chapter 5 000

Upload: chandrahasa-reddy-thatimakula

Post on 01-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Chapter 5 000

    1/31

    Chapter 5: Joint Probability Distributions and Random Samples

    CHAPTER 5

    Section 5.1

    1.

    a. P(X = 1, Y = 1 = p(1,1 = !"#

    b. P(X ≤ 1 and Y ≤ 1 = p(#,# $ p(#,1 $ p(1,# $ p(1,1 = !%"

    c. &t least one hose is in use at both islands! P(X ≠ # and Y ≠ # = p(1,1 $ p(1," $ p(",1

    $ p("," = !'#

    d. y summin) ro* probabilities, p+(+ = !1, !-%, !5# .or + = #, 1, ", and by summin)

    /olumn probabilities, py(y = !"%, !-0, !-0 .or y = #, 1, "! P(X ≤ 1 = p+(# $ p+(1 = !5#

    e. P(#,# = !1#, but p+(# ⋅  py(# = (!1(!"% = !#-0% ≠ !1#, so X and Y are not independent!

    2.

    a.

    y

     p(+,y # 1 " - %

    # !-# !#5 !#"5 !#"5 !1# !5

    + 1 !10 !#- !#15 !#15 !# !-

    " !1" !#" !#1 !#1 !#% !"

    ! !1 !#5 !#5 !"

    b. P(X ≤ 1 and Y ≤ 1 = p(#,# $ p(#,1 $ p(1,# $ p(1,1 = !5= (!0(!' = P(X ≤ 1 ⋅ P(Y ≤ 1

    c. P( X $ Y = # = P(X = # and Y = # = p(#,# = !-#

    d. P(X $ Y ≤ 1 = p(#,# $ p(#,1 $ p(1,# = !5-

    3.

    a.  p(1,1 = !15, the entry in the 1st ro* and 1st /olumn o. the oint probability table!

    b. P( X1 = X"  = p(#,# $ p(1,1 $ p("," $ p(-,- = !#0$!15$!1#$!#' = !%#

    c. & = 2 (+1, +": +1 ≥ " $ +" 3 ∪  2 (+1, +": +" ≥ " $ +1 3P(& = p(",# $ p(-,# $ p(%,# $ p(-,1 $ p(%,1 $ p(%," $ p(#," $ p(#,- $ p(1,- =!""

    d. P( e+a/tly % = p(1,- $ p("," $ p(-,1 $ p(%,# = !1'P(at least % = P(e+a/tly % $ p(%,1 $ p(%," $ p(%,- $ p(-," $ p(-,- $ p(",-=!%

    1'5

  • 8/9/2019 Chapter 5 000

    2/31

  • 8/9/2019 Chapter 5 000

    3/31

    Chapter 5: Joint Probability Distributions and Random Samples

    c.  p(+,y = # unless y = #, 1, ;, +< + = #, 1, ", -, %! or any su/h pair,

     p(+,y = P(Y = y 8 X = + ⋅ P(X = + = (%(!(!   x p y

     x x

     y x y ⋅   

      

        −

     py(% = p(y = % = p(+ = %, y = % = p(%,% = (!%⋅(!15 = !#14%

     py(- = p(-,- $ p(%,- = 1#50!15(!%(!(!-

    %"5(!(! -- =      +

     py(" = p("," $ p(-," $ p(%," = "5(!%(!(!"

    --(!(! ""    

      

     +

    "'0!15(!%(!(!"

    %"" =   

      

     +

     py(1 = p(1,1 $ p(",1 $ p(-,1 $ p(%,1 = -(!%(!(!1

    ""(!(!   

     

      

     +

    -54#!15(!%(!(!1

    %"5(!%(!(!

    1

    --" =   

      

     +   

      

     

     py(# = 1 > ?!-54#$!"'0$!1#50$!#14%@ = !"%0#

    7.

    a.  p(1,1 = !#-#

    b. P(X ≤ 1 and Y ≤ 1 = p(#,# $ p(#,1 $ p(1,# $ p(1,1 = !1"#

    c. P(X = 1 = p(1,# $ p(1,1 $ p(1," = !1##< P(Y = 1 = p(#,1 $ ; $ p(5,1 = !-##

    d. P(o6er.lo* = P(X $ -Y 5 = 1 > P(X $ -Y ≤ 5 = 1 > P?(X,Y=(#,# or ;or (5,# or

    (#,1 or (1,1 or (",1@ = 1 A !"# = !-0#

    e. Bhe mar)inal probabilities .or X (ro* sums .rom the oint probability table are p+(# = !#5, p+(1 = !1# , p+(" = !"5, p+(- = !-#, p+(% = !"#, p+(5 = !1#< those .or Y (/olumnsums are py(# = !5, py(1 = !-, py(" = !"! t is no* easily 6eri.ied that .or e6ery (+,y,

     p(+,y = p+(+ ⋅ py(y, so X and Y are independent!

    1''

  • 8/9/2019 Chapter 5 000

    4/31

    Chapter 5: Joint Probability Distributions and Random Samples

    8.

    a. numerator = ( )( ) ( ) "%#,-#1"%551

    1"

    "

    1#

    -

    0==  

     

      

        

      

        

      

     

    denominator = ''5,54-

    -#=  

     

      

     < p(-," = #5#4!

    ''5,54-

    "%#,-# =

    b.  p(+,y =

    ( )

       

      

     

       

      

     +− 

      

      

        

      

     

    #

    -#

    1"1#0

     y x y x

    otherwise

     y x

    that  suchegers

    negativenonare y x

    #

     D  D int

     D  D ,

    ≤+≤

    9.

    a.

    ∫ ∫ ∫ ∫   +==

      ∞

    ∞−

    ∞−

    -#

    "#

    -#

    "#

    "" (,(1   dxdy y x K dxdy y x  f  

    ∫ ∫ ∫ ∫ ∫ ∫    +=+=-#

    "#

    "-#

    "#

    "-#

    "#

    -#

    "#

    "-#

    "#

    -#

    "#

    "1#1#   dy y K dx x K dxdy y K dydx x K 

    ###,-0#

    -

    -

    ###,14"#   =⇒ 

      

      ⋅=   K  K 

    b. P(X E " and Y E " = ∫ ∫ ∫    =+"

    "#

    ""

    "#

    "

    "#

    "" 1"(   dx x K dxdy y x K 

    -#"%!-#%,-0%"

    "#

    - ==   K  Kx

    c.

    P( 8 X > Y 8 ≤ " = ∫∫  III region

    dxdy y x f  ,(

    ∫∫ ∫∫   −−

     II  I 

    dxdy y x  f  dxdy y x  f   ,(,(1

    ∫ ∫ ∫ ∫   −

    +−−

    -#

    ""

    "

    "#

    "0

    "#

    -#

    ",(,(1

     x

     xdydx y x  f  dydx y x  f  

    = (a.ter mu/h al)ebra !-54-

    1'0

     I 

     II 

    "+= x y "−= x y

    "#

    "#

    -#

    -#

     III 

  • 8/9/2019 Chapter 5 000

    5/31

    Chapter 5: Joint Probability Distributions and Random Samples

    d. . +(+ =

    -#

    "#

    -"

    -#

    "#

    ""

    -1#(,(

      y K  Kxdy y x K dy y x  f     +=+= ∫ ∫ 

    ∞−

    = 1#F+" $ !#5, "# ≤ + ≤ -#

    e. . y(y is obtained by substitutin) y .or + in (d< /learly .(+,y ≠ . +(+ ⋅ . y(y, so X and Y are

    not independent!

    10.

    a. .(+,y =#

    1

    otherwise

     y x 5,5   ≤≤≤≤

    sin/e . +(+ = 1, . y(y = 1 .or 5 ≤ + ≤ , 5 ≤ y ≤ 

    b. P(5!"5 ≤ X ≤ 5!'5, 5!"5 ≤ Y ≤ 5!'5 = P(5!"5 ≤ X ≤ 5!'5 ⋅ P(5!"5 ≤ Y ≤ 5!'5 = (by

    independen/e (!5(!5 = !"5

    c.

    P((X,Y ∈ & = ∫∫  A

    dxdy1

    = area o. & = 1 > (area o. $ area o.

    = -#!-

    11

    -

    "51   ==−

    11.

    a.  p(+,y =GG   y

    e

     x

    e  y x  µ λ    µ λ    −−

    ⋅  .or + = #, 1, ", ;< y = #, 1, ", ;

    b.  p(#,# $ p(#,1 $ p(1,# = [ ] µ λ  µ λ  ++−− 1e

    c. P( X$Y=m = ∑∑=

    =−−

    =   −=−==

    m

    k mk m

    k    k mk ek mY k  X  P 

    ## G(G,(  µ λ  µ λ 

    G

    (

    G

    (

    #

    (

    m

    e

    m

    m

    e   mm

    k mk    µ λ  µ λ  µ λ  µ λ  +

    =   

     

     

        +−

    =

    −+−

    ∑, so the total H o. errors X$Y also has a

    Poisson distribution *ith parameter  µ λ  + !

    1'4

     I 

     II 

    I1+= x y I1−= x y

    5

    5

  • 8/9/2019 Chapter 5 000

    6/31

    Chapter 5: Joint Probability Distributions and Random Samples

    12.

    a. P(X - = #5#!-- #

    1( == ∫ ∫ ∫   ∞

    −∞ ∞

    +−dxedydx xe

      x y x

    b. Bhe mar)inal pd. o. X is x y x

    edy xe   −∞

    +− =∫ #1(

     .or # ≤ +< that o. Y is

    "-

    1(

    1(

    1

     ydx xe

      y x

    +=∫ ∞ +−

     .or # ≤ y! t is no* /lear that .(+,y is not the produ/t o.

    the mar)inal pd.s, so the t*o r!6s are not independent!

    c. P( at least one e+/eeds - = 1 > P(X ≤ - and Y ≤ -

    = ∫ ∫ ∫ ∫    −−+− −=−-

    #

    -

    #

    -

    #

    -

    #

    1( 11   dye xedydx xe   xy x y x

    = -##!"5!"5!1(1 1"--

    #

    - =−+=−−   −−−−∫    eedxee   x x

    13.

    a. .(+,y = . +(+ ⋅ . y(y =

      −−

    #

     y xe

    otherwise

     y x #,#   ≥≥

    b. P(X ≤ 1 and Y ≤ 1 = P(X ≤ 1 ⋅ P(Y ≤ 1 = (1 > eA1 (1 > eA1 = !%##

    c. P(X $ Y ≤ " = [ ]∫ ∫ ∫    −−−− −− −=

    "

    #

    "("

    #

    "

    #1   dxeedxdye   x x

     x y x

    = 54%!"1( """

    #

    " =−−=−   −−−−∫    eedxee   x

    d. P(X $ Y ≤ 1 = [ ] "%!"11 11#

    1( =−=−   −−−−∫    edxee   x x ,so P( 1 ≤ X $ Y ≤ " = P(X $ Y ≤ " > P(X $ Y ≤ 1 = !54% A !"% = !--#

    14.

    a. P(X1 E t, X" E t, ; , X1# E t = P(X1 E t ; P( X1# E t =1#1(   t e   λ −−

    b. . Ksu//essL = 2.ail be.ore t3, then p = P(su//ess = t e   λ −−1 ,

    and P(7 su//esses amon) 1# trials =k t t  ee

    k  −−−−   

      

      1#(11#

    λ λ 

    c. P(e+a/tly 5 .ail = P( 5 o. s .ail and other 5 dont $ P(% o. s .ail, .ails, and other 5

    dont = ( ) ( ) ( ) ( ) 5%%5 (11%

    4(1

    5

    4t t t t t t 

    eeeeee  λ  µ λ  µ λ λ    −−−−−− −−   

      

     +−  

     

      

     

    15.

    a. (y = P( Y ≤ y = P ?(X1 ≤y ∪ ((X" ≤ y ∩ (X- ≤ y@

    = P (X1 ≤ y $ P?(X" ≤ y ∩ (X- ≤ y@ A P?(X1 ≤ y ∩ (X" ≤ y ∩ (X- ≤ y@

    10#

  • 8/9/2019 Chapter 5 000

    7/31

    Chapter 5: Joint Probability Distributions and Random Samples

    = -" 1(1(1(   y y y eee   λ λ λ    −−− −−−+−  .or y ≥ #

    b. .(y = ′(y = ( ) ( ) y y y y y eeeee   λ λ λ λ λ  λ λ λ    −−−−− −−−+ "1(-1(" =  y y ee

      λ λ  λ λ  -" -%   −− −   .or y ≥ #

    (Y = ( ) λ λ λ λ λ   λ λ 

    -"

    -1

    "1"-%

    #

    -" =−   

      =−⋅∫ ∞ −− dyee y

      y y

    16.

    a. .(+1, +- = ( )∫ ∫   −−∞

    ∞−  −= -1

    1

    #"-"1"-"1 1,,(

     x x

    dx x xkxdx x x x  f  

    ( )( ) "-1-1

    11'"   x x x x   −−−   # ≤ +1, # ≤ +-, +1 $ +- ≤ 1

    b. P(X1 $ X- ≤ !5 = ∫ ∫   −

    −−−5!

    #

    5!

    #1"

    "-1-1

    1

    1(1('" x

    dxdx x x x x

    = (a.ter mu/h al)ebra !5-1"5

    c.   ( ) ( )∫ ∫    −−−==  ∞

    ∞− -"

    -1-1--11 11'",((1 dx x x x xdx x x  f   x  f   x

    5

    1

    -

    1

    "

    11 -%010   x x x x   −+− # ≤ +1 ≤ 1

    17.

    a.   ( ,(   Y  X  P  *ithin a /ir/le o. radius ) ∫∫ == A

     R dxdy y x  f   A P  ,(("

    "5!%

    1!!1""

      ==== ∫∫   R

     Aof  areadxdy

     R A

      π π 

    b.

    π π 

    1

    "",

    "" "

    "

    ==   

       ≤≤−≤≤−

     R

     R RY 

     R R X 

     R P 

    c.

    101

  • 8/9/2019 Chapter 5 000

    8/31

    Chapter 5: Joint Probability Distributions and Random Samples

    π π 

    ""

    "",

    "" "

    "

    ==  

      

     ≤≤−≤≤−

     R

     R RY 

     R R X 

     R P 

    d.   ( )"

    ""

    "

    "1,(

    ""

    ""

     R

     x Rdy

     Rdy y x  f   x  f  

     x R

     x R x

    π π 

    −=== ∫ ∫ 

      −

    −−

    ∞−  .or >R ≤ + ≤ R and

    similarly .or . Y(y! X and Y are not independent sin/e e!)! . +(!4R = . Y(!4R #, yet.(!4R, !4R = # sin/e (!4R, !4R is outside the /ir/le o. radius R!

    18.

    a. Py8X(y81 results .rom di6idin) ea/h entry in + = 1 ro* o. the oint probability table by p+(1 = !-%:

    "-5-!-%!

    #0!

    18#(8   == x y P 

    500"!-%!

    "#!181(8   == x y P 

    1'5!-%!

    #!18"(8   == x y P 

    b. Py8X(+8" is reMuested< to obtain this di6ide ea/h entry in the y = " ro* by p+(" = !5#:

    y # 1 "

    Py8X(y8" !1" !"0 !#

    c. P( Y ≤ 1 8 + = " = Py8X(#8" $ Py8X(18" = !1" $ !"0 = !%#

    d. PX8Y(+8" results .rom di6idin) ea/h entry in the y = " /olumn by py(" = !-0:

    + # 1 "

    P+8y(+8" !#5" !15'4 !'045

    10"

  • 8/9/2019 Chapter 5 000

    9/31

    Chapter 5: Joint Probability Distributions and Random Samples

    19.

    a.#5!1#

    (

    (

    ,(8(

    "

    ""

    8 ++

    ==kx

     y xk 

     x  f  

     y x  f   x y  f  

     X 

     X Y  "# ≤ y ≤ -#

    #5!1#

    (8(

    "

    ""

    8 ++

    =ky

     y xk  y x  f   Y  X  "# ≤ + ≤ -#  

      

       =

    ###,-0#

    -k 

    b. P( Y ≥ "5 8 X = "" = ∫ -#

    "58 ""8(   dy y  f    X Y 

      = ∫    =++-#

    "5 "

    ""

    '0-!#5!""(1#

    ""((dy

     yk 

    P( Y ≥ "5 = '5!#5!1#((-#

    "5

    "-#

    "5=+= ∫ ∫    dykydy y  f  Y 

    c. ( Y 8 X="" = dyk 

     yk  ydy y f   y  X Y 

    #5!""(1#

    ""((""8(

    "

    ""-#

    "#8 +

    +⋅=⋅ ∫ ∫ 

    ∞−

    = "5!-'"41"

    ( Y" 8 X="" = #"0%#!5"#5!""(1#

    ""(("

    ""-#

    "#

    " =++

    ⋅∫    dyk  yk 

     y

    N(Y8 X = "" = ( Y" 8 X="" > ?( Y 8 X="" @" = 0!"%-4'

    20.

    a.   ( ),(

    ,,(,8

    "1,

    -"1

    "1-,8

    "1

    "1-  x x  f  

     x x x  f   x x x  f  

     x x

     x x x   =   *here =,( "1, "1  x x  f    x x  the mar)inal oint

     pd. o. (X1, X" = --"1 ,,(   dx x x x  f  ∫ ∞

    ∞−

    b.   ( )(

    ,,(8,

    1

    -"1

    1-"8,

    1

    1-"  x  f  

     x x x  f   x x x  f  

     x

     x x x   =   *here

    ∫ ∫ ∞

    ∞−

    ∞−= -"-"11 ,,((1 dxdx x x x  f   x  f   x

    21. or e6ery + and y, . Y8X(y8+ = . y(y, sin/e then .(+,y = . Y8X(y8+ ⋅ . X(+ = . Y(y ⋅ . X(+, as

    reMuired!

    10-

  • 8/9/2019 Chapter 5 000

    10/31

    Chapter 5: Joint Probability Distributions and Random Samples

    Section 5.2

    22.

    a. ( X $ Y = #"(!##(,((   +=+∑∑ x y

     y x p y x

    1#!1%#1(!151#(!!!#(!5#(   =+++++

    b. ?ma+ (X,Y@ = ∑∑   ⋅+ x y

     y x p y x ,(ma+(

    #!4#1(!15(!!!#(!5(#"(!#(   =+++=

    23. (X1 > X" = ( )∑ ∑= =

    ⋅−%

    #

    -

    #

    "1"1

    1 "

    ,( x x

     x x p x x =

    (# > #(!#0 $ (# > 1(!#' $ ; $ (% > -(!# = !15(*hi/h also eMuals (X1 > (X" = 1!'# > 1!55

    24. Oet h(X,Y = H o. indi6iduals *ho handle the messa)e!

    y

    h(+,y 1 " - % 5

    1 A " - % - "

    " " A " - % -

    + - - " A " - %

    % % - " A " -

    5 - % - " A "

    " - % - " A

    Sin/e p(+,y = -#1

     .or ea/h possible (+,y, ?h(X,Y@ = 0#!",( -#0%

    -#1 ==⋅∑∑

     x y

     y xh

    25. (XY = (X ⋅ (Y = O ⋅ O = O"

    26. Re6enue = -X $ 1#Y, so (re6enue = (-X $ 1#Y

    %!15",5(-5!!!#,#(#,(1#-(5

    #

    "

    #

    =⋅++⋅=⋅+= ∑∑= =

     p p y x p y x x y

    10%

  • 8/9/2019 Chapter 5 000

    11/31

  • 8/9/2019 Chapter 5 000

    12/31

    Chapter 5: Joint Probability Distributions and Random Samples

    ( )

    ( )

    ( )   ( )   ( )∫ ∫ ∫ ∫   ∞∞∞∞

    +−

    +=

    +−+

    =+

    =# "## "# " 1

    1

    1

    1

    1

    11

    1(   dy

     ydy

     ydy

     y

     ydy

     y

     y y E  , and the

    .irst inte)ral is not .inite! Bhusρ

     itsel. is unde.ined!

    33.

    Sin/e (XY = (X ⋅ (Y, Co6(X,Y = (XY > (X ⋅ (Y = (X ⋅ (Y A (X ⋅ (Y =

    #, and sin/e Corr(X,Y = y x

    Y  X Cov

    σ σ 

    ,(, then Corr(X,Y = #

    34.

    a. n the dis/rete /ase, Nar?h(X,Y@ = 2?h(X,Y > (h(X,Y@"3 =

    ∑∑∑∑   −=− x y x y

    Y  X h E  y x p y xh y x pY  X h E  y xh """ @,((?@,(,(?,(@,((,(?

    *ith ∫∫  repla/in) ∑ ∑ in the /ontinuous /ase!

    b. ?h(X,Y@ = ?ma+(X,Y@ = 4!#, and ?h"(X,Y@ = ?(ma+(X,Y"@ = (#"(!#"

    $(5"

    (!# $ ;$ (15"

    (!#1 = 1#5!5, so Nar?ma+(X,Y@ = 1#5!5 > (4!#"

     = 1-!-%

    35.

    a. Co6(aX $ b, /Y $ d = ?(aX $ b(/Y $ d@ > (aX $ b ⋅ (/Y $ d

    = ?a/XY $ adX $ b/Y $ bd@ > (a(X $ b(/(Y $ d= a/(XY > a/(X(Y = a/Co6(X,Y

    b. Corr(aX $ b, /Y $ d =

    ((8888

    ,(

    ((

    ,(

    Y Var  X Var ca

    Y  X acCov

    d cY Var aX Var 

    d cY aX Cov

    ⋅⋅=

    ++++

    = Corr(X,Y *hen a and / ha6e the same si)ns!

    c. hen a and / di..er in si)n, Corr(aX $ b, /Y $ d = ACorr(X,Y!

    36. Co6(X,Y = Co6(X, aX$b = ?X⋅(aX$b@ > (X ⋅(aX$b = a Nar(X,

    so Corr(X,Y =((

    (

    ((

    (

    "  X Var a X Var 

     X aVar 

    Y Var  X Var 

     X aVar 

    ⋅=

    ⋅ = 1 i. a #, and >1 i. a E #

    10

  • 8/9/2019 Chapter 5 000

    13/31

    Chapter 5: Joint Probability Distributions and Random Samples

    Section 5.3

    37.

    P(+1 !"# !5# !-#

    P(+" +" 8 +1 "5 %# 5

    !"# "5 !#% !1# !#

    !5# %# !1# !"5 !15

    !-# 5 !# !15 !#4

    a.

     x "5 -"!5 %# %5 5"!5 5

    ( ) x p !#% !"# !"5 !1" !-# !#4

    ( )   µ ==+++= 5!%%#4(!5!!!"#(!5!-"#%(!"5( x E 

    b.

    s" # 11"!5 -1"!5 0##

    P(s" !-0 !"# !-# !1"

    (s" = "1"!"5 = σ"

    38.

    a.

    B# # 1 " - %

    P(B# !#% !"# !-' !-# !#4

    b.   µ  µ    ⋅=== ""!"( ## !  E ! 

    c."""

    #

    "

    #

    " "40!"!"(0"!5((#

    σ σ    ⋅==−=−=   !  E !  E ! 

    10'

  • 8/9/2019 Chapter 5 000

    14/31

    Chapter 5: Joint Probability Distributions and Random Samples

    39.

    + # 1 " - % 5 ' 0 4 1#

    +In # !1 !" !- !% !5 ! !' !0 !4 1!#

     p(+In !### !### !### !##1 !##5 !#"' !#00 !"#1 !-#" !"4 !1#'

    X is a binomial random 6ariable *ith p = !0!

    40.

    a. Possible 6alues o. Q are: #, 5, 1#! Q = # *hen all - en6elopes /ontain # money, hen/e p(Q = # = (!5- = !1"5! Q = 1# *hen there is a sin)le en6elope *ith 1#, hen/e p(Q =1# = 1 > p(no en6elopes *ith 1# = 1 > (!0- = !%00! p(Q = 5 = 1 > ?!1"5 $ !%00@ = !-0'!

    Q # 5 1#

     p(Q !1"5 !-0' !%00

    &n alternati6e solution *ould be to list all "' possible /ombinations usin) a tree dia)ramand /omputin) probabilities dire/tly .rom the tree!

    b. Bhe statisti/ o. interest is Q, the ma+imum o. +1, +", or +-, so that Q = #, 5, or 1#! Bhe population distribution is a s .ollo*s:

    + # 5 1#

     p(+ 1I" -I1# 1I5

    rite a /omputer pro)ram to )enerate the di)its # > 4 .rom a uni.orm distribution!&ssi)n a 6alue o. # to the di)its # > %, a 6alue o. 5 to di)its 5 > ', and a 6alue o. 1# todi)its 0 and 4! 9enerate samples o. in/reasin) sies, 7eepin) the number o. repli/ations/onstant and /ompute Q .rom ea/h sample! &s n, the sample sie, in/reases, p(Q = #)oes to ero, p(Q = 1# )oes to one! urthermore, p(Q = 5 )oes to ero, but at a slo*errate than p(Q = #!

    100

  • 8/9/2019 Chapter 5 000

    15/31

    Chapter 5: Joint Probability Distributions and Random Samples

    41.

    Tut/ome 1,1 1," 1,- 1,% ",1 "," ",- ",%

    Probability !1 !1" !#0 !#% !1" !#4 !# !#-

     x 1 1!5 " "!5 1!5 " "!5 -

    r # 1 " - 1 # 1 "

    Tut/ome -,1 -," -,- -,% %,1 %," %,- %,%

    Probability !#0 !# !#% !#" !#% !#- !#" !#1

     x " "!5 - -!5 "!5 - -!5 %

    r " 1 # 1 - " 1 "

    a.

     x 1 1!5 " "!5 - -!5 %

    ( ) x p !1 !"% !"5 !"# !1# !#% !#1

    b. P ( )5!"≤ x = !0

    c.

    r # 1 " -

     p(r !-# !%# !"" !#0

    d. 5!1(   ≤ X  P  = P(1,1,1,1 $ P(",1,1,1 $ ; $ P(1,1,1," $ P(1,1,"," $ ; $ P(",",1,1$ P(-,1,1,1 $ ; $ P(1,1,1,-= (!%% $ %(!%-(!- $ (!%"(!-" $ %(!%"(!""  = !"%##

    42.

    a.

     x "'!'5 "0!# "4!' "4!45 -1!5 -1!4 --!

    ( ) x p-#%

    -#"

    -#

    -#%

    -#0

    -#%

    -#"

    b.

     x "'!'5 -1!5 -1!4

    ( ) x p-1

    -1

    -1

    c. all three 6alues are the same: -#!%---

    104

  • 8/9/2019 Chapter 5 000

    16/31

    655545352515

    70

    60

    50

    40

    30

    20

    10

    0

           F     r     e     q     u     e     n     c     y

    P-Value: 0.000

     A-Squared: 4.428

     Anderson-Darln! "or# al$y%es$

    6050403020

    .&&&

    .&&

    .&5

    .80

    .50

    .20

    .05

    .01

    .001

          P     r     o      '     a      '            l            $     y

    "or#al Pro'a'l$y Plo$

    Chapter 5: Joint Probability Distributions and Random Samples

    43. Bhe statisti/ o. interest is the .ourth spread, or the di..eren/e bet*een the medians o. theupper and lo*er hal6es o. the data! Bhe population distribution is uni.orm *ith & = 0 and =1#! Use a /omputer to )enerate samples o. sies n = 5, 1#, "#, and -# .rom a uni.ormdistribution *ith & = 0 and = 1#! Feep the number o. repli/ations the same (say 5##, .ore+ample! or ea/h sample, /ompute the upper and lo*er .ourth, then /ompute thedi..eren/e! Plot the samplin) distributions on separate histo)rams .or n = 5, 1#, "#, and -#!

    44. Use a /omputer to )enerate samples o. sies n = 5, 1#, "#, and -# .rom a eibull distribution*ith parameters as )i6en, 7eepin) the number o. repli/ations the same, as in problem %-abo6e! or ea/h sample, /al/ulate the mean! elo* is a histo)ram, and a normal probability

     plot .or the samplin) distribution o.  x  .or n = 5, both )enerated by Qinitab! Bhis samplin)distribution appears to be normal, so sin/e lar)er sample sies *ill produ/e distributions thatare /loser to normal, the others *ill also appear normal!

    45. Usin) Qinitab to )enerate the ne/essary samplin) distribution, *e /an see that as n in/reases,the distribution slo*ly mo6es to*ard normality! Vo*e6er, e6en the samplin) distribution .orn = 5# is not yet appro+imately normal!n = 1#

    n = 5#

    14#

    0 10 20 30 40 50 60 70 80 &0

    0

    10

    20

    30

    40

    50

    60

    70

    80

    &0

           F     r     e     q     u     e     n     c     y

    P-Value: 0.000

     A-Squared: 7.406

     Anderson-Darln! "or#al$y %es$

    85756555453525155

    .&&&

    .&&

    .&5

    .80

    .50

    .20

    .05

    .01

    .001

          P     r     o      '     a      '            l            $     y

    n(10

    "or#al Pro'a'l$y Plo$

  • 8/9/2019 Chapter 5 000

    17/31

    Chapter 5: Joint Probability Distributions and Random Samples

    Section 5.4

    46. µ = 1" /m   σ = !#% /m

    a. n = 1 cm X  E  1"(   ==  µ    cmn

     x

     x #1!

    %

    #%!===

     σ σ 

    b. n = % cm X  E  1"(   ==  µ    cmn

     x

     x ##5!0

    #%!===

     σ σ 

    c.   X  is more li7ely to be *ithin !#1 /m o. the mean (1" /m *ith the se/ond, lar)er,

    sample! Bhis is due to the de/reased 6ariability o.  X   *ith a lar)er sample sie!

    47.   µ = 1" /m   σ = !#% /m

    a. n = 1 P( 11!44 ≤   X   ≤ 1"!#1 =  

     

     

     

        −≤≤−

    #1!

    1"#1!1"

    #1!

    1"44!11 "  P 

    = P(A1 ≤ W ≤ 1

    = Φ(1 A Φ(A1

    =!0%1- A !150'=!0"

    b. n = "5 P(  X    1"!#1 =    

         −>

    5I#%!

    1"#1!1" "  P  = P( W 1!"5

    = 1 A Φ(1!"5

    = 1 A !04%%=!1#5

    48.

    a. 5#==  µ  µ  X  , 1#!1##

    1===

    n

     x

     x

    σ σ 

    P( %4!'5 ≤   X   ≤ 5#!"5 =    

         −≤≤

    −1#!

    5#"5!5#

    1#!

    5#'5!%4 "  P 

    = P(A"!5 ≤ W ≤ "!5 = !40'

    b. P( %4!'5 ≤   X   ≤ 5#!"5 ≈     

         −≤≤

    −1#!

    0!%4"5!5#

    1#!

    0!%4'5!%4 "  P 

    = P(A!5 ≤ W ≤ %!5 = !415

    141

  • 8/9/2019 Chapter 5 000

    18/31

  • 8/9/2019 Chapter 5 000

    19/31

    Chapter 5: Joint Probability Distributions and Random Samples

    53.   µ = 5#,   σ = 1!"

    a. n = 4

    P(  X   ≥ 51 = ##"!44-0!15!"(4I"!1

    5#51 =−=≥=   

      

        −≥   "  P  "  P 

    b. n = %#

    P(  X   ≥ 51 = #"'!5(%#I"!1

    5#51 ≈≥=   

      

        −≥   "  P  "  P 

    54.

    a. 5!"== µ  µ  X  , 1'!5

    05!===

    n

     x

     x

    σ σ 

    P(  X   ≤ -!##= 40#-!#!"(1'!

    5!"##!-=≤= 

      

         −≤   "  P  "  P 

    P("!5 ≤   X   ≤ -!##= %0#-!5!"(##!-(   =≤−≤=   X  P  X  P 

    b. P(  X   ≤ -!##= 44!I05!

    5!"##!-=  

     

      

        −≤

    n "  P   implies that ,--!"

    I05

    -5!=

    n .rom

    *hi/h n = -"!#"! Bhus n = -- *ill su..i/e!

    55. "#== np µ  %%!-==   np#σ 

    a. P( "5 ≤   X  ≈ #40!-#!1(%%!-

    "#5!"%=≤= 

      

       ≤

    − "  P  "  P 

    b. P( 15 ≤   X   ≤ "5 ≈    

     

     

     

        −≤≤−

    %%!-

    "#5!"5

    %%!-

    "#5!1% "  P 

    000"!54!154!1(   =≤≤−=   "  P 

    56.

    a. ith Y = H o. ti/7ets, Y has appro+imately a normal distribution *ith 5#== λ  µ  ,

    #'1!'==   λ σ  , so P( -5 ≤ Y ≤ '# ≈      

         −≤≤

    −#'1!'

    5#5!'#

    #'1!'

    5#5!-% "  P   = P( A"!14

    ≤ W ≤ "!4# = !40-0

    b. Vere "5#= µ  , 011!15,"5#" ==   σ σ  , so P( ""5 ≤ Y ≤ "'5 ≈

     

     

     

     

        −≤≤−

    011!15

    "5#5!"'5

    011!15

    "5#5!""% "  P   = P( A1!1 ≤ W ≤ 1!1 = !04"

    57. (X = 1##, Nar(X = "##, 1%!1%= xσ  , so P( X ≤ 1"5 ≈     

         −≤

    1%!1%

    1##1"5 "  P 

    = P( W ≤ 1!'' = !41

    14-

  • 8/9/2019 Chapter 5 000

    20/31

  • 8/9/2019 Chapter 5 000

    21/31

    Chapter 5: Joint Probability Distributions and Random Samples

    d. ( X1 $ X" $ X-  = 15#, N(X1 $ X" $ X- = -, -"1

    =++   x x xσ 

    P(X1 $ X" $ X- ≤ "## = 45"5!'!1(

    15#1#=≤= 

      

         −≤   "  P  "  P 

    e *ant P( X1 $ X" ≥ "X-, or *ritten another *ay, P( X1 $ X" A "X-≥ #

    ( X1 $ X" A "X-  = %# $ 5# > "(# = A-#,

    N(X1 $ X" A "X- = ,'0% "-"""1   =++   σ σ σ  -, sd = 0!0-", so

    P( X1 $ X" A "X-≥ # = ###-!%#!-(0-"!0

    -#(#=≥= 

      

         −−≥   "  P  "  P 

    60. Y is normally distributed *ith ( ) ( ) 1-

    1

    "

    15%-"1   −=++−+=   µ  µ  µ  µ  µ  µ Y  , and

    ''45!1,1'!-4

    1

    4

    1

    4

    1

    %

    1

    %

    1 "5

    "

    %

    "

    -

    "

    "

    "

    1

    " ==++++=  Y Y 

      σ σ σ σ σ σ σ  !

    Bhus, ( ) "0''!5(!''45!1

    1(##   =≤= 

     

     

     

      ≤−−

    =≤   "  P  "  P Y  P    and

    ( ) -0!1"!1#(''45!1

    "#11   =≤≤= 

      

       ≤≤=≤≤−   "  P  "  P Y  P 

    61.

    a. Bhe mar)inal pm.s o. X and Y are )i6en in the solution to +er/ise ', .rom *hi/h (X= "!0, (Y = !', N(X = 1!, N(Y = !1! Bhus (X$Y = (X $ (Y = -!5, N(X$Y= N(X $ N(Y = "!"', and the standard de6iation o. X $ Y is 1!51

    b. (-X$1#Y = -(X $ 1#(Y = 15!%, N(-X$1#Y = 4N(X $ 1##N(Y = '5!4%, and thestandard de6iation o. re6enue is 0!'1

    62. ( X1 $ X" $ X-  = ( X1 $ (X"  $ (X-  = 15 $ -# $ "# = 5 min!,

     N(X1 $ X" $ X- = 1" $ "" $ 1!5" = '!"5, 4"!""5!'

    -"1==++   x x xσ 

    Bhus, P(X1 $ X" $ X- ≤ # = #-1%!0!1(4"!"

    5#=−≤= 

      

         −≤   "  P  "  P 

    63.

    a. (X1 = 1!'#, (X" = 1!55, (X1X" =--!-,(

    1 "

    "1"1   =∑∑ x x

     x x p x x, so

    Co6(X1,X" = (X1X" A (X1 (X" = -!-- > "!-5 = !45

    b. N(X1 $ X" = N(X1 $ N(X" $ " Co6(X1,X"= 1!54 $ 1!#0'5 $ "(!45 = %!#'5

    145

  • 8/9/2019 Chapter 5 000

    22/31

    Chapter 5: Joint Probability Distributions and Random Samples

    64. Oet X1, ;, X5 denote mornin) times and X, ;, X1# denote e6enin) times!a. (X1 $ ;$ X1# = (X1 $ ; $ (X1# = 5 (X1 $ 5 (X

    = 5(% $ 5(5 = %5

    b. Nar(X1 $ ;$ X1# = Nar(X1 $ ; $ Nar(X1# = 5 Nar(X1 $ 5Nar(X

    --!0

    1"

    0"#

    1"

    1##

    1"

    %5   ==

    +=

    c. (X1 > X = (X1 A (X = % > 5 = A1

    Nar(X1 > X = Nar(X1 $ Nar(X = '!1-1"

    1%

    1"

    1##

    1"

    %==+

    d. ?(X1 $ ; $ X5 > (X $ ; $ X1#@ = 5(% > 5(5 = A5Nar?(X1 $ ; $ X5 > (X $ ; $ X1#@

    = Nar(X1 $ ; $ X5 $ Nar(X $ ; $ X1#@ = 0!--

    65.   µ = 5!##, σ = !"

    a.

  • 8/9/2019 Chapter 5 000

    23/31

    Chapter 5: Joint Probability Distributions and Random Samples

    = !"5 $ "(5(1#(A!"5 $ 1## = 01!"5

    67. Oettin) X1, X", and X- denote the len)ths o. the three pie/es, the total len)th isX1 $ X" A X-!  Bhis has a normal distribution *ith mean 6alue "# $ 15 > 1 = -%, 6arian/e !"5$!1$!#1 = !%", and standard de6iation !%01! Standardiin) )i6es

    P(-%!5 ≤ X1 $ X" A X- ≤ -5 = P(!'' ≤ W ≤ 1!5% = !1500

    68. Oet X1 and X" denote the (/onstant speeds o. the t*o planes!a. &.ter t*o hours, the planes ha6e tra6eled "X1 7m! and "X" 7m!, respe/ti6ely, so the

    se/ond *ill not ha6e /au)ht the .irst i. "X1 $ 1# "X", i!e! i. X" > X1 E 5! X" > X1 has amean 5## > 5"# = A"#, 6arian/e 1## $ 1## = "##, and standard de6iation 1%!1%! Bhus,

    !41!''!1(1%!1%

    "#(55( 1"   =1# ≤ "X" > 1# > "X1 ≤ 1#,

    i!e! # ≤ X" > X1 ≤ 1#! Bhe /orrespondin) probability is

    P(# ≤ X" > X1 ≤ 1# = P(1!%1 ≤ W ≤ "!1" = !40-# A !4"#' = !#"-!

    69.

    a. (X1 $ X" $ X- = 0## $ 1### $ ## = "%##!

    b. &ssumin) independen/e o. X1, X" , X-, Nar(X1 $ X" $ X-= (1" $ ("5" $ (10" = 1"!#5

    c. (X1 $ X" $ X- = "%## as be.ore, but no* Nar(X1 $ X" $ X-= Nar(X1 $ Nar(X" $ Nar(X- $ "Co6(X1,X" $ "Co6(X1, X- $ "Co6(X", X- = 1'%5,*ith sd = %1!''

    70.

    a. ,5!(   =iY  E   so%

    1(5!((

    11

    +==⋅=   ∑∑

    ==

    nniY  E i%  E 

    n

    i

    n

    i

    i

    b. ,"5!(   =iY Var   so"%

    1"(1("5!((

    1

    "

    1

    "   ++==⋅=   ∑∑==

    nnniY Var i% Var 

    n

    i

    n

    i

    i

    14'

  • 8/9/2019 Chapter 5 000

    24/31

    Chapter 5: Joint Probability Distributions and Random Samples

    71.

    a. ,'"""111"

    #""11   %  X a X a xdx%  X a X a $    ++=++= ∫   so

    (Q = (5(" $ (1#(% $ ('"(1!5 = 150m

    ( ) ( ) ( ) ( ) ( ) ( ) "5!%-#"5!'"11#5!5 """"""" =++= $ σ  , '%!"#= $ σ 

    b. 4'00!#-!"('%!"#

    150"##"##(   =≤= 

      

         −≤=≤   "  P  "  P  $  P 

    72. Bhe total elapsed time bet*een lea6in) and returnin) is Bo = X1 $ X" $ X- $ X%, *ith

    ,%#(   =o!  E    %#" =

    o! σ  , %''!5=

    o! σ  ! Bo is normally distributed, and the desired

    6alue t is the 44th per/entile o. the lapsed time distribution added to 1# &!Q!: 1#:## $?%#$(5!%''("!--@ = 1#:5"!'

    73.

    a. oth appro+imately normal by the C!O!B!

    b. Bhe di..eren/e o. t*o r!6!s is ust a spe/ial linear /ombination, and a linear /ombination

    o. normal r!6s has a normal distribution, so Y  X  −  has appro+imately a normal

    distribution *ith 5=−Y  X  µ   and "1!1,"4!"-5

    %#

    0""

    " ==+= −−   Y  X Y  X    σ σ 

    c.   ( )      

         −≤≤

    −−≈≤−≤−

    "1-!1

    51

    "1-!1

    5111   "  P Y  X  P   

    ##0!%'!"'#!-(   ≈−≤≤−=   "  P 

    d.

      ( )!##1#!#0!-(

    "1-!1

    51#1#

      =≥=  

     

     

        −

    ≥≈≥−  "  P  "  P Y  X  P   

      Bhis probability is

    Muite small, so su/h an o//urren/e is unli7ely i. 5"1   =− µ  µ  , and *e *ould thus doubtthis /laim!

    74. X is appro+imately normal *ith -5'(!5#(1   == µ   and 5!1#-(!'(!5#("

    1   ==σ  ,as is Y *ith -#"  = µ   and 1"

    "

    "  =σ  ! Bhus 5=−Y  X  µ   and 5!""" =−Y  X σ  , so

    ( ) %0"!#11!"('%!%

    #

    '%!%

    1#55   =≤≤−= 

      

       ≤≤

    −≈≤−≤−   "  P  "  P Y  X  p

    140

  • 8/9/2019 Chapter 5 000

    25/31

    Chapter 5: Joint Probability Distributions and Random Samples

    Supplementary Exercises

    75.

    a.  pX(+ is obtained by addin) oint probabilities a/ross the ro* labeled +, resultin) in pX(+= !", !5, !- .or + = 1", 15, "# respe/ti6ely! Similarly, .rom /olumn sums py(y = !1, !-5, !55 .or y = 1", 15, "# respe/ti6ely!

    b. P(X ≤ 15 and Y ≤ 15 = p(1",1" $ p(1",15 $ p(15,1" $ p(15,15 = !"5

    c.  p+(1" ⋅ py(1" = (!"(!1 ≠ !#5 = p(1",1", so X and Y are not independent! (&lmost any

    other (+,y pair yields the same /on/lusion!

    d. -5!--,(((   =+=+   ∑ ∑   y x p y xY  X  E   (or = (X $ (Y = --!-5

    e. 05!-,((   =+=−   ∑ ∑   y x p y xY  X  E 

    76. Bhe rollAup pro/edure is not 6alid .or the '5th per/entile unless #1 =σ   or #" =σ   or both

    1σ   and #" =σ  , as des/ribed belo*!Sum o. per/entiles: (((( "1"1""11   σ σ  µ  µ σ  µ σ  µ    +++=+++   "  "  " 

    Per/entile o. sums: """1 "1

    (   σ σ  µ  µ    +++   " Bhese are eMual *hen W = # (i!e! .or the median or in the unusual /ase *hen

    ""

    "1 "1σ σ σ σ    +=+ , *hi/h happens *hen #1 =σ   or #" =σ   or both 1σ   and #" =σ  !

    77.

    a. ∫ ∫ ∫ ∫ ∫ ∫   −−

    ∞−

    ∞−+==

    -#

    "#

    -#

    #

    "#

    #

    -#

    "#,(1

     x x

     xkxydydxkxydydxdxdy y x  f  

    "5#,01

    -

    -

    "5#,01=⇒⋅=   k k 

    b.

    +−=

    −==

    ∫ ∫ 

    -#%5#(

    1#"5#((

    -

    "1"

    -#

    #

    "-#

    "#

     x x xk kxydy

     x xk kxydy x f    x

     x

     x X  -#"#

    "##

    ≤≤≤≤

     x

     x

    and by symmetry . Y(y is obtained by substitutin) y .or + in . X(+! Sin/e . X("5 #, and. Y("5 #, but .("5, "5 = # , . X(+ ⋅ . Y(y ≠ .(+,y .or all +,y so X and Y are not

    independent!

    c. ∫ ∫ ∫ ∫   −−

    −  +=≤+

    "5

    "#

    "5

    #

    "#

    #

    "5

    "#"5(

     x x

     xkxydydxkxydydxY  X  P 

    144

    -#=+  y x

    "#=+  y x

  • 8/9/2019 Chapter 5 000

    26/31

    Chapter 5: Joint Probability Distributions and Random Samples

    -55!"%

    "5,"-#

    "5#,01

    - =⋅=

    d.   ( )∫    −⋅=+=+"#

    #

    "1#"5#"(((   dx x xk  xY  E  X  E Y  X  E 

    ( )∫    +−⋅+-#

    "#

    -

    "1"-#%5#   dx x x xk  x   44!"5'!,-51("   ==   k 

    e. ∫ ∫ ∫ ∫   −

    ∞−

    ∞−  =⋅=

    "#

    #

    -#

    "#

    "",(( x

     xdydx ykxdxdy y x  f   xy XY  E 

    %1#-!1--

    ###,"5#,--

    -

    -#

    "#

    -#

    #

    "" =⋅=+ ∫ ∫   −   k 

    dydx ykx x

    , so

    Co6(X,Y = 1-!%1#- > (1"!40%5" = A-"!14, and (X" = (Y" = "#%!15%, so

    #10"!-40%5!1"(15%!"#% """ =−==   y x   σ σ  and 04%!#10"!-

    14!-"−=

    −= ρ 

    f. Nar (X $ Y = Nar(X $ Nar(Y $ "Co6(X,Y = '!

    78. Y(y = P( ma+(X1, ;, Xn ≤ y = P( X1 ≤ y, ;, Xn ≤ y = ?P(X1 ≤ y@n 

    n y

       

         −=

    1##

    1## .or

    1## ≤ y ≤ "##!

    Bhus . Y(y = ( )1

    1##1##

    −−   nn

      yn

    .or 1## ≤ y ≤ "##!

    ( ) ( )∫ ∫    −− +=−⋅=1##

    #

    1"##

    1##

    11##

    1##1##

    1##(   duuu

    ndy y

    n yY  E    n

    n

    n

    n

    1##1

    1"

    11##1##

    1##1##

    1##

    #⋅

    +

    +=

    +

    +=+= ∫    nn

    n

    nduu

    n   nn

    79. -%##"###4##5##(   =++=++   " Y  X  E 

    #1%!1"--5

    10#

    -5

    1##

    -5

    5#(

    """

    =++=++   " Y  X Var  , and the std de6 = 11!#4!

    1#!4(-5##(   ≈≤=≤++   "  P  " Y  X  P 

    "##

  • 8/9/2019 Chapter 5 000

    27/31

  • 8/9/2019 Chapter 5 000

    28/31

    Chapter 5: Joint Probability Distributions and Random Samples

    87.

    a. !",("(""""""

     yY  X  x y x   aaY  X aCovaY aX Var    σ  ρ σ σ σ σ σ    ++=++=+

    Substitutin)

     X 

    Y a

    σ 

    σ =  yields ( ) #1"" """" ≥−=++   ρ σ σ  ρ σ σ  Y Y Y Y  , so 1−≥ ρ 

    b. Same ar)ument as in a

    c. Suppose 1= ρ  ! Bhen ( ) ( ) #1" " =−=−   ρ σ Y Y aX Var  , *hi/h implies thatk Y aX    =−  (a /onstant, so k aX Y aX    −=− , *hi/h is o. the .orm aX  + !

    88. ∫ ∫    ⋅−+=−+1

    #

    1

    #

    "" !,(((   dxdy y x  f  t  y xt Y  X  E    Bo .ind the minimiin) 6alue o. t,

    ta7e the deri6ati6e *ith respe/t to t and eMuate it to #:

    t dxdy y xtf   y x  f  t  y x   =⇒=−−+= ∫ ∫ ∫ ∫ 1

    #

    1

    #

    1

    #

    1

    #,(#,(1(("#

    (,((1

    #

    1

    #Y  X  E dxdy y x  f   y x   +=⋅+= ∫ ∫  , so the best predi/tion is the indi6iduals

    e+pe/ted s/ore ( = 1!1'!

    89.

    a. ith Y = X1 $ X",

    ( ) ( ) ( )   1""

    1"

    "

    1"

    "

    "I# #1

    "I

    "1"1

    1"1

    1

    1 "I"

    1

    "I"

    1

    dxdxe x x y ' 

     x x y x y

    ⋅Γ

    ⋅Γ=

    +−−−−

    ∫ ∫

    ν ν 

    ν ν 

    ν ν 

    ! ut the inner

    inte)ral /an be sho*n to be eMual to ( ) ( )( ) "I1@"I?

    "1

    "I

    "1

    "1 "I("

    1   ye y

      −−++ +Γ

    ν ν 

    ν ν ν ν 

    ,

    .rom *hi/h the result .ollo*s!

    b. y a,"

    "

    "

    1   "  "   +  is /hiAsMuared *ith "=ν  , so ( )"

    -

    "

    "

    "

    1   "  "  "    ++  is /hiAsMuared *ith-=ν  , et/, until ""1 !!! n "  "    ++  4s /hiAsMuared *ith   n=ν 

    "#"

  • 8/9/2019 Chapter 5 000

    29/31

    Chapter 5: Joint Probability Distributions and Random Samples

    c.σ 

     µ −i X   is standard normal, so"

      −

    σ 

     µ i X  is /hiAsMuared *ith 1=ν  , so the sum is

    /hiAsMuared *ith n=ν  !

    "#-

  • 8/9/2019 Chapter 5 000

    30/31

    Chapter 5: Joint Probability Distributions and Random Samples

    90.

    a. Co6(X, Y $ W = ?X(Y $ W@ > (X ⋅ (Y $ W

    = (XY $ (XW > (X ⋅ (Y > (X ⋅  (W

    = (XY > (X ⋅ (Y $ (XW > (X ⋅ (W

    = Co6(X,Y $ Co6(X,W!

    b. Co6(X1 $ X" , Y1 $ Y" = Co6(X1 , Y1 $ Co6(X1 ,Y" $ Co6(X" , Y1 $ Co6(X" ,Y"(apply a t*i/e = 1!

    91.

    a. (((( """"

    11  X V  E % V  E % V  X V   E %    =+=+=+=   σ σ   and

    ++=++= ,(,(,(,( ""1"1   E % Cov% % Cov E %  E % Cov X  X Cov"

    "11 (,(,(,( w% V % % Cov E  E Cov%  E Cov   σ ===+ !

    Bhus, ""

    "

    """"

    "

     E % 

     E %  E % 

    σ σ 

    σ 

    σ σ σ σ 

    σ  ρ 

    +=

    +⋅+=

    b. 4444!###1!1

    1=

    += ρ 

    92.

    a. Co6(X,Y = Co6(&$D, $= Co6(&, $ Co6(D, $ Co6(&, $ Co6(D,= Co6(&,! Bhus

    """"

    ,(,(

     E  ( ) A

     ( ACovY  X Corr 

    σ σ σ σ    +⋅+=  

    """"

    ,(

     E  (

     (

     ) A

     A

     ( A

     ( ACov

    σ σ 

    σ 

    σ σ 

    σ 

    σ σ  +⋅

    +⋅=

    Bhe .irst .a/tor in this e+pression is Corr(&,, and (by the result o. e+er/ise '#a the

    se/ond and third .a/tors are the sMuare roots o. Corr(X1, X" and Corr(Y1, Y",respe/ti6ely! Clearly, measurement error redu/es the /orrelation, sin/e both sMuareAroot.a/tors are bet*een # and 1!

    b. 055!4#"5!01##!   =⋅ ! Bhis is disturbin), be/ause measurement error substantiallyredu/es the /orrelation!

    "#%

  • 8/9/2019 Chapter 5 000

    31/31

    Chapter 5: Joint Probability Distributions and Random Samples

    93.   [ ] "1"#,,,(("#1

    151

    1#1

    %-"1   =++==   µ  µ  µ  µ hY  E   

    Bhe partial deri6ati6es o. ,,,( %-"1   µ  µ  µ  µ h  *ith respe/t to +1, +", +-, and +% are ,"1

    %

     x

     x−

    ,""

    %

     x x−   ,"

    -

    %

     x x−  and

    -"1

    111 x x x ++

    , respe/ti6ely! Substitutin) +1 = 1#, +" = 15, +- = "#,

    and +% = 1"# )i6es >1!", A!5---, A!-###, and !"1', respe/ti6ely, so N(Y = (1(A1!"" $ (1

    (A!5---" $ (1!5(A!-###" $ (%!#(!"1'" = "!'0-, and the appro+imate sd o. y is 1!%!

    94. Bhe .our se/ond order partials are ,"

    -

    1

    %

     x

     x,

    "-

    "

    %

     x

     x,

    "-

    -

    %

     x

     xand # respe/ti6ely! Substitution

    )i6es (Y = " $ !1"## $ !#-5 $ !#--0 = "!104%!

    "#5