chapter 5 fm wdh_2011-2

Upload: matthieu-van-damme

Post on 04-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    1/152

    William Dhaeseleer- 2011Fluidummechanic 1

    Chapter 5Introduction to

    Differential Analysis of

    Fluid Motion

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    2/152

    William Dhaeseleer- 2011Fluidummechanic 2

    Main Topics

    Conservation of Mass

    Stream Function for Two-Dimensional

    Incompressible Flow

    Motion of a Fluid Particle (Kinematics)

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    3/152

    William Dhaeseleer- 2011Fluidummechanic 3

    Main Topics

    Conservation of Mass

    Stream Function for Two-Dimensional

    Incompressible Flow

    Motion of a Fluid Particle (Kinematics)

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    4/152

    William Dhaeseleer- 2011Fluidummechanic 4

    Conservation of Mass

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    5/152

    William Dhaeseleer- 2011Fluidummechanic 5

    Conservation of Mass

    Basic Law for a Control Volume

    Rate or change of mass Net rate of mass flux out

    inside the control volume through the control surface0

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    6/152

    William Dhaeseleer- 2011Fluidummechanic 6

    Conservation of Mass

    Basic Law for a Control Volume

    (1)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    7/152

    William Dhaeseleer- 2011Fluidummechanic 7

    Conservation of Mass

    Infinitesimal Control Volume;Rectangular Coordinate System

    At center O,

    density andvelocity

    Use Taylor series expansion

    and neglect higher order

    terms.

    V u i v j wk

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    8/152

    William Dhaeseleer- 2011Fluidummechanic 8

    Conservation of Mass

    Infinitesimal Control Volume;Evaluate density and velocity at faces of cube

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    9/152

    William Dhaeseleer- 2011Fluidummechanic 9

    Conservation of Mass

    Infinitesimal Control Volume;Evaluate density and velocity at faces of cube

    Similarly for y and z faces;

    Velocity components assumed to be in

    positive coordinate direction;

    The area normal is positive on each

    face.

    Must then evaluate in- andoutflow through 6 faces of

    mass flux density

    .V V dA

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    10/152

    William Dhaeseleer- 2011Fluidummechanic 10

    Conservation of Mass

    Infinitesimal Control Volume;Examples of fluxes

    ( )

    2 2

    dx u dxLeft x u dydz

    x x

    1

    2

    uu dydz u dxdydz

    x x

    ( ) 2 2

    dx u dx

    Right x u dydzx x

    1

    2

    uu dydz u dxdydz

    x x

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    11/152

    William Dhaeseleer- 2011Fluidummechanic 11

    Conservation of Mass

    Infinitesimal Control Volume;Leads to, for sum of all 6 faces:

    u v wu v w dxdydz

    x x y y z z

    u v wdxdydz

    x y z

    .

    small CV

    V dA

    (1)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    12/152

    William Dhaeseleer- 2011Fluidummechanic 12

    Conservation of Mass

    Recall, Basic Law for a Control Volume

    (2)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    13/152

    William Dhaeseleer- 2011Fluidummechanic 13

    Conservation of Mass

    Rate of change of massin small Control Volume

    (2)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    14/152

    William Dhaeseleer- 2011Fluidummechanic 14

    Conservation of Mass

    Rectangular Coordinate System

    Continuity Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    15/152

    William Dhaeseleer- 2011Fluidummechanic 15

    Conservation of Mass

    Rectangular Coordinate System

    Del Operator or Nabla

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    16/152

    William Dhaeseleer- 2011Fluidummechanic 16

    Conservation of Mass

    Vector form (all coordinate systems)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    17/152

    William Dhaeseleer- 2011Fluidummechanic 17

    Conservation of Mass

    Rectangular Coordinate System &Vector Form

    Incompressible Fluid:

    Steady Flow:

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    18/152

    William Dhaeseleer- 2011Fluidummechanic 18

    Conservation of Mass

    Cylindrical system

    r r z z r zV e V e V e V rV V zV 1

    r z

    r r z

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    19/152

    William Dhaeseleer- 2011Fluidummechanic 19

    Conservation of Mass

    Cylindrical system; Note on del operator1

    V V VV r z with V V

    r r z

    1 1 zr V VV rVr r r z

    rand r

    Must distinguish between grad, div and dyadic product

    Recall that:

    1

    ... ...r r zVV V V

    V rr r zzr r r z

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    20/152

    William Dhaeseleer- 2011Fluidummechanic 20

    Conservation of Mass

    Result for Cylindrical Coordinate System

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    21/152

    William Dhaeseleer- 2011Fluidummechanic 21

    Conservation of Mass

    Cylindrical Coordinate System

    Incompressible Fluid:

    Steady Flow:

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    22/152

    William Dhaeseleer- 2011Fluidummechanic 22

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    23/152

    William Dhaeseleer- 2011Fluidummechanic 23

    Main Topics

    Conservation of Mass

    Stream Function for Two-Dimensional

    Incompressible Flow

    Motion of a Fluid Particle (Kinematics)

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    24/152

    William Dhaeseleer- 2011Fluidummechanic 24

    Stream Function for

    Two-Dimensional

    Incompressible Flow

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    25/152

    William Dhaeseleer- 2011Fluidummechanic 25

    Stream Function forTwo-Dimensional Incompressible Flow

    Considerincompressible flow in 2D

    Concept ofStream Function

    Allows to represent the two velocity components

    u(x,y,t) and v(x,y,t) by a single function

    Stream function defined by

    ( , , )x y t

    u and vy x

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    26/152

    William Dhaeseleer- 2011Fluidummechanic 26

    Stream Function forTwo-Dimensional Incompressible Flow

    Consider the continuity equation forincompressible 2D flow

    Substituting a clever transformation

    GivesThis is true for any smooth

    function (x,y)

    . 0V 0u v

    x y

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    27/152

    William Dhaeseleer- 2011Fluidummechanic 27

    Stream Function forTwo-Dimensional Incompressible Flow

    Why do this? Mathematically

    Single variable replaces (u,v). Once is

    known, (u,v) can be computed

    Physical significance

    Curves of constant are streamlines of the flow

    Difference in between streamlines is equal tovolume flow rate between streamlines

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    28/152

    William Dhaeseleer- 2011Fluidummechanic 28

    Stream Function forTwo-Dimensional Incompressible Flow

    Recall from earlier thatalong a streamline

    Change in along

    streamline is zero

    Physical Significance

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    29/152

    William Dhaeseleer- 2011Fluidummechanic 29

    Stream Function forTwo-Dimensional Incompressible Flow

    Difference in between streamlines is equal

    to volume flow rate between streamlines

    Note on notation: Recall

    Physical Significance

    . .A A

    m V dA and Q V dA

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    30/152

    William Dhaeseleer- 2011Fluidummechanic 30

    Stream Function forTwo-Dimensional Incompressible Flow

    Consider cut AB

    Along AB, x=const, or

    Therefore

    Physical Significance

    2 2

    1 1

    y y

    y yA

    Q V dA udy dy

    y

    d dyy

    2

    12 1Q d

    No flow across streamline

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    31/152

    William Dhaeseleer- 2011Fluidummechanic 31

    Stream Function forTwo-Dimensional Incompressible Flow

    Likewise consider cut BC

    Along BC, y=const, or

    Again:

    Physical Significance

    1

    22 1

    Q d

    2 2

    1 1

    x x

    x xA

    Q V dA vdx dxx

    d dxx

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    32/152

    William Dhaeseleer- 2011Fluidummechanic 32

    Stream Function forTwo-Dimensional Incompressible Flow

    Since flow rate is constant between two streamlines

    Velocity will be high when streamlines are close together

    and conversely

    Physical Significance

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    33/152

    William Dhaeseleer- 2011Fluidummechanic 33

    Stream Function forTwo-Dimensional Incompressible Flow

    Cylindrical Coordinates

    Stream Function (r, )

    0V or

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    34/152

    William Dhaeseleer- 2011Fluidummechanic 34

    Stream Function for SteadyTwo-Dimensional Compressible Flow

    For 2D steady compressible flow:

    And then:

    . 0V so that u and vy x

    2 1m

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    35/152

    William Dhaeseleer- 2011Fluidummechanic 35

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    36/152

    William Dhaeseleer- 2011Fluidummechanic 36

    Main Topics

    Conservation of Mass

    Stream Function for Two-Dimensional

    Incompressible Flow

    Motion of a Fluid Particle (Kinematics)

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    37/152

    William Dhaeseleer- 2011Fluidummechanic 37

    Motion of a Fluid Particle(Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    38/152

    William Dhaeseleer- 2011Fluidummechanic 38

    Motion of a Fluid Particle (Kinematics)

    - Consider finite fluid element, with infinitesimally-small element dmand volume dxdydzat time t

    -After time duration dtfinite element has movedand changed shape (severe distortion possible)

    - But changes of elementary fluid particle limited tostretching & shrinking and rotation of sides

    Because of infinitesimal

    particle and time dt, thesides remain straight!

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    39/152

    William Dhaeseleer- 2011Fluidummechanic 39

    Motion of a Fluid Particle (Kinematics)

    Elementary particles motion can be decomposed

    into fourfundamental components:

    translation

    rotationlinear deformation

    angular deformation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    40/152

    William Dhaeseleer- 2011Fluidummechanic 40

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    41/152

    William Dhaeseleer- 2011Fluidummechanic 41

    Motion of a Fluid Particle (Kinematics)

    Important distinction between rotation andangular deformation!

    Pure rotation does not involve deformation;

    angular deformation does. And fluid deformationgenerates shear stresses and thus viscosity.

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    42/152

    William Dhaeseleer- 2011Fluidummechanic 42

    Motion of a Fluid Particle (Kinematics)

    1) Fluid Translation:

    Acceleration of a Fluid Particle in a Velocity Field

    2) Fluid Rotation

    3) Fluid Deformation Angular Deformation Linear Deformation

    Organisation of Section:

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    43/152

    William Dhaeseleer- 2011Fluidummechanic 43

    Motion of a Fluid Particle (Kinematics)

    1) Fluid Translation:

    Acceleration of a Fluid Particle in a Velocity Field

    2) Fluid Rotation

    3) Fluid Deformation Angular Deformation Linear Deformation

    Organisation of Section:

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    44/152

    William Dhaeseleer- 2011Fluidummechanic 44

    Motion of a Fluid Particle (Kinematics)

    1) Fluid Translation:Acceleration of a Fluid Particlein a Velocity Field

    ( , , ; )V V x y z t

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    45/152

    William Dhaeseleer- 2011Fluidummechanic 45

    Motion of a Fluid Particle (Kinematics)

    Following Newtons law, one might think:

    ( , , ; )V V x y z t

    Va

    t

    Since is a field

    it describes motion of

    whole flow and not just ofparticle

    V

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    46/152

    William Dhaeseleer- 2011Fluidummechanic 46

    Motion of a Fluid Particle (Kinematics)

    Need to keep the field description for fluid propertiesand obtain expression foracceleration of fluidparticle as it moves in a flow field.

    Given flow field:

    To find acceleration of fluid particle:

    ( , , ; )V V x y z t

    pa

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    47/152

    William Dhaeseleer- 2011Fluidummechanic 47

    Motion of a Fluid Particle (Kinematics)

    At time t, particle is at x,y,zand has velocitycorresponding to the velocity of the fieldat that point: ( , , ; )p

    tV V x y z t

    At timet+dtparticle hasmoved to new position, where

    a different velocity applies:

    ( , , ; )pt dt

    V V x dx y dy z dz t dt

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    48/152

    William Dhaeseleer- 2011Fluidummechanic 48

    Motion of a Fluid Particle (Kinematics)

    At time t+dt, particle is at x+dx,y+dy,z+dzand hasvelocity

    p pV dV

    p p p p

    V V V V dV dx dy dz dt

    x y z t

    p p p p

    p

    dV dx dy dzV V V V dt a

    dt x dt y dt z dt t dt

    p p pdx dy dzu v w

    dt dt dt But

    p

    p

    dV V V V Va u v w

    dt x y z t

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    49/152

    William Dhaeseleer- 2011Fluidummechanic 49

    Motion of a Fluid Particle (Kinematics)

    To stress the acceleration in a velocity field,special notation:

    DV

    Dt

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    50/152

    William Dhaeseleer- 2011Fluidummechanic 50

    Motion of a Fluid Particle (Kinematics)

    Substantial Derivative or Material Derivative

    Physical Interpretation:

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    51/152

    William Dhaeseleer- 2011Fluidummechanic 51

    Motion of a Fluid Particle (Kinematics)

    Substantial Derivative or Material Derivative

    Physical Interpretation:

    Measure fish concentration in a river; since fish aremoving:C=C(x,y,z;t)

    - at fixed place on a bridge

    - moving in a motor boat with velocity

    - moving along in a floating boat, with velocity

    C

    t

    U

    VDC

    Dt

    dCdt

    M i f Fl id P i l (Ki i )

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    52/152

    William Dhaeseleer- 2011Fluidummechanic 52

    Motion of a Fluid Particle (Kinematics)

    In vector notation:

    . .

    DC C DV C V

    Dt t Dt t

    . .dC C d

    U C Udt t dt t

    M ti f Fl id P ti l (Ki ti )

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    53/152

    William Dhaeseleer- 2011Fluidummechanic 53

    Motion of a Fluid Particle (Kinematics)

    Total fluid particle accelerationin vector notation:

    .DV V

    V VDt t

    Applies anywhere in a velocity field (function

    of x,y,z and t)Eulerian description method

    M ti f Fl id P ti l (Ki ti )

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    54/152

    William Dhaeseleer- 2011Fluidummechanic 54

    Motion of a Fluid Particle (Kinematics)

    Even in steady (non time-dependent) flow,

    Particle may undergo convective acceleration,even in a steady velocity field,because of its motion to locations where adifferent velocity applies.

    .

    p

    DVa V V

    Dt

    M i f Fl id P i l (Ki i )

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    55/152

    William Dhaeseleer- 2011Fluidummechanic 55

    Motion of a Fluid Particle (Kinematics)

    Fluid Translation: Particle AccelerationIn Cartesian Coordinates

    M ti f Fl id P ti l (Ki ti )

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    56/152

    William Dhaeseleer- 2011Fluidummechanic 56

    Motion of a Fluid Particle (Kinematics)

    Fluid Translation: Particle Acceleration

    In Cylindrical Coordinates

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    57/152

    William Dhaeseleer- 2011Fluidummechanic 57

    M ti f Fl id P ti l (Ki ti )

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    58/152

    William Dhaeseleer- 2011Fluidummechanic 58

    Motion of a Fluid Particle (Kinematics)

    Recall the four components of motion:

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    59/152

    William Dhaeseleer- 2011Fluidummechanic 59

    Motion of a Fluid Particle (Kinematics)

    1) Fluid Translation:

    Acceleration of a Fluid Particle in a Velocity Field

    2) Fluid Rotation

    3) Fluid Deformation Angular Deformation

    Linear Deformation

    Organisation of Section:

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    60/152

    William Dhaeseleer- 2011Fluidummechanic 60

    Motion of a Fluid Particle (Kinematics)

    2) Fluid Rotation:

    Rotation of a Fluid Particle characterized by

    x y zi j k

    is rotation about xaxis etcx

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    61/152

    William Dhaeseleer- 2011Fluidummechanic 61

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation about z-axis (in x-y plane):

    (a): fluid particle at time t sides oa & ob; lengthsx &y

    (b): fluid particle at time t+t rotated and deformed

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    62/152

    William Dhaeseleer- 2011Fluidummechanic 62

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation:

    (b)= result of (c) + (d)

    (c): pure rotation

    (d): pure angular deformation

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    63/152

    William Dhaeseleer- 2011Fluidummechanic 63

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation:

    Define rotationas average of angular motionsof edges oa& ob

    Leads to: Note that is in negative

    direction 1

    2

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    64/152

    William Dhaeseleer- 2011Fluidummechanic 64

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation:

    For small angles:

    Also in timet:Pt o moves utand vt;Pts a & b move a bit further:

    see figure below.

    x and y

    u uu y t u t y t

    y y

    v vv x t v t x t

    x x

    Figure on left taken from

    Munson et al; with symbols Aand B, and instead of.

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    65/152

    William Dhaeseleer- 2011Fluidummechanic 65

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation:

    Angular velocity about z axis defined becomes:

    0 0 0

    1 112 22lim lim lim

    zt t t

    v ut t

    x y x y

    t t t

    1

    2z

    v u

    x y

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    66/152

    William Dhaeseleer- 2011Fluidummechanic 66

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation:

    Similarly for rotation about x & y axes; such that:

    1

    2z

    v u

    x y

    1

    2x

    w v

    y z

    1

    2y

    u w

    z x

    12 V

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    67/152

    William Dhaeseleer- 2011Fluidummechanic 67

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation:

    Similarly for rotation about x & y axes; such that:

    1

    2z

    v u

    x y

    1

    2x

    w v

    y z

    1

    2y

    u w

    z x

    With

    sometimes written as:

    1 2 3( , , ) ( , , ) ( )iV u v w V V V V V V

    1, ,

    2

    jki

    j k

    VVi j k cyclic

    x x

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    68/152

    William Dhaeseleer- 2011Fluidummechanic 68

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation:

    Define vorticity

    Define circulation

    ds elemental element of arc along curve C

    2 V

    C

    V ds

    :C A A

    Stokes V ds V dA dA with A area within C

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    69/152

    William Dhaeseleer- 2011Fluidummechanic 69

    Motion of a Fluid Particle (Kinematics)

    Fluid RotationIn Cartesian coordinates:

    In Cylindrical coordinates:

    1 1 1 1 2

    z r z rr

    V rVV V V Ve e kr z z r r r r

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    70/152

    William Dhaeseleer- 2011Fluidummechanic 70

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation: Physical Interpretation

    For rotational flow

    For irrotational flow

    Rotational flow differs from motion with circular field

    lines (vortex flow);

    fluid particles can rotate in circular motion, but do

    not have to!

    0

    0

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    71/152

    William Dhaeseleer- 2011Fluidummechanic 71

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation: Physical InterpretationConsider two circular streamline flows: (Ex 5.6)

    - solid rotation (rigid body motion; forced vortex):

    - irrotational motion (free vortex or line vortex)

    0r

    V

    z const or V r r const

    0 constor rV const V r

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    72/152

    William Dhaeseleer- 2011Fluidummechanic 72

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation: Physical Interpretation

    z const or V r r const 0constor rV const V

    r

    :notation u V

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    73/152

    William Dhaeseleer- 2011Fluidummechanic 73

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation: Physical Interpretation

    z const or V r r const 0constor rV const V

    r

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    74/152

    William Dhaeseleer- 2011Fluidummechanic 74

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    75/152

    William Dhaeseleer- 2011Fluidummechanic 75

    Motion of a Fluid Particle (Kinematics)

    1) Fluid Translation:

    Acceleration of a Fluid Particle in a Velocity Field

    2) Fluid Rotation

    3) Fluid Deformation Angular Deformation

    Linear Deformation

    Organisation of Section:

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    76/152

    William Dhaeseleer- 2011Fluidummechanic 76

    Motion of a Fluid Particle (Kinematics)

    1) Fluid Translation:

    Acceleration of a Fluid Particle in a Velocity Field

    2) Fluid Rotation

    3) Fluid Deformation Angular Deformation

    Linear Deformation

    Organisation of Section:

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    77/152

    William Dhaeseleer- 2011Fluidummechanic 77

    Motion of a Fluid Particle (Kinematics)

    Recall:

    combined rotation and angular deformation

    (a): fluid particle at time t sides oa & ob; lengthsx &y

    (b): fluid particle at time t+t rotated and deformed

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    78/152

    William Dhaeseleer- 2011Fluidummechanic 78

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation:

    (b)= result of (c) + (d)

    (c): pure rotation

    (d): pure angular deformation

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    79/152

    William Dhaeseleer- 2011Fluidummechanic 79

    Motion of a Fluid Particle (Kinematics)

    Fluid Rotation:

    Define rotationas average of angular motionsof edges oa& ob

    Leads to: Note that is in negative

    direction

    12

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    80/152

    William Dhaeseleer- 2011Fluidummechanic 80

    Motion of a Fluid Particle (Kinematics)

    Fluid Angular Deformation:

    Define angular deformationas complement torotation to obtain picture (b)

    Leads to: Note that is in negative

    direction

    1

    2

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    81/152

    William Dhaeseleer- 2011Fluidummechanic 81

    Motion of a Fluid Particle (Kinematics)

    Fluid Angular Deformation: (identical as before)

    For small angles:

    Also in timet:Pt o moves utand vt;

    Pts a & b move a bit further:see figure below.

    x and y

    v vv x t v t x t

    x x

    u uu y t u t y t

    y y

    Figure on left taken from

    Munson et al; with symbols Aand B, and instead of.

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    82/152

    William Dhaeseleer- 2011Fluidummechanic 82

    Motion of a Fluid Particle (Kinematics)

    Fluid Angular Deformation:

    Angular Deformation Rate (a.d.r.) in xy plane becomes:

    0 0 0

    1

    22 lim lim limt t t

    v ut t

    x y x y

    t t t

    v u

    x y

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    83/152

    William Dhaeseleer- 2011Fluidummechanic 83

    Motion of a Fluid Particle (Kinematics)

    Fluid Angular Deformation:

    Similarly for deformation in yz and zx planes; such that:

    . . .v u

    a d r in xy planex y

    . . .w v

    a d r in yz planey z

    . . .u w

    a d r in zx planez x

    These expressions will later

    be used forgeneralization of

    the viscous stresses;

    recall from before for

    Newtonian fluid:

    yx

    du

    dy

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    84/152

    William Dhaeseleer- 2011Fluidummechanic 84

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    85/152

    William Dhaeseleer- 2011Fluidummechanic 85

    ot o o a u d a t c e ( e at cs)

    Recall the four components of motion:

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    86/152

    William Dhaeseleer- 2011Fluidummechanic 86

    ( )

    1) Fluid Translation:

    Acceleration of a Fluid Particle in a Velocity Field

    2) Fluid Rotation

    3) Fluid Deformation Angular Deformation

    Linear Deformation

    Organisation of Section:

    Motion of a Fluid Particle (Kinematics)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    87/152

    William Dhaeseleer- 2011Fluidummechanic 87

    Motion of a Fluid Particle (Kinematics)

    Linear Fluid Deformation:Angles now remain unchanged;only changes of length

    Element can change in x direction only if

    Similarly for other directions. Hence:

    0ux

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    88/152

    William Dhaeseleer- 2011Fluidummechanic 88

    Main Topics

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    89/152

    William Dhaeseleer- 2011Fluidummechanic 89

    p

    Conservation of Mass

    Stream Function for Two-Dimensional

    Incompressible Flow

    Motion of a Fluid Particle (Kinematics)

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    90/152

    William Dhaeseleer- 2011Fluidummechanic 90

    Momentum Equation

    Up to the Navier-Stokes Equation

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    91/152

    William Dhaeseleer- 2011Fluidummechanic 91

    q

    Newtons Second LawApply Newtons second law to infinitesimal fluidparticle of mass dm

    Recall for system:

    But for acceleration fluid particle in a velocity

    field; must use the substantial derivativeD/Dt

    ( )

    system

    mass systemsystem system

    dP dVF with P V dm or dF dm

    dt dt

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    92/152

    William Dhaeseleer- 2011Fluidummechanic 92

    q

    Newtons Second LawFor fluid particle in velocity field

    .VdF dm V V t

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    93/152

    William Dhaeseleer- 2011Fluidummechanic 93

    q

    Newtons Second LawFor fluid particle in velocity field

    Need to find expression for forces on fluidparticle:

    S BdF dF dF

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    94/152

    William Dhaeseleer- 2011Fluidummechanic 94

    q

    Forces Acting on a Fluid Particle

    Volume element

    Stresses at center of small cube in

    the x direction:

    Net force in x direction is sum of all

    (stresses).(dydzordxdzordxdy)shown in figure

    , ,xx yx zx

    dV dxdydz

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    95/152

    William Dhaeseleer- 2011Fluidummechanic 95

    Forces Acting on a Fluid Particle

    2 2xxx xx

    S xx xx

    dx dxdF dydz dydz

    x x

    2 2

    yx yx

    yx yx

    dy dydxdz dxdz

    y y

    2 2

    zx zxzx zx

    dz dzdxdy dxdy

    z z

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    96/152

    William Dhaeseleer- 2011Fluidummechanic 96

    Forces Acting on a Fluid Particle

    After simplification:

    x

    yxxx zxSdF dxdydz

    x y z

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    97/152

    William Dhaeseleer- 2011Fluidummechanic 97

    Forces Acting on a Fluid ParticleAlso for other directions such that together:

    x

    yxxx zx

    SdF dxdydzx y z

    y

    xy yy zy

    SdF dxdydzx y z

    z

    yzxz zzSdF dxdydz

    x y z

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    98/152

    William Dhaeseleer- 2011Fluidummechanic 98

    Forces Acting on a Fluid Particle

    Define Stress Tensor

    xx xy xz xx xy xz

    yx yy yz yx yy yz ii ii

    zx zy zz zx zy zz

    as

    ,

    ij i j i

    i j

    e e with e unit vector

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    99/152

    William Dhaeseleer- 2011Fluidummechanic 99

    Forces Acting on a Fluid Particle

    Define Divergence of a Tensor:

    , , , ,

    .ij

    ij i j k ij i j k i j

    i j k i j i j k k k

    e e e e e e e ex x

    ,

    ij ij

    j ki j

    j k i j ik i

    e e

    x x

    ij

    i ix

    Vector with components

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    100/152

    William Dhaeseleer- 2011Fluidummechanic 100

    Comment on Notation(for later convenience)

    ij i je e I Unit tensor

    ijWith the Kronecker delta

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    101/152

    William Dhaeseleer- 2011Fluidummechanic 101

    Forces Acting on a Fluid ParticleSurface force in vector form:

    j

    xj yj zj xj yj zj ij

    Si i

    dF dxdydz dxdydz dV x y z x y z x

    .S

    dF dV

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    102/152

    William Dhaeseleer- 2011Fluidummechanic 102

    Forces Acting on a Fluid Particle

    xB B xdF dxdydz g or dF dxdydz g

    BdF gd V

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    103/152

    William Dhaeseleer- 2011Fluidummechanic 103

    Forces Acting on a Fluid Particle

    .S BdF dF dV gdV

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    104/152

    William Dhaeseleer- 2011Fluidummechanic 104

    Differential Momentum Equation

    . . .S BV V

    dF dF dm V V dV gdV dV V V

    t t

    V

    g V Vt

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    105/152

    William Dhaeseleer- 2011Fluidummechanic

    105

    Differential Momentum Equation

    .V

    V V gt

    DVg

    Dt

    VV V V V V

    V

    V Vt t t

    0 .V cont eq

    t

    Use

    and

    V VV gt

    V g VV t

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    106/152

    William Dhaeseleer- 2011Fluidummechanic

    106

    Differential Momentum Equation

    V g VV t

    Last expression can be put in full

    conservation form

    0

    t

    AM

    With

    and

    g or gh

    I

    V VV I t

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    107/152

    William Dhaeseleer- 2011Fluidummechanic

    107

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    108/152

    William Dhaeseleer- 2011Fluidummechanic

    108

    Newtonian Fluid: Navier-Stokes Equations

    Generalization of yz du dy

    Determination of in terms of

    velocity gradients

    1 2 3( , , ) ( , , ) ( )

    iV u v w V V V V V V

    i

    j

    V

    x

    with

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    109/152

    William Dhaeseleer- 2011Fluidummechanic

    109

    Newtonian Fluid: Navier-Stokes Equations

    Recall rotation & angular deformation

    of fluid particles

    Paradox:

    Viscous shear stress leads to fluid-

    particlerotation, butrotationdoes notexplicitly appear in stress tensor!

    Motion of a Fluid Particle (Revisited)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    110/152

    William Dhaeseleer- 2011Fluidummechanic

    110

    Fluid Rotation: Physical Interpretation

    Motion of a Fluid Particle (Revisited)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    111/152

    William Dhaeseleer- 2011Fluidummechanic

    111

    Fluid Rotation: Physical Interpretation

    Fluid particles rotate ( finite):

    - when subject to a torque by shear stresses

    Body forces and normal (pressure) forces may accelerate &deform particles but cannot generate a torque!

    Rotation of fluid particles will always occur when shear

    stresses, i.e., whenever there is viscous flow!

    Motion of a Fluid Particle (Revisited)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    112/152

    William Dhaeseleer- 2011Fluidummechanic

    112

    Fluid Rotation: Physical Interpretation

    Fluid particles also rotate ( finite):

    - if they were launched with an initial rotation

    (e.g., solid rotation)

    But,

    For solid body rotation,there is no relative movement of fluid layers, hence nofriction, and hence no viscous shear stress!

    Motion of a Fluid Particle (Revisited)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    113/152

    William Dhaeseleer- 2011Fluidummechanic

    113

    Fluid Rotation: Physical Interpretation

    Recall:1

    2z

    v u

    x y

    Whenever

    then there is no rotation =0

    When solid body rotation

    then no deformation

    u vy x

    u v

    y x

    . . .v u

    a d r in xy planex y

    See both formulae and figure!

    Motion of a Fluid Particle (Revisited)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    114/152

    William Dhaeseleer- 2011

    Fluidummechanic114

    Fluid Rotation: Physical Interpretation

    In general, usually

    then rotation is accompanied by

    angular deformation

    u v

    y x

    Motion of a Fluid Particle (Revisited)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    115/152

    William Dhaeseleer- 2011

    Fluidummechanic115

    Fluid Rotation: Physical Interpretation

    In general, usually

    rotation is implicitly present in stress tensor

    via the presence ofangular deformation

    u v

    y x

    Viscous stress tensor (BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    116/152

    William Dhaeseleer- 2011

    Fluidummechanic116

    Following Bird, Stewart & Lightfoot (BSL - 2nd Ed p

    18-19) and Landau & Lifshitz, Fluid Mechanics (2ndEd p 44-45) one can show that:

    2

    3

    1 2 323

    1 2 3

    ( )

    ( )

    T

    BSL

    j iBSL ij ij

    i j

    V V V I

    V V V V V

    x x x x x

    This will now be made plausible.

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    117/152

    Viscous stress tensor (BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    118/152

    William Dhaeseleer- 2011

    Fluidummechanic118

    BSL BSLp or p

    E.g., Newtons law

    according to BSL

    according to F&McD

    xyx

    dV

    dy

    yx

    du

    dy

    Viscous stress tensor (BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    119/152

    William Dhaeseleer- 2011

    Fluidummechanic119

    Viscous internal friction is due to relativemotion of

    various parts of the fluid. It is related to the gradientsof the velocity:

    Assuming Newtonian fluids, there is a linearrelationship:

    iBSLj

    Vf V f

    x

    kBSL ijklij kll

    V

    x

    Can be simplified: No need for 81 viscosity coefficients

    Viscous stress tensor (BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    120/152

    William Dhaeseleer- 2011

    Fluidummechanic120

    A solid rotation does notlead to internal friction of the

    viscous type. Consider uniform rotation of fluid characterized by angular

    rotation vector so that:

    For satisfying this cross product, with a constant vector,

    - the partial derivatives are simplyzero;

    - the combinarions also vanish.

    The viscous stress must be proportional to this sortof symmetrical combinations to guarantee theabsence of friction for uniform rotation!

    12

    ( )V r same as V

    V

    i iV x

    i j j iV x V x for i j

    Viscous stress tensor (BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    121/152

    William Dhaeseleer- 2011

    Fluidummechanic121

    Therefore, one can write:

    1 2 3

    1 2 3

    ( )j i

    BSL ij ij

    i j

    V V V V V a b

    x x x x x

    ( )TBSL a V V b V I

    With aand bconstants

    Viscous stress tensor (BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    122/152

    William Dhaeseleer- 2011

    Fluidummechanic122

    It is customary to write:

    1 2 3

    1 2 3

    2( )

    3

    j iBSL ij ij

    i j

    V V V V V

    x x x x x

    ( ) 2

    22 3

    T

    BSL

    V VV I

    Or

    For our purposes, can assume =0, so that:

    Viscous stress tensor (BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    123/152

    William Dhaeseleer- 2011

    Fluidummechanic123

    ( ) 1

    22 3

    T

    BSL

    V VV I

    Or with 1 1

    2 3

    T

    S V V V

    2BSL S I With thus

    Viscous stress tensor reduces to:

    Viscous stress tensor (BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    124/152

    William Dhaeseleer- 2011

    Fluidummechanic

    124

    BSL Derivation so far ignored the pressure contribution

    BSLp

    2p S

    Must be added explicitly. Therefore:

    ii iip

    And thus:

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    125/152

    William Dhaeseleer- 2011

    Fluidummechanic

    125

    Newtonian Fluid: Summary Stress Tensor

    Generalized relationship stresses and velocity gradients;

    Generalization of yx du dy

    2p S x x y y z ze e e e e e

    1 1

    3 3xx yy zzp Tr

    1 1

    .2 3

    T

    S V V V

    Unit tensor

    Local thermodynamic pressure

    Rate of strain tensor

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    126/152

    William Dhaeseleer- 2011

    Fluidummechanic

    126

    Newtonian Fluid: Summary Stress Tensor

    xy yx

    v u

    x y

    yz zy

    w v

    y z

    zx xzu wz x

    22

    3xx

    up V

    x

    22

    3yy

    vp V

    y

    2 23

    zzwp Vz

    F&McD Eq. (5.25)

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    127/152

    William Dhaeseleer- 2011

    Fluidummechanic

    127

    Newtonian Fluid: Navier-Stokes Equations

    . . 2DV DV

    g g p S Dt Dt

    Forconstant and incompressible flow with 0V

    . 2DV

    g p SDt

    2DVg p V

    Dt

    Navier-Stokes

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    128/152

    William Dhaeseleer- 2011

    Fluidummechanic

    128

    Newtonian Fluid: Navier-Stokes Equations

    2

    x

    Du pg u

    Dt x

    2

    y

    Dv pg v

    Dt y

    2

    z

    Dw pg w

    Dt z

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    129/152

    William Dhaeseleer- 2011

    Fluidummechanic

    129

    Newtonian Fluid: Navier-Stokes Equations

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    130/152

    William Dhaeseleer- 2011Fluidummechanic 130

    Special Case: Eulers Equation

    0

    Momentum transport

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    131/152

    William Dhaeseleer- 2011Fluidummechanic 131

    pinterpretation

    Recall momentum balance equation

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    132/152

    William Dhaeseleer- 2011Fluidummechanic 132

    Differential Momentum Equation

    . .V

    V V gt

    .DV

    gDt

    VV V V V V

    V

    V Vt t t

    0 .V cont eq

    t

    Use

    and

    V VV gt

    V g VVt

    Momentum Equation

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    133/152

    William Dhaeseleer- 2011Fluidummechanic 133

    Differential Momentum Equation

    V g VV t

    BSLp With

    BSL BSLp VV p VV

    Divergence

    part

    Momentum-flux tensor (BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    134/152

    William Dhaeseleer- 2011Fluidummechanic 134

    BSL (2nd Ed p 36) combine the following:

    BSLVV pI

    VV

    Combined momentum-flux tensor

    Molecular momentum-flux tensor

    BSL Viscous momentum-flux tensor

    p Pressure

    Stress/Momentum-flux interpretation(BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    135/152

    William Dhaeseleer- 2011Fluidummechanic 135

    Stress/Momentum-flux interpretation(BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    136/152

    William Dhaeseleer- 2011Fluidummechanic 136

    Shear force per unit area identified as follows:

    the force in the x direction on a unit area

    perpendicular to the y direction

    force is exerted by the fluid of lesser y on

    the fluid of greater y

    (in elasticity theory and in F&McD the convention is reversed!)

    (BSL)

    x

    yx

    dV

    dy

    Stress/Momentum-flux interpretation(BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    137/152

    William Dhaeseleer- 2011Fluidummechanic 137

    Shear stress in the x direction

    on the surface of constant y

    x

    y

    yx

    Stress/Momentum-flux interpretation(BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    138/152

    William Dhaeseleer- 2011Fluidummechanic 138

    Transport of x-momentum interpretation:

    the flux of x-momentum in the positive y

    directionflux = flow per unit area

    momentum flows downhill;

    velocity gradient is driving force for

    momentum transport

    x

    yx

    dV

    dy

    Stress/Momentum-flux interpretation(BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    139/152

    William Dhaeseleer- 2011Fluidummechanic 139

    Viscous flux of x momentum in

    the y direction

    x

    y

    yx

    Stress/Momentum-flux interpretation(BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    140/152

    William Dhaeseleer- 2011Fluidummechanic 140

    Shear stress in the x direction

    on the surface of constant y

    Viscous flux of x momentum in

    the y direction

    x

    y

    yx yx

    Both interpretations combined:

    Viscous stress tensor (BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    141/152

    William Dhaeseleer- 2011Fluidummechanic 141

    Compare stress sign conventions:

    F&McD BSL

    Viscous stress tensor (BSL)

    P d i f (BSL Ed2 16 17)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    142/152

    William Dhaeseleer- 2011Fluidummechanic 142

    Pressure and viscous forces (BSL Ed2- pp 16-17):

    Viscous stress tensor (BSL)

    P d i f (BSL Ed2 16 17)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    143/152

    William Dhaeseleer- 2011Fluidummechanic 143

    Pressure and viscous forces (BSL Ed2- pp 16-17):

    pressure force (in x direction) per unit

    area of constant x (or perp to x direction)

    x x

    pe p

    viscous force (with x, y, z components) per

    unit area of constant x (or perp to x

    direction)x

    x xx x xy y xz z xx x xy y xz ze e e (Note that our notation BSL notation)

    x xe

    Viscous stress tensor (BSL)

    P d i f (BSL Ed2 16 17)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    144/152

    William Dhaeseleer- 2011Fluidummechanic 144

    Pressure and viscous forces (BSL Ed2- pp 16-17):

    Molecular stresses are defined as a combination

    of the thermodynamic pressure and the viscous

    stresses

    ij ij ijp

    Viscous stress tensor (BSL)

    Press re and isco s forces (BSL Ed2 pp 16 17)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    145/152

    William Dhaeseleer- 2011Fluidummechanic 145

    Pressure and viscous forces (BSL Ed2- pp 16-17):

    Molecular stresses can be interpreted in two

    ways:

    Normal stresses; Shear stresses

    ( 1, 2, 3)

    kk kk

    k

    p

    ( )

    ij ji

    i j

    Stress/Momentum-flux interpretation(BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    146/152

    William Dhaeseleer- 2011Fluidummechanic 146

    Shear stress in the x direction

    on the surface of constant y

    Viscous flux of x momentum in

    the y direction

    x

    y

    yx yx

    Recall:

    Viscous stress tensor (BSL)

    Pressure and viscous forces (BSL Ed2 pp 16 17):

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    147/152

    William Dhaeseleer- 2011Fluidummechanic 147

    Pressure and viscous forces (BSL Ed2- pp 16-17):

    In summary:

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    148/152

    Momentum-flux interpretation (BSL)

    Convective momentum transport (BSL Ed2 pp 34 37):

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    149/152

    William Dhaeseleer- 2011Fluidummechanic 149

    momentum flux across the

    three areas perpendicular to

    the respective axes

    ( ) , ( ) , ( )x y zV V V V V V

    Convective momentum transport (BSL Ed2- pp 34-37):

    x yV V = convective flux of y-momentum acrossa surface perpendicular to the x direction

    (or of constant x)

    To be compared with

    xy = molecularflux of y-momentum across a

    surface perpendicular to the x direction

    (or of constant x)

    Momentum-flux interpretation(BSL)

    Convective momentum transport (BSL Ed2 pp 34 37):

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    150/152

    William Dhaeseleer- 2011Fluidummechanic 150

    Convective momentum flux tensor:

    Convective momentum transport (BSL Ed2- pp 34-37):

    i i i ii i

    i i j j i i j ji j i j

    i j i j i j i jij ij

    VV V V e V V

    V V e V e V

    VV e e VV

    Momentum-flux interpretation(BSL)

    Convective momentum transport (BSL Ed2 pp 34 37):

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    151/152

    William Dhaeseleer- 2011Fluidummechanic 151

    Convective momentum flux tensor components:

    Convective momentum transport (BSL Ed2- pp 34-37):

    vectorstensor components

    Momentum-flux tensor (BSL)

  • 7/30/2019 Chapter 5 FM WDH_2011-2

    152/152

    Thus in summary (recall):

    BSLVV pI

    VV

    Combined momentum-flux tensor

    Molecular momentum-flux tensor

    BSL Viscous momentum-flux tensor