chapter 4: electroluminescence. sylvania zns /cu/cl/i/ mn

86
Chapter 4: Electroluminescence

Upload: elfrieda-nichols

Post on 30-Dec-2015

233 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Chapter 4: Electroluminescence

Page 2: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Sylvania

ZnS/Cu/Cl/I/ Mn

Page 3: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

100V 500 cd/m2

Page 4: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 5: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 6: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Fluorescence and Phosphorescence

Page 7: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 8: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Excimer Formation

Page 9: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 10: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 11: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Exciplex Formation

Page 12: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

History of Organic Electroluminescence

1963 Pope 400V 10-20 um anthracene1965 Helfrich 100V 5 % efficiency1970 Williams1982 Vincett 30V 50 nm low efficiency1983 Partridge Polymeric materials

Page 13: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 14: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 15: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Basic Principle of Organic EL

Charge recombination leads to emission of fluorescence

ITO4.9-5.1 eV

Metal (eV)Ca 2.9Mg 3.7In 4.2Al 4.28Ag 4.6Cu 4.7Au 5.1

Page 16: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Fowler-Nordheim Equation: I = AF2exp(-k3/2/F)F: field strength, A: material constant, energy difference across the interface

Page 17: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Efficiency: = Number of photons emitted/Number of electrons injected

I/V relationship and B/V relationship

Page 18: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Tang etal, Kodak

Page 19: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

ETLElectron TransportingLayer

HTLHole Transporting Layer

Page 20: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Hole Transporting Layer

Page 21: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Electron Transporting Materials

Page 22: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Criteria for the Materials of Emitting Layer

Page 23: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Matching of Energy Levels

TPD

Page 24: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

ITO Surface Modification Layer for Hole Injection

S

OO

PEDOT.PSS

NH

NH

PANI

Page 25: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

TPD

Addition of Hole Injection Layer

Page 26: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 27: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 28: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Fluorescence Dye as Dopant:A Yellowish Light Emitting Device

Rubene

Page 29: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 30: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 31: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Red light emitting materials

Page 32: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Dopant amounts and Performance of the EL device

Page 33: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Rubrene as a medium for energy transfer

Page 34: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 35: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 36: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Green emitters

Page 37: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 38: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Blue Light Emitting Device

460-480 nm, 4000 cd/m2

Page 39: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

White Light OLED

White = Blue + Red

Blue Red

Page 40: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Device 1 Undoped; Device 2 Doped with 5% of red DCM2

Page 41: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Highly-bright white organic light-emitting diodes based on a single emission layer

C. H. Chuen and Y. T. Tao

Page 42: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Trilayer Device Structure

Page 43: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 44: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 45: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Recent advances on the Interfacial Problems

X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, and K. Leo APL 2001 410

Page 46: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

They demonstrated the use of a p-doped amorphous starburst amine, 4, 48, 49-tris(N, N-diphenylamino triphenylamine )(TDATA), doped with a very strong acceptor, tetrafluorotetracyanoquinodimethane by controlled coevaporation as an excellent hole injection material for organic light-emitting diodes (OLEDs). Multilayered OLEDs consisting of double hole transport layers of p-doped TDATA and triphenyldiamine, and an emitting layer of pure 8-tris-hydroxyquinoline aluminum exhibit a very low operating voltage (3.4 V) for obtaining 100 cd/m2 even for a comparatively large (110 nm) total hole transport layer thickness.

Page 47: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material

J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo

Page 48: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Rough estimates lead to values of about 0.2% luminescence efficiency for the highest doped case. However, those devices use sophisticated multi-layer designs and low-work function contacts. We believe that the major reason for the lower efficiency of our diodes is that the simple two-layer design does not prevent negative carriers injected from the Al electrode from reaching the opposite electrode due to the missing energy barrier for electrons at the Alq3–VOPc interface. This limits the probability of exciton formation and their radiative decay.

Page 49: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Graded mixed-layer organic light-emitting devices

Anna B. Chwang,a) Raymond C. Kwong, and Julie J. Brown

Page 50: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 51: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Improved efficiency by a graded emissive region in organic light-emitting diodes

Dongge Ma, C. S. Lee, S. T. Lee, and L. S. Hung

Page 52: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 53: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 54: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Metal Complexes

Page 55: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Al Complexes

Page 56: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Organic light-emitting diodes using a gallium complex

Page 57: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 58: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 59: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 60: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 61: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 62: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 63: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 64: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

2500 cd/m2 with LiF

210 cd/m2 with Al

Page 65: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 66: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Red Light Emitting DeviceBased on Eu Complexes

7-137 cd/m2

Page 67: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Thickness Effect

Better ET, 820 cd/m2

Page 68: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Hole Blocking Layer

Page 69: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Phosphorescent Devices

100000cd/m2

Page 70: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Shizuo Tokito APL 2003 569

Page 71: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 72: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 73: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 74: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting DevicesBrian W. D'Andrade, Mark E. Thompson, Stephen R. Forrest* Adv. Mater. 2002

Page 75: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 76: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 77: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 78: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

The color balance (particularly enhancement of blue emission) can be improved by inserting a thin BCP, hole/excitonblocking layer between the FIrpic and Btp2Ir(acac) doped layers in Device 2. Thislayer retards the flow of holes from the FIrpicdoped layer towards the cathode and thereby forces more excitons to form in the FIrpic layer, and it prevents excitons from diffusing towards the cathode after forming in the FIrpic doped layer. These two effects increase FIrpic emission relative to Btp2Ir-(acac).

Device 2 is useful for flat-panel displays since the human perception of white from the display will be unaffected by the lack of emission in the yellow region of the spectrum.

Page 79: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 80: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 81: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Electroluminescence in conjugated polymersR. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley,

D. A. Dos Santos, J. L. Bre¬ das, M. Lo» gdlund & W. R. Salaneck Nature 1999 397 121

Wessling Approach

Page 82: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Red Red

Green Blue

Solubilizing Groups

Page 83: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn
Page 84: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Figure 6 Energy levels for electroluminescent diodes. a±c, An ITO-PPV-Ca diode before contact between the three layers, illustrating the energies expected, a, from the metal Fermi energies, assuming no chemical interactions at the interface, b, after some `doping' of the interfacial layer of PPV by Ca, setting up bipolaron' bands within the PPV semiconductor gap (note that the Fermi energy for the `doped' PPV lies between the upper bipolaron level and the conduction band), and c, after interfacial chemistry which sets up a blocking layer at the interface (as expected in the presence of oxygen). d, Energy levels for the components of a two-layer heterojunction diode fabricated with PPVand CN-PPV.

Page 85: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn

Unexpectedly high efficiency

Page 86: Chapter 4: Electroluminescence. Sylvania ZnS /Cu/Cl/I/ Mn