompressors.Naturalgasusebymotorvehiclesremainsasmallfractionoftotaltransportationenergyuse(figure7-2).

Transportation’spetroleumuseisexpectedtoremainatabout13.5millionbarrelsperdaythrough2050andbeyond,eventhoughmorestringentfueleconomystandardsmayproducedecreasesintheamountofgasolineusedbypersonalvehicles[USDOEEIA2017a].Additionally,asvehiclesbecomemorefuelefficientandnewtechnologiesforalternativefuelsourcestopowervehiclescontinuestogrowincludingallelectricvehicles(box7-A),lesspetroleumwillberequiredforasimilarlevelofpersonaltravelmiles(seesections7-4through7-6).Thisimprovementinfuelefficienciesandadropinfuelpricesrecentlyhasledtoanincreaseinpersonalvehiclemilestraveledcontributingtotherelativelystablepetroleumuse.Thislevelingoffofpetroleumconsumptionisalsoexpectedbecausedecliningpersonalvehiclepetroleumuseisprojectedtobeoffsetbygrowthinpetroleumdemandbyothermodes,particularlymedium-andheavy-dutytrucksandair.Forexample,U.S.domesticaircarriermilesflownhasincreasedby10percentsince2000,butthishasbeensomewhatoffsetbyincreasedfuelefficienciesoftheaircraft.

Alternativefueluse(excludinggasohol)bymotorvehiclesincreasedby12.7percentfrom2010to2011(thelatestyearforwhichdataareavailable)[USDOEEIA2017b].Totalalternativefueluseexceeded500milliongasoline-equivalentgallonsin2011.Incomparison,gasolineconsumptionintheUnitedStatesgrewfromabout134billiongallonsin2011tomorethan140billiongallonsin2015—approximately385milliongallonsperday[USDOEEIA2017c].Intermsofoverallenergyconsumption,compressedandliquefiednaturalgasaccountedforalmostone-halfofthetotalalternativeenergyusedbytransportationactivities,followedbyE85,propane,electricity,andhydrogen.E85isablendofbetween51and85percentdenaturedethanolandgasolineandcanbeusedsafelybyapproximately20millionflex-fuelvehiclesoperatingonU.S.roads[USDOEAFDC2017a].However,E85ispredominantlyavailableintheMidwestcorn-beltstatesasindicatedinfigure7-3.

Thehighwaymodedominatestransportationenergyuse(figure7-4).Highwayvehiclesaccountedfor84.0percentofthetotalandusedfivetimesmoreenergythanallothermodescombinedin2015.Light-dutyvehicles(passengercars,SUVs,minivans,andpick-uptrucks)accountedfor73.3percentofhighwayenergyuseand61.6percentoftotaltransportationenergyuse.Airtransportcameinadistantsecondwith6.5percentoftransportationenergyuse,butthisnumberexcludesenergyforinternationalflights.JetfuelssuppliedtointernationalflightsoriginatingintheUnitedStatesamountedto931.6trillionBtu[USEPA2015a],whichisnearlyfivetimestheamountoffuelusedby

7-5

Transportation Statistics Annual Report

FIGURE 7-3 E85 Refueling Stations by State: 2016

IN202

AL40

AR44

CA120

CT4

FL77

GA55

ID6

KS21

KY73

MD36

MA7

MN333

MS3

NE80

NJ5

NM11

NY77

NC58

OH154

OR10

SC66

SD75

TN78

VA30

WA21

WV21

MT2

PA41

WI152

AZ27

CO92

DE1

IA216

LA11

ME0

MI254

MO92

ND43

OK30

RI0

NV20

NH0

TX211

UT1

VT0

WY10

IL264

DC3

AK0

HI2 0 100 Miles0 200 Miles 0 100 Miles

Number of stations200

1050100

SOURCE: U.S. Department of Energy, Alternative Fuels Data Center, Alternative Fueling Station Counts (as of 03/16/2017), available at http://www.afdc.energy.gov/fuels/stations_counts.html as of March 2017.

7-6

Chapter 7: Transportation Energy Use and Environmental Impacts

domesticflights.Watertransportationisthirdwith4.3percent,butonceagainmostoftheenergyusedininternationalshipmentsisnotincludedinthisfigure.Anestimated455.2trillionBtuweresuppliedtointernationalshipsatU.S.ports[USEPA2015a],anamountmorethandoublethatusedbydomesticwaterborneshipping.Railfreightaccountedfor2.0percentoftransportationenergyuse,althoughitcarriesroughly30percentofU.S.freightton-miles.Pipelinesused2.7percentoftransportationenergy,muchofwhichisnaturalgastofuelpipelinecompressors.Transitoperationsaccountedfor0.6percentoftransportationenergyuse.

Greenhouse Gas EmissionsTotaltransportationgreenhousegas(GHG)emissionswere4.0percentlowerin2015

thanin2000.Boththerecessionandtheimprovementsinavailabilityofenergyefficientvehicleslikelycontributedtothisreduction[USEPA2017a].

Despitethelong-termemissionsdecrease,thetransportationsectorremainsthesecondlargestproducerofgreenhousegas(GHG)emissions,accountingforapproximately27.0percentoftotalU.S.emissionsin2015[USEPA2017a].ElectricitygenerationisthehighestGHGproducer.Inrecentyears,transportation-relatedGHGemissionshavebeentrendingupward,butarebelowthe2005peak(figure7-5).Carbondioxide(CO2)producedbythecombustionoffossilfuelsininternalcombustionenginesisthepredominantGHGemittedbythetransportationsector.In2015passengercarswerethelargestsourceofCO2fromtransportation,accountingfor

FIGURE 7-4 Energy Use by Mode of Transportation: 2015

Air6.5%Rail freight

2.0%

Transit & Amtrak

0.6%

Water4.3%

Pipeline2.7%

Combination truck14.1%

Bus1.1%

Highway84.0%

Light-duty61.6%

Single-unit truck7.2%

NOTES: The following conversion rates were used: Jet fuel = 135,000 Btu/gallon. Aviation gasoline = 120,200 Btu/gallon. Automotive gasoline = 125,000 Btu/gallon. Diesel motor fuel = 138,700 Btu/gallon. Compressed natural gas = 138,700 Btu/gallon. Distillate fuel = 138,700 Btu/gallon. Re-sidual fuel = 149,700 Btu/gallon. Natural gas = 1,031 Btu/ft3. Electricity 1kWh = 3,412 Btu, negating electrical system losses. To include approximate electrical system losses, multiply this conversion factor by 3.

SOURCE: Air–Bureau of Transportation Statistics, Office of Airline Information. Rail–Association of American Railroads. Transit–Federal Transit Admin-istration. Amtrak–National Railroad Passenger Corporation (Amtrak), personal communication with Energy Management Department and Government Affairs Department. Water– U.S. Department of Energy, Energy Information Administration and U.S. Department of Transportation, Federal Highway Administration. Pipeline– U.S. Department of Energy, Energy Information Administration. Highway– Federal Highway Administration as cited in U.S. De-partment of Transportation, Bureau of Transportation Statistics, National Transportation Statistics, table 4-6, available at www.bts.gov as of March 2017.

7-7

Transportation Statistics Annual Report

FIGURE 7-5 CO2 Greenhouse Gas Emissions by Mode: 1990–2015

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Met

ric to

ns C

O2 (m

illio

ns)

Passenger cars

Light-duty trucks

Medium-and Heavy-trucks

Buses

Aircraft

Ships and boats

Rail

Other

NOTES: Other greenhouse gas emissions are from motorcycles, pipelines, and lubricants. International bunker fuel emissions (not included in the total) result from the combustion of fuels purchased in the United States but used for international aviation and maritime transportation. U.S. Total, all modes; Aircraft; and Ships and boats include emissions data for only domestic activity only as do all other data shown. International emissions from bunker fuels purchased in the United States are not included. Alternative-fuel vehicle emissions are allocated to the specific vehicle types in which they were classified (i.e., Passenger cars, Light-duty trucks, All other trucks, and Buses).

SOURCE: U.S. Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015 (2017), table 2-13, available at http://epa.gov/climatechange/emissions/usinventoryreport.html as of March 2017.

41.6percent,followedbyfreighttrucks(23.5percent)andlight-dutytrucks(17.4percent).Domesticoperationofcommercialaircraftproduced9.1percentoftransportationCO2

emissions;however,asmentionedinchapter2,therearenowmoreairpassengermilesininternationalflightsoriginatingandendingintheUnitedStatesthantherearedomesticpassengermiles,leavingmuchoftheairtravelemissionsunaccountedfor.Pipelineswereresponsiblefor3.0percentofemissions,followedbyrail(2.5percent)andshipsandboats(1.8percent)[USEPA2017a].

Hydrofluorocarbons(HFC),methane(CH4),andnitrousoxides(N2O)aretheotherprincipalGHGsemittedbythetransportationsector.EachGHGisreportedusingacommon

metricofequivalentgramsofCO2foreachemission(figure7-6).HFCs,suchasthoseonceusedinautomotiveairconditioners,aresecondinabundancebehindCO2.HFCsarethemostdetrimentalGHGsknown.GHGemissionregulationsforpersonalvehiclesgivemanufacturerscreditsforreducingtheseHFCemissions,anditislikelythattheseemissionswilldecreaseinthefuture.Nitrousoxidesarechieflyproducedinthecatalyticconvertersofmotorvehicles,andaverysmallquantityofmethaneemissionsisproducedbyincompletecombustionoffossilfuelsorbyleakage.

Because96.7percentoftransportationGHGemissionsareCO2producedbyfossilfuelcombustionandbecausepetroleumcomprises92.2percentoftransportationenergyuse,

7-8

Chapter 7: Transportation Energy Use and Environmental Impacts

modalGHGemissionscloselytrackmodalenergyuse.TransportationGHGemissionsincreasedfrom2000to2007(figure7-5),fellby5.0percentduringtheeconomicrecessionin2008,andthenstabilizedatslightlyunder1,800teragrams(millionmetrictons)inthe2009to2015periodwithaslightincreasefrom2014to2015[USEPA2017a].Theshort-termdecreaseineconomicactivityandtherelateddeclineintransportationdemandcontributed,inpart,tothedecreaseinCO2emissionsduringtherecession.

Evidentinfigure7-7aretheresultsoftheU.S.EnvironmentalProtectionAgency’s(EPA’s)

decisiontochangethedefinitionsofpassengercarsandlighttrucksin2007.Manyvehiclesformerlyclassifiedaslighttrucks,butdesignedpredominantlyforpassengertransportation,werereclassifiedaspassengercars,causinganapparentjumpinpassengercaremissionsthatwereoffsetbyacompensatingdropinlight-truckemissions.

Energy Efficiency Historically,improvementsintheefficiencyinenergyusehavereducedenergyconsumptioninthetransportationsector.FueleconomiesofpassengercarsandlighttruckshavecloselytrackedtheCorporateAverageFuelEconomy

FIGURE 7-6 CO2 Greenhouse Gas Emissions by Mode: 1990–2015Total = 1,804 Teragrams or million metric tons of CO2 Equivalent Units

Carbon dioxide - CO296.7%

Hydro�uorocarbonsHFCs2.6%

Nitrous oxideN2O0.7%Methane

CH4 < 0.1%

NOTES: The data for the transportation sector includes only fossil and renewable fuels consumed directly. The data for Non-Transportation includes the Residential, Commercial, and Industrial sectors, which include only fossil fuels consumed directly, and electric utilities, which includes all fuels (fossil, nuclear, geothermal, hydro, and other renewables) used by electric utilities. Most renewable fuels are not included. Totals may not add to 100% due to rounding.

SOURCE: U.S. Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015, table 2-12 and table ES-6, available at http://epa.gov/climatechange/emissions/usinventoryreport.html as of March 2017.

7-9

Transportation Statistics Annual Report

FIGURE 7-7 Car and Light Truck Corporate Average Fuel Economy (CAFE) and Miles per Gallon (MPG): Model Years 1975–2016

0

5

10

15

20

25

30

35

40

19751977

19791981

19831985

19871989

19911993

19951997

19992001

20032005

20072009

20112013

2015

Mile

s pe

r gal

lon

Car EPA Unadj., Lab (MPG)Car CAFE Standard (domestic)

Light Truck EPA Unadj., Lab (MPG) Light Truck CAFE Standard (domestic)

KEY: MPG = Miles per Gallon; EPA = U.S. Environmental Protection Agency; P = preliminary; R = revised.

NOTES: Corporate Average Fuel Economy (CAFE) standards, which must be met at the manufacturer level were established by the U.S. Energy Policy and Conservation Act of 1975 (PL 94-163). EPA Unadjusted, Laboratory (MPG) estimates are based upon standardized laboratory tests and do not account for factors that may affect actual roadway fuel economies such as aerodynamics, climate, etc.

SOURCE: All Car and All Truck CAFE Stds: Davis, S.C., S.W. Diegel and R.G.Boundy. Transportation Energy Data Book, Edition 35 (October 2016), Oak Ridge National Laboratory, Oak Ridge, TN. Tables 4-21 and 4-22. Available at cta.ornl.gov/data as of April 2016. Car and All Truck EPA MPG: U.S. Environmental Protection Agency (EPA), Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 - 2016. Table 9.1. Available at http://epa.gov/otaq/fetrends.htm as of March 2017.

7-10

Chapter 7: Transportation Energy Use and Environmental Impacts

(CAFE)standardssincetheytookeffectin1978(figure7-7).Themilespergallon(mpg)valuesshowninfigure7-7aretheunadjusted,laboratorytestvaluesonwhichcompliancewiththestandardsisbased.Thesevaluesdonotaccountforfactorsthataffecthighwayfuelefficiencysuchaswindandvehicleaerodynamics.Theactualmpgvaluesseenonwindowstickersandinpublicadvertisingareadjusteddownwardtobetterrepresentthefueleconomydriverswilllikelyexperienceontheroad.1

Theaverage25.6mpg(preliminaryestimates)formodelyear2016forallmodelswasdownslightlyfrom24.8mpgin2015,duetoincreasedconsumerdemandforlessfuelefficientlighttrucksandSUVsassociatedwithlowfuelcostsasdiscussedearlier[USEPA2017f].Thesempgresultsareupsignificantlyfrom1975,thestartoftheeraoffueleconomyimprovementsasvehicle-milestraveledgrewfasterthanfuelconsumption(figure7-8).However,dropsinfuelusearetemperedsomewhatbyincreasesintravelstimulatedbyimprovementsinfueleconomy,aphenomenonknownasthe“reboundeffect.”Fuelpricedeclineshavebeenafactorinanincreaseinindividualmilesdrivenonanannualbasis.

1Theapparentdecreaseinon-roadfueleconomyes-timatesafter2005morelikelyreflectsachangeinthedefinitionsofpassengercarsandlighttrucksandthemethodsusedtoestimatetheirtravelandfuelusethananactualdecreaseinmpg.Anotherchangeinreport-ingoccurredwhentheU.S.DepartmentofTranspor-tation(USDOT),FederalHighwayAdministration(FHWA),startedusingtheclassificationsofshort-andlong-wheelbaselight-dutyvehiclesin2007ratherthanthepreviouscategoriesofpassengercarsandtwo-axle,four-tiretrucks.Asaresult,thepost2006on-roadfueleconomydataarenotconsistentwiththedatafrom2006andearlieryears,unlessthecategoriesarecombined

Forexample,regulargasolinepricesintheU.S.droppedtoanaverageof$2.14pergallonin2015downfrom$3.62pergallonin2012,thehighestannualaveragesince2000[USDOEEIA2017d].Whengaspriceswereathighlevels,automanufacturersfocusedonsmall,fuel-efficientvehicles.Withthepricedecline,driversareagaindemandingthelargetrucksandSUVsofearlieryears,butduetoCAFEstandards,theyarenowmorefuelefficientwiththenewdieselandhybridand/orelectricoptionstoday(seesections7-4to7-6)[WOODYARD2015].

OnAugust28,2012,theUSDOTandtheEPAsetfueleconomyandGHGemissionsstandardsforpassengercarsandlighttrucksthrough2025.Nominally,thestandardsrequireatotalfleetaverageof54.5mpg(163gramsofCO2equivalent)fornewpersonalvehiclesby2025[USEPA2012].However,thesestandardsarebasedonlaboratorytestcyclesratherthanrealworlddrivinganddonotconsiderthemanywaysmanufacturerscanearnfueleconomycredits.Creditsmaybeearnedforsolarpanelsonhybrids,engineshutoffatidle,andotherfeaturesthatimproveonroadfueleconomybutwhicharenotreflectedinthetestcycle.

Furthermore,thenewstandardsvarywiththesizeofthevehiclesamanufacturerproduces.Medium-andheavy-dutyhighwayvehicles(e.g.,combinationtrucksandbuses)arethesecondlargestenergyusersamongmodes,accountingfor23.0percentoftransportationenergyusein2015[ORNL2015].In2011theUSDOTandtheEPAannouncedthefirstfueleconomyandemissionstandardsforthisvehicleclassformodelyears2014–2018

7-11

Transportation Statistics Annual Report

FIGURE 7-8 Vehicle-Miles of Travel and Fuel Use by Personal Vehicles: 1965–2015

0

50,000

100,000

150,000

200,000

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Fuel consumption (m

illion gallons)

Vehicle travel

Fuel consumption

Vehi

cle-

mile

s tr

avel

ed (m

illio

ns)

Cor

pora

te A

vera

ge F

uel E

cono

my

(CA

FE) S

tand

ards

Firs

t Ena

cted

NOTES: Includes passenger cars, light trucks and motorcycles for year 1965. The definition of light-duty vehicle was changed after 2006, affecting the vehicle types included in the personal vehicle category.

SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics (multiple years), Table VM-1, available at http://www.fhwa.dot.gov/policyinformation/statistics.cfm as of March 2017.

[USEPA2011].By2018therequirementsforcombinationtractortrailersspecifyfueleconomyimprovementsrangingfrom9to23percent,dependingonthetrucktype.Similarimprovementsarerequiredforthediverseclassofsingleunitcommercialtrucksandbuses—vehiclesasvariousasdeliverytrucks,dumptrucks,cementmixers,andschoolbuses.Ifamanufacturerproducesmostlylargevehicles,thenitsactualfueleconomyrequirementwillbelowerthanifitproducesmostlysmallvehicles.Takingallthesefactorsintoaccount,USDOTandEPAestimatedthatmanufacturerswouldachievefueleconomylevelsof46.2to47.4mpgonthelaboratorytestcycles[FEDERALREGISTER2012].Fueleconomiesachievedinactualdrivingwouldlikelybe15to20percentlower.Newfuel-economystandardsweredevelopedformodelyears2022-2025thatwouldbeevenmorestringentthanbefore,butatpresentareonholdastheyarebeingre-reviewed.

Theenergyintensitiesofpassengermodeshavegenerallydeclinedovertime,withfiveoutofsixpassengermodesnowaveraginglessthan4,000Btuperperson-mile,orabout30person-milespergallonofgasolineequivalent(figure7-9).Thesedeclinesarelargelytheresultofmoreaerodynamicvehiclesandefficientenginesaswellasimprovedoperatingefficiencies(e.g.,higheraircarrierloadfactors).From2000to2014,theenergyintensityofshort-andlong-wheelbaselight-dutyvehiclesandbustransitroselikelyduetoincreasedfuelefficiencies,whiletheenergyintensityofotherpassengermodes—airandAmtrak—declined.Theenergyintensityofrailfreighttransportdecreasedfrom14,826Btu/car-milein2000to14,421in2014.Movingonetonoffreightonemilein2014required88.4percentasmuchenergyasitdidin2000.Thisreductionwasaccomplishedmostlythroughreducingenergyuseperfreightcar-milebyabout2.1percent[USDOTBTSNTS

7-12

Chapter 7: Transportation Energy Use and Environmental Impacts

2017].Toreducebothfuelconsumptionandemissions,shipsarenowareusingalternativepowersourcestopowerairconditioningandotherfunctionswhiledocked.Truckingfleetsarebothleveragingnewhybriddieseltechnologyaswellasplatooningwheretheyutilizeautomateddrivingtechnologyallowingthemtodrivelessthan1secondaparttoreducefuelconsumptionandimproveefficiencies.

Alternative Fuels and VehiclesAlargepartofthegrowinguseofbiofuels(representedasbiomass)intransportation,anover900percentincreasefrom2000to

2016,showninfigure7-2,canbeattributedtotherequirementsoftheFederalRenewableFuelsStandard(RFS).EnactedaspartoftheEnergy Policy Act of 2005 (Pub.L.109-58)andextendedbytheEnergy Independence and Security Act of 2007(Pub.L.110-140),theRFSrequirestheintroductionofincreasingamountsofrenewableenergyintogasolineanddieselfuelseachyear,ultimatelyreaching36billiongallonsby2022[USLOCCRS2013band2015].Atleast16billiongallonsarerequiredtobecellulosicethanol,andnomorethan15billiongallonscanbeethanolproducedfromcornstarch.In2014theU.S.

FIGURE 7-9 Energy Intensity of Passenger Modes: 1990–2015 (Btu per passenger mile)

Air domestic

Air international

Light duty highway vehicle

Passenger car

Light truck

Transit bus

Amtrak

0

1,000

2,000

3,000

4,000

5,000

6,000

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Btu

per p

asse

nger

mile

NOTES: Light-duty highway vehicles include passenger cars, light trucks, vans, and sport utility vehicles. Highway data for 2007-2011 were calculated using a new methodology and are not comparable to previous years. A change in vehicle occupancy rates derived from the National Household Travel Surveys results in a shift of highway passenger-miles between 2008 and 2009. Energy Intensity (Btu per Passenger mile) = Energy Use (Btu) / Passenger Miles, Energy Use calculated by using fuel and electricity usage and converting to energy by using BTS conversion rates. The following conversion rates were used: Diesel =138,700 Btu/gallon. Compressed natural gas = 22,500 Btu/gallon. Bio-Diesel = 126,200 Btu/gallon. Liquefied natural gas = 84,800 Btu/gallon. Gasoline = 125,000 Btu/gallon. Liquefied petroleum gas = 91,300 Btu/gallon. Methanol = 64,600 Btu/gallon. Ethanol = 84,600 Btu/gallon. Bunker fuel = 149,700 Btu/gallon. Kerosene = 135,000 Btu/gallon. Grain additive = 120,900 Btu/gallon. Electricity 1KWH = 3,412 Btu, negating electrical system losses. This table includes approximate electrical system losses, and thus the conversion factor is multiplied by 3.

SOURCE: Highway–Federal Highway Administration. Air–Bureau of Transportation Statistics, Office of Airline Information. Amtrak–National Railroad Passenger Corporation (Amtrak), personal communication with Energy Management Department and Government Affairs Department and Association of American Railroads. Transit–Federal Transit Administration as cited in U.S. Department of Transportation, Bureau of Transportation Statistics, National Transportation Statistics, table 4-21, 4-22, 4-24, and 4-16, available at www.bts.gov as of November 2017.

7-13

Transportation Statistics Annual Report

consumednearly13.5billiongallonsoffuelethanoland1.4billiongallonsofbiodiesel[USDOEEIA2017c].Therefore,wearenearthegoalforethanolalready,butnotsointermsofbiodiesel.

Morethan39billiongallonsofdieselfuelwereconsumedbyvehiclesin2015comparedto33billiongallonsin2000[USDOEEIA2017e].Dieselvehiclesofferings,includingnew,cleandieseltechnologiesarehittingthemarket,andthesevehiclesareprovidingmorefuelefficienciesthansimilar-sizedgasolineengines.Dieselfuelcanprovideupto15percentmoreenergythantheequivalentamountofgasoline[USDOEandUSEPA2016].ThesevehiclesareasmallpercentageoftheNation’sfleetofmotorvehicles,mostlymediumandheavytrucks.In2015therewereanestimated1.74millionturbochargeddirectinjection(TDI)light-dutydieselvehiclesintheUnitedStatesoutof210.2millionconventionalcarsandlight-dutytrucks[USDOEORNL2017].

Flexible-fuelvehicles(FFVs)cansafelyusemixturesofupto85percentethanol(E85)withgasoline.FFVsaccountedfor75.7percentofthenearly19.7millionalternativefuelvehiclesoperatingonU.S.roadsin2015[USDOEEIA2017a].However,moston-roadFFVsarefueledwithgasolineorgasoline/E10blendsonly.Until2016automobilemanufacturescouldearnextracreditstowardmeetingCAFEstandardsbymakingandsellingFFVs.FutureFFVsalesareuncertainbecausethecreditswillbelargelyphasedoutunlessactualuseofE85increasessubstantially.Together,liquidpetroleumgas/propaneandcompressed/liquefiednaturalgas-poweredvehiclesaccountedforapproximately4.5percent

ofalternativefuelvehiclesinusein2015[USDOEEIA2017a].

Alternative Refueling/RechargingThefirstmass-producedhybridelectricvehicle(HEV),poweredbyaninternalcombustionengineandanelectricmotor,wasintroducedin1999.Hybridvehicleshavebecomepopularasareplacementfortraditionalgasoline-ordiesel-fueledvehicles.HEVsalesgrewfrom17vehiclesin1999toahighof592,000in2013(includingplug-inhybridandbattery-poweredvehicles)beforedeclining,likelyduetoadropingasolinepricesthatmadethesevehicleslessattractivetobuyers.In2016about504,000HEV/electricsweresoldintheUnitedStates(figure7-10).

In2010just19electric-onlyand326plug-inhybridvehiclesweresold.By2016thesenumberswere84,000and73,000,respectively[HYBRIDCARS2017].Overthesameperiod,thenumberofnewtothemarketmakesandmodelsofbatteryelectric-onlyvehiclesincreasedfrom3to15,whileplug-inhybridofferingsincreasedfrom1to17[USDOEandUSEPA2017b].Electricallydrivenmotorvehiclesaregainingpopularityintheconsumermarket.

Thefirstmass-produced“plug-in”hybridelectricvehicles(PHEV),abletodrawelectricpowerfromtheutilitygridandstoreiton-board,weresoldin2010.Hybridelectricvehicles(HEV),PHEVs,andbatteryelectricvehicles(BEV)sawa69.1percentriseinsalesfrom2015to2016andcomprisedabout2.9percentofthe17.5millionvehiclesalesin2016[HYBRIDCARS2016].However,automakerssharemustreducecosts,overcomethemarket’s

7-14

Chapter 7: Transportation Energy Use and Environmental Impacts

FIGURE 7-10 Sales of Hybrid, Plug-in Hybrid and Battery Electric Vehicles: 1999–2016

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Uni

t sal

es

Hybrid electric vehicle (HEV)

“Plug-in hybrid electric vehicles (PHEV)

Battery electric-only vehicles (BEV)

SOURCE: HybridCars, December Dashboards, Annual Issues, available at www.hybridcars.com as of March 2017.

Box 7-A Electric VehiclesAll-electricvehicles(i.e.,thosepoweredsolelybyanelectricmotornotrequiringotherfuel)havealonghistory,withtheearliestbatterypoweredvehiclesproducedpriorto1900beforelosingoutinthemarkettogasolinepoweredvehicles[USDOE2016].

Today,all-electricvehiclesaretakingalargershareofthemarketwithover87,000unitssoldin2016comparedtoover70,000plug-inhybridelectricvehicles.Formodelyear2017,atleast12modelsofall-electricvehiclesand17modelsofplug-inhybridelectricvehicles(PHEVs)exist[USDOEORNL2016].

Today,thetypicaldrivingrangeforall-electricvehiclesis60to120miles[USDOE2017f].Today’sbatteriesholdmorechargeandtakeuplessspaceinthevehicle.Batterycapacitiesinall-electricvehiclestodayrangefrom22kW-hrsto100kW-hrs,whichexceedthecapacityrangeforPHEVs(7.1to33kW-hrs).Batterycostscontinuetogodownforconsumersasnewtechnologiesemerge.Publicelectriccharging

stations/outletshaveincreasedfromabout3,500in2011toover42,000in2016[USDOEORNL2016].

TheEIA’sAnnualEnergyOutlookprojectsthatbattery-electricvehicleswillsurpassPHEVssalesnearlydoublingPHEVsalesbytheyear2040.ThisdemandispartiallydrivenbyincentivizedprogramssuchasCalifornia’sZero-EmissionVehicleregulationthathasbeenreplicatedin9otherstates.Thetrendisexpectedtocontinuetocombatairqualityconcernsandmitigateclimatechange[USDOEORNL2016].

Considerableprogresshasbeenmadeincreatinganationwiderecharginginfrastructure.AsofMay2017,thereweremorethan18,000rechargingstationsincludingprivatelyownedstationswithmorethan49,000nonresidentialchargingoutletsacrosstheUnitedStates,upfromalmost3,400outletsin2011[USDOEAFDC2017c].Thedistributionofelectricvehiclerechargingstations(figure7-11)tendstofavorstatesthathaveoptedintoCalifornia’sZeroEmissionVehicles(ZEV)standards.

7-15

Transportation Statistics Annual Report

FIGURE 7-11 Electric Vehicle Refueling Stations by State: March 2017

AL243

AR90

CA14,884

CT724

FL2,174

GA1,777

ID148

IL1,136

IN389

KS741

KY175

MD1,229

MA1,295

MN709

MS66

NE144

NJ522NJ522

NM139

NY1,644

NC1,055

OH650

OR1,290

SC382

SD40

TN1,013

VA1,028

WA1,870

WV108

MT86

PA715

WI457

AZ1,043

CO1,080

DE79

IA215

LA165

ME189

MI1,107

MO1,316

ND11

OK104

RI208

NV496

NH187

TX2,502

UT329

VT405

WY65

DC250

AK7

HI563 0 100 Miles0 200 Miles 0 100 Miles

Number of outlets

5001,000

5,00010,000

SOURCE: U.S. Department of Energy, Alternative Fuels Data Center, Alternative Fueling Station Counts (as of 03/16/2017), available at http://www.afdc.energy.gov/fuels/stations_counts.html as of March 2017.

7-16

Chapter 7: Transportation Energy Use and Environmental Impacts

unfamiliaritywiththenewtechnology,decreasethelengthoftimerequiredforrechargingbatteries,increasethedistancethatcanbedrivenononechargeandfurther,developrecharginginfrastructuretoincreasemarketshare.

Liquidpetroleumgas/propaneandcompressed/liquefiednaturalgas-poweredvehiclesaccountedforapproximately4.5percentofalternativefuelvehiclesinusein2015[USDOEEIA2017a].California,Texas,Oklahoma,andNewYorkhavewidedistributionandavailabilityofcompressedandliquefiednaturalgasrefuelingstations(figure7-12).ThesestateshaveamongthehighestnumberofCNG/LNGvehiclesregistered.

Transportation’s Energy OutlookTheEIAhasprojectedthelikelyeffectsofcurrenttrendsandexistingpoliciesontransportation’sfutureenergyuseandGHGemissions.Transportationenergyuseisprojectedtoremainatornearthecurrentlevelof27quadrillionBtuthrough2050[USDOEEIA2017a].ExistingfueleconomyandGHGemissionsstandardsareexpectedtodecreaselight-dutyvehicleenergyuseby15.8percentby2050,resultinginapproximately13.5quadrillionBtuofenergyusefor2050(figure7-13).Mostofthisreductionisexpectedtobeoffsetbygrowthinenergyusebymedium-andheavy-dutytrucks,althoughthatcouldchangeiffueleconomyandemissionsstandardsforthosevehiclesarefurthertightened.

Forallothermodes,activitygrowthisapproximatelybalancedbyimprovementsinenergyefficiency.Theseprojectionsarebasedonexistingpoliciesandincreasingoilprices

whichhavedeclinedinrecentyears;therefore,theprojectionsaresubjecttochangeashasbeenseeninrecentyearswiththedeclineinpetroleumprices.Naturalgasusebymotorvehiclesincompressedandliquefiedformisprojectedtoincreasefromjust0.06quadsin2015to0.52quadsby2050[USDOEEIA2017a].EIAattributedalloftheprojectedincreaseinnaturalgasusebymotorvehiclestomedium-andheavy-dutytrucksandbuses.

AccordingtotheEIA,the2011–2025fueleconomystandardscoupledwiththeanticipatedsecondphaseoffuelefficiencyregulationsareplannedtotakeeffectin2027.Togetherwiththemarket’sresponsetohighergasolineprices,thesefuelefficiencyregulationsareprojectedtosavepersonalvehicleownersabout26billiongallonsofmotorfuelin2050,ifconsumptionwouldhaveremainedatthesamelevelofvehicletravelwithoutanyincreaseinfueleconomy(figure7-14).

Byfueltype,EIAprojectsgasolineusetodeclinefrom17.0quadsin2015(actual)to13.4in2050,inlinewithlight-dutyvehicleenergyuse.Dieselfueluseisprojectedtoincreasefrom6.6in2015to7.0quadsin2050,whichisconsistentwiththegrowthoftruckfreightenergyuse.E85willincreasebutwillstillamounttoonly0.17quadsoftransportationenergyin2050.Interestingly,electricityisanticipatedtohavethesecondhighestincreasenexttogasolineoverthe2015to2050timeperiod,goingfrom0.03quadsto0.41quadsperyear.Hydrogenisprojectedtoleadintermsofgrowth,from0.0atpresentto0.08quadsperyear[USDOEEIA2017a].Thegrowthinnewtechnologiesthatmake

7-17

Transportation Statistics Annual Report

FIGURE 7-12 Alternative Fuel Stations by State: March 2017

AL34

AR18

CA365

CT 22

FL59

GA52

ID13

IL50

IN37

KS21

KY12

MDMD17

MA17MA17

MN25

MS9

NE13

NJ28

NM15

NY114

NC41

OH66

OR18

SC13

SD1

TN25

VA20

WA29

WV4

MT1

PA71

WI60

AZ43

CO46

DE1

IA9

LA24

ME2

MI24

MO23

ND1

OK124

RI5

NV8

TX145

UT91

VT3

WY13

NH3

DC2

AK1

HI1

Number of stations

5010

100200

0 100 Miles0 200 Miles 0 100 Miles

SOURCE: U.S. Department of Energy, Alternative Fuels Data Center, Alternative Fueling Station Counts (as of 03/16/2017), available at http://www.afdc.energy.gov/fuels/stations_counts.html as of March 2017.

FIGURE 7-13 Transportation Energy Use: 2015 Projected to 2050

0

5

10

15

20

25

30

2015 2020 2025 2030 2035 2040 2045 2050

Qua

dilli

on b

tu

Light-duty vehicle

Other highwayFreight trucks

AirWaterRailPIpeline & other

SOURCE: U.S. Department of Energy, Energy Information Administration, Annual Energy Outlook 2017. Transportation Sector Energy Use by Mode and Type. Available at http://www.eia.gov/forecasts/aeo/ as of March 2017.

7-18

Chapter 7: Transportation Energy Use and Environmental Impacts

FIGURE 7-14 Highway Vehicle Fuel Use and Travel: 2015 Projected to 2050

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

0

20

40

60

80

100

120

140

160

180

200

2015 2020 2025 2030 2035 2040 2045 2050

Vehi

cle

trav

el (b

illio

ns o

f mile

s)

Fuel

use

(bill

ions

of g

allio

ns)

Light-duty vehicle fuel use (billion gallons)

Medum & heavy-duty vehicle fuel use (billion gallons)

Light-duty vehicle VMT

Medium & heavy-duty vehicle VMT

KEY: VMT = Vehicle-miles Travelled.

SOURCE: U.S. Department of Energy, Energy Information Administration, Annual Energy Outlook 2017. Reference Case table 7. Available at http://www.eia.gov/forecasts/aeo/ as of March 2017.

thesefuelsourcesmoreaffordableandeasilyaccessibleforbothelectricandhydrogen-poweredvehiclesarethedrivingforcesbehindthisprojectedtrend.

Air and Water Quality, Noise, and Habitat ImpactsBeyondthegreenhousegasesaddressedearlierinthechapter,vehicleemissionscontrolsandotherpolicieshavereducedtransportation’sothersixmostcommoncriteriaairpollutantemissionstobelow2000levels,atrendthatcontinuedthrough2016withtheexceptionofparticulatematter10(PM-10),whichhaveremainedconstantfrom2014to2016(figure7-15).PM-10referstosmall,inhalableparticlessmallerthan10micrometersindiameterthatformfromcomplexreactionsofchemicals,suchassulfurdioxide(SO2)and

nitrogenoxides(NOx).Particulatemattercanalsobeemitteddirectlyfromsourcessuchasconstructionsites,smokestacks,orfires.Transportation’sshareoftotalU.S.PM-2.5emissionsdecreasedby15.4percentfrom2000to2016,whiletheshareofPM-10emissionsincreasedby2.9percentoverthesameperiod.

Smog-formingemissionsofvolatileorganiccompounds(VOC)andNOxwere9.4and53.6percentlower,respectively,in2016thantheywerein2000.Inrecentyears,NOxemissionshavedecreasedmorerapidly,partlyduetomoreadvanceddieselemissioncontrolsandtheuseofcleaner,ultra-lowsulfurdieselfuel.Diesel-fueledvehiclesmakeup4percentofthetotaltransportationfleetwiththemajorityofthedieselvehiclesbeingmediumandheavytrucks[USDOEEIA2015].

7-19

Transportation Statistics Annual Report

FIGURE 7-15 Indexes of Key Air Pollutant Emissions from U.S. Transportation: 2000–2016

0.20

0

0.40

0.60

0.80

1.00

1.20

1.40

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Particulate matter - PM 2.5

Particulate matter - PM 10

Nitrous oxide - NOx

Volatile organic compounds - VOC

Sulfur dioxide - SO2

Carbon monoxide

Ammonia - NH3

SOURCE: U.S. Environmental Protection Agency, National Emissions Inventory Air Pollutant Emissions Trends Data, 1970-2016, Average Annual Emissions All Criteria Pollutants, Available at https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data as of March 2017.

EmissionsofSO2were83.4percentlowerin2016thanin2000,dueinlargeparttoreductionsinthesulfurcontentsofgasolineanddieselfuel.TheClean Air Act of 1970ledtothereductioninleademissions,onceamajorairpollutantfromtransportation;leadisnotshowninfigure7-15becauseithasbeenvirtuallyeliminatedfromtransportationwiththephase-outofleadedgasoline.

Emissionsofammonia(NH3),anotherairpollutant,alsoshowsasignificantdeclinefrom2000levelswithareductionof21.4percentin2016[USEPA2017d].Transportationcomprised2.4percentoftotalU.S.emissionsofammoniain2014[USEPA2016b].

Reductionsintransportation’sairemissionshavecontributedtoimprovedairqualityintheNation’surbanareas.Figure7-16comparesairqualitydaysfor169continuouslymonitoredurbanareasin2000andin2015.Theaverage

numberofdaysfromthe169urbanareasinwhichairqualitywasreportedtobeunhealthyforsensitivegroups(e.g.,peoplewithlungdisease,youngchildren,andolderadults)droppedfrom53.6in2000to6.9in2015;theaveragenumberofdayswithunhealthyairqualityforthepopulationasawholedeclinedfrom12.2in2000to0.9in2015,andthetotalnumberofveryunhealthydays(whichcouldtriggerhealthemergencywarningsforthepublic)decreasedfromanaverageof1.8in2000to0.1in2015.Thegreatmajorityofdayshadgoodormoderate(192goodand106moderate)airqualityin2000andagainin2015(247goodand110moderate).Onaverage,airqualityinthesecitieswasgoodfor247daysin2015,whichwasasubstantialincreasecomparedto192daysin2000[USEPA2017b].

Pipelines,shipsandbarges,railroadcars,andtanktrucksareamongthesourcesofspillsof

7-20

Chapter 7: Transportation Energy Use and Environmental Impacts

FIGURE 7-16 Air Quality Index (AQI) Across 169 U.S. Cities: 2000 and 2015

0

50

100

150

200

250

300

Good Moderate Unhealthy for sensitive groups

Unhealthy Very unhealthy

Ave

rage

num

ber o

f day

s pe

r yea

r

AQI Category

2000 2015

NOTES: Based on number of days in the year in which an AQI measurement was reported from any monitoring site in the county or Metropolitan Statistical Area to the Air Quality Statistics database.# Days Good: number of days in the year having an AQI value 0-50# Days Moderate: number of days in the year having an AQI value 51-100# Days Unhealthy for Sensitive Groups: number of days in the year having an AQI value 101-150# Days Unhealthy: number of days in the year having an AQI value 151-200# Days Very Unhealthy: number of days in the year having an AQI value greater than 201. This includes the AQI categories very unhealthy and hazardous.

SOURCE: U.S. Environmental Protection Agency, Air Quality Index Information. Available at http://www.epa.gov/airtrends/aqi_info.html as of June 2016.

crudeoilandpetroleumproductsintosurfacewatersandnavigablewaterways.Theannualvolumespilledvariesgreatlyfromyeartoyearandisstronglyaffectedbyinfrequent,largeevents(figure7-17).Forexample,in2005HurricaneKatrinacausednumerousspillsintonavigablewaterwaysfromavarietyofsourcesinLouisianaandMississippiasthevolumeofpetroleumspilledjumpedto9.9milliongallons,morethanthreetimestheamountofpetroleumspilledinanyotheryearfrom1995through2015.Whilethenumberfluctuatesfromyear-to-year,the1,375spillincidentsfromvesselsin2015wereslightlylessthanthe1,508incidentsin2010ofandconsiderablylessthanthe5,560in2000.The681spillincidentsfrompipelinesandother

non-vesselsourcesintonavigablewatersin2015showasimilardecliningtrendfromthe1,008incidentsin2010and1,645in2000,indicatingimprovementsinsafetymeasuresforallpetroleumtransportmodes.

Additionally,theUSDOTPipelineandHazardousMaterialsSafetyAdministration(PHMSA)reportsthatthenumberofseriouspipelineincidentsfrom2010to2015wastrendingdownfrom34to28,untilincreasingto37in2016.Manyoftheseincidentswereeitherbyexcavationequipmentorvehiclesnotinvolvedinexcavationintersectingwithgaspipelines(orgastransmissionpipelines).Asmentionedinchapter6,pipeline-relatedfatalitiesaveragedabout16deathsperyear

7-21

Transportation Statistics Annual Report

FIGURE 7-17 Petroleum Spills Impacting Navigable Waterways: 1985, 1990, and 1995–2015

0

1

2

3

4

5

6

7

8

9

10

1985 1990 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Gal

lons

spi

lled

(mill

ions

)

Vessels

Pipelines and other

Unknown

NOTES: The spike in Gallons spilled for 2005 can be attributed to the passage of Hurricane Katrina in Louisiana and Mississippi on Aug. 29, 2005, which caused numerous spills approximating 8 million gallons of oil in U.S. waters. The largest spill in U. S. waters began on April 20, 2010 with an explosion and fire on the mobile offshore drilling unit (MODU) DEEPWATER HORIZON. Subsequently, the MODU sank, leaving an open exploratory well to discharge crude oil into the Gulf of Mexico for several weeks. The most commonly accepted spill amout from the well is approximately 206.6 million gallons, plus approximately 400,000 gallons of oil products from the MODU. The totals in this table may be different from those that appear in the source, due to rounding by the source.

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, National Transportation Statistics, Table 4-54, Available at http://www.bts.gov as of May 2017.

intheperiodof1997to2016.In2016therewere17fatalitiesacrossalltypesofpipelineincidents[PHMSA2016].

In1985,inresponsetoacongressionalrequirement,EPAbegananefforttoregulateundergroundstoragetanksthatcancontaminategroundwater,tocleanupleaks,andpreventfutureleaks[USEPA2017c].Sincethen,thenumberofnewleaksfromstoragetankshasbeenreducedbynearlyanorderofmagnitude,andover86percentofallleakshavebeencleanedup(figure7-18).

Pollutionofwaterwaysfromspills,however,isnottheonlyenvironmentalchallengeposedbymarinetransportation.Portandvessel

operationscannegativelyimpactairqualityandhaveotherdetrimentalimpactsontheenvironmentthroughemissionsduringidling,movingcargofromonemodeoftransporttotheother,etc.Butrecenttrendsinalternatemarinepower(AMP),suchasshipsshiftingtoshore-sidepowerwhiledockedforbasicshipfunctionssuchaslightsandair-conditioning,andlow-sulfurfuelarehelpinglessontheimpacts[MARINEINSIGHT2016].

Asrainwaterorsnowmeltrunsofftransportationinfrastructure,likeroads,parkinglots,andbridges,itpicksupde-icingsalts,rubberandmetalparticlesfromtirewear,antifreezeandlubricants,andotherwastesthatmayhavebeendepositedoninfrastructure

7-22

Chapter 7: Transportation Energy Use and Environmental Impacts

FIGURE 7-18 Leaking Underground Storage Tank Releases and Cleanup: 1990-2016

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Cum

ulat

ive

rele

ases

cle

aned

up

Num

ber o

f new

rele

ases New releasees Cumulative cleanup

NOTES: All data are cumulative from the start of the U.S. Environmental Protection Agency’s Underground Storage Tank program, which began in 1984. Data represent fiscal year, October 1 through September 30.

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, National Transportation Statistics, Table 4-55, Available at http://www.bts.gov as of March 2017.

surfaces.Therunoffcarriesthesecontaminantsintostreams,lakes,estuaries,andoceans.Anin-depthstudyofroad-saltimpactsonwaterqualityexaminedU.S.GeologicalSurveyhistoricaldatacollectedbetween1969and2008from13northernand4southernmetropolitanareas.DuringtheNovembertoAprilperiod,whenroadsaltapplicationismostcommon,theconcentrationofchloride(aningredientofsalt)chronicallysurpassedEPA’swater-qualitycriteriaat55percentofthemonitoringlocationsinnorthernmetropolitanareas;chloridelevelsacutelysurpassedthecriteriaat25percentofthesenorthernstations.FromMaytoOctober,only16percentofthenorthernstationschronicallyexceededthecriteria,andjust1percentshowedacuteexceedances.Atsouthernsites,whereroadsaltislessfrequentlyapplied,therewerefewsamplesinanyseasonthatexceededthechronicwater-qualitycriteria,andnone

exceededtheacutecriteria[CORSI,ETAL.2010].

Highwaysandothertransportationinfrastructurealsoaffectwildlifeviaroadkills,habitatloss,andhabitatfragmentation.NumerousprojectshavebeenundertakenacrosstheUnitedStatestomitigatetheseimpacts,fromsalamanderandbadgertunnelstomountaingoatunderpassesonhighwaystofishpassagesthroughculverts.TherearenosystematicestimatesofthenumbersofwildlifekilledbytransportationvehiclesintheU.S.Ingeneral,thenumberofbirdkillsexceedsthenumberofmammalskilled.Insuranceindustryrecordsindicatethattherearebetweenoneandtwomillionreportedcollisionsbetweenanimalsandvehicleseachyear.Thesenumbersonlyincludereportedincidents;collisionswithsmallanimalsresultinginnovehicleorhumandamagearenotgenerallyreported[GASKILL2013].

7-23

Transportation Statistics Annual Report

TransportationnoiseispervasiveanddifficulttoavoidintheUnitedStates[USDOTFHWAHEP2006].Itisgeneratedbyengines,exhaust,drivetrains,tires,andaerodynamicdrag.Atfreewayspeedstire-pavementnoisedominatesforhighwayvehicles,whileexhaustandaerodynamicnoisedominateforaircraft.IntheU.S.thereareover2,700linearmilesofnoisebarrierstoprotectthepublic.Theknowninvestmentby27statesinnoisebarrierconstructionisontheorderof$1.2billion.However,inasurveyofstatesin2010,manystateshaddifficultyindeterminingtheamountsinvestedintheseefforts[USDOTFHWA2010].

Althoughhighwaysarethemostwidespreadsourceoftransportationnoise,exposuretotransportationnoiseissystematicallymeasuredonlyforaircraft.In2014,321,000individualslivedinhighnoise(>65dB)areasaroundU.S.airports.Thenumberwasdownfromnearly7millionover30yearsagoand847,000in2000.Thenumberwasreducedthroughacombinationofchangesinengineandairframedesignandoperationalstrategies[USDOTBTSNTS2017].Take-offandlandingoperationsaretheprimarysourceofannoyingaircraftnoise,whichperdBisgenerallymoreannoyingtothepublicthanhighwayorrailnoise.

Untilrecently,anationaltransportationnoiseexposureinventorydidnotexist,butBTSinconjunctionwiththeJohnA.VolpeNationalTransportationSystemsCenterhasbeenworkingtodevelopanational,multimodaltransportationnoiseinventory.TheoutcomeofthiseffortistherecentlyreleasedNationalTransportationNoiseMapwhichshowsthe

potentialfornoiseexposurefrominterstatehighwaysandairports.Overtime,additionallayerswillbeaddedtotrackandevaluatetrendsinpotentialnoiseexposureatmultiplelevels(local,State,Federal)andacrossmodes[USDOTBTSNTNM2017].

ThenewnoisedataprovidesanestimateofthepercentageoftheU.S.populationthathasthepotentialtobeexposedtoaviationandinterstateroadnoiseatboththenationalandcounty-level.Thedatashowsthatover97percentoftheU.S.populationhaspotentialtobeexposedtoaviationandinterstatehighwaynoiseatlevelsbelow50decibels(equivalenttothesoundofahummingrefrigerator).Lessthanone-tenthofapercentofthepopulationhaspotentialtobeexposedtonoiselevelsof80decibelsormore(equivalenttothesoundofagarbagedisposal).Figure7-19shows2014aviationandhighwaysnoisefortheNewYorkCityMetropolitanarea.Darkerareasindicate24-hourLAEQ(anequivalentcontinuouslevelofnoiseoveragivenperiodmeasuredindecibels)decibelsof70.0orhigher.TheyarenearmajorinternationalairportssuchasJohnF.Kennedy,NewarkLiberty,andLaGuardia.Table7-2providesacomparisonofthelevelofnoiseinLAEQindecibelsandhowitcompareswithcommoneverydaysounds,aviationnoiselevels,andhighwaynoiselevelsasareference[UDOTBTSNTNM2017].

Unwantednoisecanhaveavarietyofimpactsincludingannoyance,sleepdisruption,interferencewithcommunication,adverseimpactsonhealthandacademicperformance,andconsequentreductionsinpropertyvalues.ThereisalmostnopartoftheU.S.inwhichtransportationnoiseisnotnoticeable[WAITZ

7-24

Chapter 7: Transportation Energy Use and Environmental Impacts

FIGURE 7-19 Transportation Noise Map: 2014

KEY: LAEQ = Equivalent Continuous Sound Level

SOURCE: U.S. Department of Transportation, National Transportation Noise Map press release, imbedded table, Available at https://www.transportation.gov/highlights/national-transportation-noise-map as of July 2017.

2007;UDOTBTSNTNM2017].Whentransportationnoiselevelsarebelow50decibels(dB),thelevelofannoyanceinthepopulationisnegligible,butwhennoiselevelsexceed69dB,impactscanbesevere.

Inadditiontotheprimaryperformancemeasuresofhowefficiently,reliably,andsafelypeopleandgoodsmoveonthesystem,transportation’senergyusageanditsenvironmentalimpactsarealsoimportantmeasuresofhowwellthetransportationsystemperforms.Inrecognitionofthis,therehavebeeneffortstomitigatetransportation’sdependenceonpetroleumandenvironmental

impacts.Asdetailedinthischapter,transportationhasbecomemoreefficientoverthepastfewdecadesinitsuseofenergyandhasreducedmanyofitsenvironmentalimpactseventhoughactivitylevelshaveincreased.Itcontinues,however,tobethesecondleadingemitterofgreenhousegasesintheUnitedStatesandhashadothermajorimpactsontheenvironment,suchasoilpollution,habitatloss,andnoise.Goingforward,appropriateandaccuratedatawillbeneededtomonitorprogressanddeterminewhethersocietaleffortstoimprovethesystem’sperformancearehavingthedesiredeffect.

7-25

Transportation Statistics Annual Report

ReferencesChevrolet.2017.TheVoltElectricCar.Availableathttp://www.chevrolet.com/volt-electric-carasofJuly2017.

Corsi,StevenR.,etal.2010.“AFreshLookatRoadSalt:AquaticToxicityandWater-QualityImpactsonLocal,Regional,andNationalScales,”Environmental Science and Technology,44(19),pp.7376–7382.September1.Availableathttp://pubs.acs.org/asofMay2017.

CouncilofEurope(COE).2010.Resolution1776:NoiseandLightPollution.Availableathttp://assembly.coe.int/asofMay2017.

DieselTechnologyForum. 2017.Clean Diesel Vehicles Available in the U.S.Availableathttp://www.dieselforum.orgasofApril2017.

Federal Register.2012.2017andLaterModelYearLight-DutyVehicleGreenhouseGasEmissionsandCorporateAverageFuelEconomyStandards,vol.77,no.199,PartII,pp.62623-63200.Availableathttp://www.federalregister.gov/asofMay2017.

Gaskill,Melissa.2013.“RiseinRoadkillRequiresNewSolutions:Vehicle–wildlifecollisionskillmillionsofanimals—andharmthousandsofpeople—eachyear.Scientistsareworkingonsolutions.”Scientific American. May16.Availableathttp://www.scientificamerican.com/asofMay2017.

HybridCars.2016.June 2016 Dashboard.Availableatwww.hybridcars.comasofAugust2017.

HybridCars.2017.Top-Selling Chevy Volt Crosses 100,000 US Sales Milestone.Available

atwww.hybridcars.comasofJuly2017.

MunicipalResearchandServicesCenterofWashington(MRSCW).2016.“LightNuisances–AmbientLight,LightPollution,Glare.”Availableathttp://www.mrsc.org/asofMay2017.

Nissan.2017.2017NissanLeafElectricCar.Availableathttps://www.nissanusa.com/electric-cars/leaf/asofJuly2017.

PipelineandHazardousMaterialsSafetyAdministration(PHMSA).1997-2016.PipelineSeriousIncident20YearTrend.USDOT.Availableathttp://www.phmsa.dot.gov/asofMay2017.

ProblemandResponse.FHWA-HEP-06-020.Availableathttp://fhwa.dot.gov/asofMay2017.

RenewableFuelsAssociation(RFA).PocketGuidetoEthanol2016.Availableathttp://www.ethanolrfa.org/wp-content/uploads/2016/02/10823-RFA.pdfasofApril2017.

Tesla.2017.AboutTesla.Availableatwww.tesla.com/aboutasofMay2017.

UnitedKingdomDepartmentofEnvironment,FoodandRuralAffairs(UKDEFRA),2015.NoiseMappingEngland.Availableatwww.gov.uk/asofMay2017.

U.S.DepartmentofCommerce(USDOC),BureauofEconomicAnalysis(BEA),MotorVehicleUnitRetailSales(April2017).Availableathttp://www.bea.govasofApril2017.

U.S.DepartmentofEnergy(USDOE),

7-26

Chapter 7: Transportation Energy Use and Environmental Impacts

AlternativeFuelsDataCenter(AFDC).2017.

—2017a.Flexible Fuel Vehicles.May2017.Availableatwww.afdc.energy.govasofMay2017.

—2017b.E15.Availableathttp://www.afdc.energy.gov/asofMay2017.

—2017c.Alternative Fueling Station Counts by State.May2017.Availableatwww.afdc.energy.govasofMay2017.

U.S.DepartmentofEnergy(USDOE),EnergyInformationAdministration(EIA):

—2015b.Diesel Fuel Explained(October8,2015).Availableathttp://www.eia.gov/asofMay2017.

—2017a.Annual Energy Outlook 2017.Availableathttp://www.eia.govasofMay2017.

—2017b.AlternativeFuelVehicleData.Availableatwww.eia.gov/renewable/afv/asofMay2017.

—2017c.Monthly Energy Review.April.Availableatwww.eia.govasofMay2017.

—2017d.WeeklyRetailGasolineandDieselPrices(2015annual).May29.Availableatwww.eia.govasofMay2017.

—2017e.DistillateFuelOilandKeroseneSalesbyEndUse.December5,2016.Availableatwww.eia.govasofMay2017.

—2017f.EnergyEfficiencyandRenewableEnergy.May2017.Availableatwww.fueleconomy.gov/asofMay2017.

U.S.DepartmentofEnergy(USDOE),OfficeofEnergyEfficiencyandRenewableEnergy.

Transportation Energy Futures(March2013).Availableathttp://eere.energy.gov/asofNovember2017.

U.S.DepartmentofEnergy(USDOE).2014.TheHistoryoftheElectricCar.September,2014.Availableatwww.energy.govasofMay2017.

U.S.DepartmentofEnergy(USDOE),OakRidgeNationalLaboratory(ORNL).2016.Transportation Energy Data Book.Edition35.October.Availableathttp://cta.ornl.govasofMay2017.

U.S.DepartmentofEnergy(USDOE),OakRidgeNationalLaboratory(ORNL),2016VehicleTechnologiesMarketReport(2016).Availableathttp://cta.ornl.gov/asofMay2017.

U.S.DepartmentofEnergy(USDOE)andEnvironmentalProtectionAgency(USEPA).2017.DieselVehicles.Availableatwww.fueleconomy.govasofMay2017.

—2016a.DieselFuels.Availableatwww.fueleconomy.govasofMay2017.

—2016b.Hybrids,Diesels,andAlternativeFuelCars.Availableatwww.fueleconomy.govasofAugust2016.

U.S.DepartmentofTransportation(USDOT),BureauofTransportationStatistics(BTS).NationalTransportationNoiseMap(NTTM).2017.Availableathttps://www.bts.gov/newsroom/national-transportation-noise-mapasofMay2017.

U.S.DepartmentofTransportation(USDOT),BureauofTransportationStatistics(BTS).NationalTransportationStatistics(NTS).2017.

7-27

Transportation Statistics Annual Report

Availableatwww.rita.dot.govasofMay2017.

U.S.DepartmentofTransportation(USDOT),FederalHighwayAdministration(FHWA),OfficeofNaturalandHumanEnvironment,NoiseTeam.2010.Summary of Noise Barriers Constructed by December 31, 2010. Availableathttps://www.fhwa.dot.gov/environment/noise/noise_barriers/inventory/summary/sintro7.cfm asofSeptember2017.

U.S.DepartmentofTransportation(USDOT),FederalHighwayAdministration(FHWA),OfficeofPlanning,EnvironmentandRealty(HEP).2006.Highway Traffic Noise in the United States. Availableathttp://www.fhwa.dot.gov/environment/noise/regulations_and_guidance/usprbrsp.pdf asofMay2017.

U.S.EnvironmentalProtectionAgency(USEPA):

—2017a.Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015,EPA430-P-17-001.Availableathttps://www3.epa.gov/asofMay2017.

—2017b.AirQualityIndexBasics.Availableathttp://www.airnow.gov/asofMay2017.

—2017c.SemiannualReportofUSTPerformanceMeasuresMidFiscalYear2017(Oct.1,2014–Mar.31,2017).Availableathttps://www.epa.gov/asofMay2017.

—2017d.AirPollutantEmissionsTrendsData.Availableathttps://www.epa.gov/asofMay2017.

—2017e.FuelsRegistration,Reporting,andComplianceHelp:E15FuelRegistration.Availableathttps://www.epa.gov/asofOctober2017.

—2017f.Light-DutyAutomotiveTechnology,CarbonDioxideEmissions,andFuelEconomyTrends:1975–2015.Availableathttps://www3.epa.gov/asofOctober2017.

—2014a.Light-DutyAutomotiveTechnology,CarbonDioxideEmissions,andFuelEconomyTrends:1975–2015(December2015).Availableathttp://www3.epa.gov/asofSeptember2017.

—2014b.EPAIssuesDirectFinalRulefor2013CellulosicStandard,EPA-420-F-14-018.April.Availableathttp://ww.epa.govasofMay2017.

—2012.EPA and NHTSA Set Standards to Reduce Greenhouse Gases and Improve Fuel Economy for Model Years 2017-2025 Cars and Light Trucks,EPA-420-F-12-051,August.Availableathttp://www.epa.gov/asofMay2017.

—2011.EPA and NHTSA Adopt First-Ever Program to Reduce Greenhouse Gas Emissions and Improve Fuel Efficiency of Medium- and Heavy- Duty Vehicles,EPA-420-F-11-031,August.Availableathttp://www.epa.gov/asofMay2017.

—1995.Controlling Nonpoint Source Runoff Pollution from Roads, Highways and Bridges,EPA-841-F-95-008a.Availableathttp://www.epa.gov/asofMay2017.

U.S.LibraryofCongress(USLOC),CongressionalResearchService(CRS):

—2015.Renewable Fuel Standard (RFS): In Brief.KelsiBracmort,CongressionalResearchService,R43325,January16.Availableatwww.nationalaglawcenter.orgasofMay2017.

—2013a.Deepwater Horizon Oil Spill: Recent

7-28

Chapter 7: Transportation Energy Use and Environmental Impacts

Activities and Ongoing Developments,7-5700,R42942,Jan.31,2013,Washington,DC.

—2013b.Renewable Fuels Standard (RFS): Overview and Issues,Washington,D.C.,March.

Waitz,I.A.,R.J.BernhardandC.E.Hanson,2007.“ChallengesandPromisesinMitigatingTransportationNoise,”The Bridge,vol.37,no.3,pp.25-32.Availableathttps://www.nae.edu/asofMay2017.

Woodyard,Chris,2015.“AutomakersChallengedbyLowGasPrices”.USAToday(Jan.4,2015).Availableathttp://www.usatoday.comasofMay2017.