chapter 5 discrete probaility distrinution

40
Chapter 5 Some Important Discrete Probability Distributions by Try Sothearith by Try Sothearith [email protected] [email protected] Tel: 012 585 865 / 016555507 Tel: 012 585 865 / 016555507 Chap 5-1 NAA: Basic Statistics Course

Upload: cuteapufriends

Post on 10-Nov-2015

10 views

Category:

Documents


4 download

DESCRIPTION

statistic fof management

TRANSCRIPT

  • Chapter 5

    Some Important Discrete Probability Distributions

    by Try Sothearith [email protected] [email protected] Tel: 012 585 865 / 016555507Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Learning ObjectivesIn this chapter, you learn: The properties of a probability distributionTo calculate the expected value and variance of a probability distributionTo calculate the covariance and its use in financeTo calculate probabilities from binomial, hypergeometric, and Poisson distributionsHow to use the binomial, hypergeometric, and Poisson distributions to solve business problemsChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Introduction to Probability DistributionsRandom VariableRepresents a possible numerical value from an uncertain event

    Random VariablesDiscrete Random VariableContinuousRandom VariableCh. 5Ch. 6Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Discrete Random VariablesCan only assume a countable number of values

    Examples:

    Roll a die twiceLet X be the number of times 4 comes up (then X could be 0, 1, or 2 times)

    Toss a coin 5 times. Let X be the number of heads (then X = 0, 1, 2, 3, 4, or 5)

    Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Experiment: Toss 2 Coins. Let X = # heads.TTDiscrete Probability Distribution4 possible outcomesTTHHHHProbability Distribution 0 1 2 X X Value Probability 0 1/4 = 0.25 1 2/4 = 0.50 2 1/4 = 0.250.500.25 Probability Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Discrete Random Variable Summary Measures Expected Value (or mean) of a discrete distribution (Weighted Average)

    Example: Toss 2 coins, X = # of heads, compute expected value of X: E(X) = (0 x 0.25) + (1 x 0.50) + (2 x 0.25) = 1.0 X P(X) 0 0.25 1 0.50 2 0.25Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Variance of a discrete random variable

    Standard Deviation of a discrete random variable

    where:E(X) = Expected value of the discrete random variable X Xi = the ith outcome of XP(Xi) = Probability of the ith occurrence of XDiscrete Random Variable Summary Measures(continued)Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Example: Toss 2 coins, X = # heads, compute standard deviation (recall E(X) = 1)Discrete Random Variable Summary Measures(continued)Possible number of heads = 0, 1, or 2Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • The CovarianceThe covariance measures the strength of the linear relationship between two variablesThe covariance:

    where:X = discrete variable XXi = the ith outcome of XY = discrete variable YYi = the ith outcome of YP(XiYi) = probability of occurrence of the ith outcome of X and the ith outcome of Y

    Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Computing the Mean for Investment ReturnsReturn per $1,000 for two types of investmentsP(XiYi) Economic condition Passive Fund X Aggressive Fund Y 0.2 Recession- $ 25 - $200 0.5 Stable Economy+ 50 + 60 0.3 Expanding Economy + 100 + 350 InvestmentE(X) = X = (-25)(0.2) +(50)(0.5) + (100)(0.3) = 50E(Y) = Y = (-200)(0.2) +(60)(0.5) + (350)(0.3) = 95Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Computing the Standard Deviation for Investment ReturnsP(XiYi) Economic condition Passive Fund X Aggressive Fund Y 0.2 Recession- $ 25 - $200 0.5 Stable Economy+ 50 + 60 0.3 Expanding Economy + 100 + 350 InvestmentChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Computing the Covariance for Investment ReturnsP(XiYi) Economic condition Passive Fund X Aggressive Fund Y 0.2 Recession- $ 25 - $200 0.5 Stable Economy+ 50 + 60 0.3 Expanding Economy + 100 + 350 InvestmentChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Interpreting the Results for Investment ReturnsThe aggressive fund has a higher expected return, but much more risk

    Y = 95 > X = 50 butY = 193.71 > X = 43.30

    The Covariance of 8250 indicates that the two investments are positively related and will vary in the same directionChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • The Sum of Two Random VariablesExpected Value of the sum of two random variables:

    Variance of the sum of two random variables:

    Standard deviation of the sum of two random variables:Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Portfolio Expected Return and Portfolio RiskPortfolio expected return (weighted average return):

    Portfolio risk (weighted variability)

    Where w = portion of portfolio value in asset X (1 - w) = portion of portfolio value in asset YChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Portfolio Example Investment X: X = 50 X = 43.30 Investment Y: Y = 95 Y = 193.21 XY = 8250

    Suppose 40% of the portfolio is in Investment X and 60% is in Investment Y:

    The portfolio return and portfolio variability are between the values for investments X and Y considered individuallyChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Probability DistributionsContinuous Probability DistributionsBinomialHypergeometricPoissonProbability DistributionsDiscrete Probability DistributionsNormalUniformExponentialCh. 6Ch. 7Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • The Binomial DistributionBinomialHypergeometricPoissonProbability DistributionsDiscrete Probability DistributionsChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Binomial Probability DistributionA fixed number of observations, ne.g., 15 tosses of a coin; ten light bulbs taken from a warehouseTwo mutually exclusive and collectively exhaustive categories, generally called success and failureSuccessFailureProbability of success is p, probability of failure is 1 pConstant probability for each Success casee.g., Probability of getting a tail is the same each time we toss the coinChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Binomial Probability Distribution(continued)Observations are independentThe outcome of one observation does not affect the outcome of the otherTwo sampling methodsInfinite population without replacementFinite population with replacement

    Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Possible Binomial Distribution SettingsA manufacturing plant labels items as either defective or acceptableA firm bidding for contracts will either get a contract or notA marketing research firm receives survey responses of yes I will buy or no I will notNew job applicants either accept the offer or reject itChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Rule of CombinationsThe number of combinations of selecting X objects out of n objects is where:n! =(n)(n - 1)(n - 2) . . . (2)(1)X! = (X)(X - 1)(X - 2) . . . (2)(1) 0! = 1 (by definition)Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • P(X) = probability of X successes in n trials, with probability of success p on each trial

    X = number of successes in sample, (X = 0, 1, 2, ..., n) n = sample size (number of trials or observations) p = probability of success P(X)nX !nXp(1-p)XnX!()!=--Example: Flip a coin four times, let x = # heads:n = 4p = 0.51 - p = (1 - 0.5) = 0.5X = 0, 1, 2, 3, 4Binomial Distribution FormulaChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Example: Calculating a Binomial ProbabilityWhat is the probability of one success in five observations if the probability of success is .1? X = 1, n = 5, and p = 0.1Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • n = 5 p = 0.1n = 5 p = 0.5Mean 0.2.4.6012345XP(X).2.4.6012345XP(X)0Binomial DistributionThe shape of the binomial distribution depends on the values of p and nHere, n = 5 and p = 0.1Here, n = 5 and p = 0.5Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Binomial Distribution CharacteristicsMean

    Variance and Standard DeviationWheren = sample sizep = probability of success(1 p) = probability of failureChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • n = 5 p = 0.1n = 5 p = 0.5Mean 0.2.4.6012345XP(X).2.4.6012345XP(X)0Binomial CharacteristicsExamplesChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Using Binomial TablesExamples: n = 10, p = 0.35, x = 3: P(x = 3|n =10, p = 0.35) = 0.2522n = 10, p = 0.75, x = 2: P(x = 2|n =10, p = 0.75) = 0.0004Chap 5-*NAA: Basic Statistics Course

    n = 10xp=.20p=.25p=.30p=.35p=.40p=.45p=.500123456789100.10740.26840.30200.20130.08810.02640.00550.00080.00010.00000.00000.05630.18770.28160.25030.14600.05840.01620.00310.00040.00000.00000.02820.12110.23350.26680.20010.10290.03680.00900.00140.00010.00000.01350.07250.17570.25220.23770.15360.06890.02120.00430.00050.00000.00600.04030.12090.21500.25080.20070.11150.04250.01060.00160.00010.00250.02070.07630.16650.23840.23400.15960.07460.02290.00420.00030.00100.00980.04390.11720.20510.24610.20510.11720.04390.00980.0010109876543210p=.80p=.75p=.70p=.65p=.60p=.55p=.50x

    NAA: Basic Statistics Course

  • The Poisson DistributionBinomialHypergeometricPoissonProbability DistributionsDiscrete Probability DistributionsChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • The Poisson DistributionApply the Poisson Distribution when:You wish to count the number of times an event occurs in a given area of opportunityThe probability that an event occurs in one area of opportunity is the same for all areas of opportunity The number of events that occur in one area of opportunity is independent of the number of events that occur in the other areas of opportunityThe probability that two or more events occur in an area of opportunity approaches zero as the area of opportunity becomes smallerThe average number of events per unit is (lambda)Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Poisson Distribution Formulawhere:X = number of events in an area of opportunity = expected number of eventse = base of the natural logarithm system (2.71828...)Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Poisson Distribution CharacteristicsMean

    Variance and Standard Deviationwhere = expected number of events

    Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Using Poisson TablesExample: Find P(X = 2) if = 0.50Chap 5-*NAA: Basic Statistics Course

    X0.100.200.300.400.500.600.700.800.90012345670.90480.09050.00450.00020.00000.00000.00000.00000.81870.16370.01640.00110.00010.00000.00000.00000.74080.22220.03330.00330.00030.00000.00000.00000.67030.26810.05360.00720.00070.00010.00000.00000.60650.30330.07580.01260.00160.00020.00000.00000.54880.32930.09880.01980.00300.00040.00000.00000.49660.34760.12170.02840.00500.00070.00010.00000.44930.35950.14380.03830.00770.00120.00020.00000.40660.36590.16470.04940.01110.00200.00030.0000

    NAA: Basic Statistics Course

  • Graph of Poisson ProbabilitiesP(X = 2) = 0.0758 Graphically: = 0.50 Chap 5-*NAA: Basic Statistics Course

    X =0.50012345670.60650.30330.07580.01260.00160.00020.00000.0000

    NAA: Basic Statistics Course

    Chart2

    0.6065306597

    0.3032653299

    0.0758163325

    0.0126360554

    0.0015795069

    0.0001579507

    0.0000131626

    0.0000009402

    x

    P(x)

    Histogram

    0

    0.6065306597

    0.3032653299

    0.0758163325

    0.0126360554

    0.0015795069

    0.0001579507

    0.0000131626

    0.0000009402

    0.0000000588

    0.0000000033

    0.0000000002

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Number of Successes

    P(X)

    Histogram

    Poisson2

    Poisson Probabilities for Customer Arrivals

    Data

    Average/Expected number of successes:0.5

    Poisson Probabilities Table

    XP(X)P(=X)

    00.6065310.6065310.0000000.3934691.000000

    10.3032650.9097960.6065310.0902040.393469

    20.0758160.9856120.9097960.0143880.090204

    30.0126360.9982480.9856120.0017520.014388

    40.0015800.9998280.9982480.0001720.001752

    50.0001580.9999860.9998280.0000140.000172

    60.0000130.9999990.9999860.0000010.000014

    70.0000011.0000000.9999990.0000000.000001

    80.0000001.0000001.0000000.0000000.000000

    90.0000001.0000001.0000000.0000000.000000

    100.0000001.0000001.0000000.0000000.000000

    110.0000001.0000001.0000000.0000000.000000

    120.0000001.0000001.0000000.0000000.000000

    130.0000001.0000001.0000000.0000000.000000

    140.0000001.0000001.0000000.0000000.000000

    150.0000001.0000001.0000000.0000000.000000

    160.0000001.0000001.0000000.0000000.000000

    170.0000001.0000001.0000000.0000000.000000

    180.0000001.0000001.0000000.0000000.000000

    190.0000001.0000001.0000000.0000000.000000

    200.0000001.0000001.0000000.0000000.000000

    &A

    Page &P

    Poisson2

    0

    0

    0

    0

    0

    0

    0

    0

    x

    P(x)

    Poisson

    Poisson Probabilities for Customer Arrivals

    Data

    Average/Expected number of successes:0.1

    Poisson Probabilities Table

    XP(X)P(=X)

    00.90480.9048370.0000000.0951631.000000

    10.09050.9953210.9048370.0046790.095163

    20.00450.9998450.9953210.0001550.004679

    30.00020.9999960.9998450.0000040.000155

    40.00001.0000000.9999960.0000000.000004

    50.00001.0000001.0000000.0000000.000000

    60.00001.0000001.0000000.0000000.000000

    70.00001.0000001.0000000.0000000.000000

    &A

    Page &P

    Sheet1

    Sheet2

    Sheet3

  • Poisson Distribution ShapeThe shape of the Poisson Distribution depends on the parameter : = 0.50 = 3.00Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

    Chart3

    0.0497870684

    0.1493612051

    0.2240418077

    0.2240418077

    0.1680313557

    0.1008188134

    0.0504094067

    0.0216040315

    0.0081015118

    0.0027005039

    0.0008101512

    0.0002209503

    x

    P(x)

    Histogram

    0

    0.6065306597

    0.3032653299

    0.0758163325

    0.0126360554

    0.0015795069

    0.0001579507

    0.0000131626

    0.0000009402

    0.0000000588

    0.0000000033

    0.0000000002

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Number of Successes

    P(X)

    Histogram

    Poisson2

    Poisson Probabilities for Customer Arrivals

    Data

    Average/Expected number of successes:3

    Poisson Probabilities Table

    XP(X)P(=X)

    00.0497870.0497870.0000000.9502131.000000

    10.1493610.1991480.0497870.8008520.950213

    20.2240420.4231900.1991480.5768100.800852

    30.2240420.6472320.4231900.3527680.576810

    40.1680310.8152630.6472320.1847370.352768

    50.1008190.9160820.8152630.0839180.184737

    60.0504090.9664910.9160820.0335090.083918

    70.0216040.9880950.9664910.0119050.033509

    80.0081020.9961970.9880950.0038030.011905

    90.0027010.9988980.9961970.0011020.003803

    100.0008100.9997080.9988980.0002920.001102

    110.0002210.9999290.9997080.0000710.000292

    120.0000550.9999840.9999290.0000160.000071

    130.0000130.9999970.9999840.0000030.000016

    140.0000030.9999990.9999970.0000010.000003

    150.0000011.0000000.9999990.0000000.000001

    160.0000001.0000001.0000000.0000000.000000

    170.0000001.0000001.0000000.0000000.000000

    180.0000001.0000001.0000000.0000000.000000

    190.0000001.0000001.0000000.0000000.000000

    200.0000001.0000001.0000000.0000000.000000

    &A

    Page &P

    Poisson2

    0

    0

    0

    0

    0

    0

    0

    0

    x

    P(x)

    Poisson

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    x

    P(x)

    Sheet1

    Poisson Probabilities for Customer Arrivals

    Data

    Average/Expected number of successes:0.1

    Poisson Probabilities Table

    XP(X)P(=X)

    00.90480.9048370.0000000.0951631.000000

    10.09050.9953210.9048370.0046790.095163

    20.00450.9998450.9953210.0001550.004679

    30.00020.9999960.9998450.0000040.000155

    40.00001.0000000.9999960.0000000.000004

    50.00001.0000001.0000000.0000000.000000

    60.00001.0000001.0000000.0000000.000000

    70.00001.0000001.0000000.0000000.000000

    &A

    Page &P

    Sheet2

    Sheet3

    Chart2

    0.6065306597

    0.3032653299

    0.0758163325

    0.0126360554

    0.0015795069

    0.0001579507

    0.0000131626

    0.0000009402

    x

    P(x)

    Histogram

    0

    0.6065306597

    0.3032653299

    0.0758163325

    0.0126360554

    0.0015795069

    0.0001579507

    0.0000131626

    0.0000009402

    0.0000000588

    0.0000000033

    0.0000000002

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Number of Successes

    P(X)

    Histogram

    Poisson2

    Poisson Probabilities for Customer Arrivals

    Data

    Average/Expected number of successes:0.5

    Poisson Probabilities Table

    XP(X)P(=X)

    00.6065310.6065310.0000000.3934691.000000

    10.3032650.9097960.6065310.0902040.393469

    20.0758160.9856120.9097960.0143880.090204

    30.0126360.9982480.9856120.0017520.014388

    40.0015800.9998280.9982480.0001720.001752

    50.0001580.9999860.9998280.0000140.000172

    60.0000130.9999990.9999860.0000010.000014

    70.0000011.0000000.9999990.0000000.000001

    80.0000001.0000001.0000000.0000000.000000

    90.0000001.0000001.0000000.0000000.000000

    100.0000001.0000001.0000000.0000000.000000

    110.0000001.0000001.0000000.0000000.000000

    120.0000001.0000001.0000000.0000000.000000

    130.0000001.0000001.0000000.0000000.000000

    140.0000001.0000001.0000000.0000000.000000

    150.0000001.0000001.0000000.0000000.000000

    160.0000001.0000001.0000000.0000000.000000

    170.0000001.0000001.0000000.0000000.000000

    180.0000001.0000001.0000000.0000000.000000

    190.0000001.0000001.0000000.0000000.000000

    200.0000001.0000001.0000000.0000000.000000

    &A

    Page &P

    Poisson2

    0

    0

    0

    0

    0

    0

    0

    0

    x

    P(x)

    Poisson

    Poisson Probabilities for Customer Arrivals

    Data

    Average/Expected number of successes:0.1

    Poisson Probabilities Table

    XP(X)P(=X)

    00.90480.9048370.0000000.0951631.000000

    10.09050.9953210.9048370.0046790.095163

    20.00450.9998450.9953210.0001550.004679

    30.00020.9999960.9998450.0000040.000155

    40.00001.0000000.9999960.0000000.000004

    50.00001.0000001.0000000.0000000.000000

    60.00001.0000001.0000000.0000000.000000

    70.00001.0000001.0000000.0000000.000000

    &A

    Page &P

    Sheet1

    Sheet2

    Sheet3

  • The Hypergeometric DistributionBinomialPoissonProbability DistributionsDiscrete Probability DistributionsHypergeometricChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • The Hypergeometric Distributionn trials in a sample taken from a finite population of size NSample taken without replacementOutcomes of trials are dependentConcerned with finding the probability of X successes in the sample where there are A successes in the populationChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Hypergeometric Distribution FormulaWhereN = population sizeA = number of successes in the population N A = number of failures in the populationn = sample sizeX = number of successes in the sample n X = number of failures in the sampleChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Properties of the Hypergeometric DistributionThe mean of the hypergeometric distribution is

    The standard deviation is

    Where is called the Finite Population Correction Factor from sampling without replacement from a finite populationChap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course

  • Using the Hypergeometric DistributionExample: 3 different computers are checked from 10 in the department. 4 of the 10 computers have illegal software loaded. What is the probability that 2 of the 3 selected computers have illegal software loaded?

    N = 10n = 3 A = 4 X = 2The probability that 2 of the 3 selected computers have illegal software loaded is 0.30, or 30%.Chap 5-*NAA: Basic Statistics Course

    NAA: Basic Statistics Course