chapter 4 consultation and coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...chapter 4...

181
Chapter 4 Consultation and Coordination

Upload: lymien

Post on 27-Mar-2018

224 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

Chapter 4 Consultation and Coordination 

Page 2: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

 Environmental Assessment Dinkey North  Restoration Project  4‐1 

September 2010ICF J&S 00468.09

 

Chapter 4 Consultation and Coordination 

The following individuals, agencies, and organizations were consulted during the preparation of this report.  

Forest Service Individuals Ramiro Rojas, District Silviculturist, High Sierra Ranger District, Sierra National Forest 

Kim Sorini, Wildlife Biologist, High Sierra Ranger District, Sierra National Forest 

Phil Strand, Fisheries Biologist, Sierra National Forest 

Alan Gallegos, Geologist, Sierra National Forest 

Julie Gott, Hydrologist, High Sierra Ranger District, Sierra National Forest 

Carolyn Ballard, Fuels Specialist, High Sierra Ranger District, Sierra National Forest 

Jamie Tuitele‐Lewis, Assistant Forest Botanist, Sierra National Forest 

Steve Marsh, Archaeologist, High Sierra Ranger District, Sierra National Forest 

Organizations 

Dinkey Planning Forum (Members and/or Affiliations)  Malcolm North, UC Davis Faculty and USDA Forest Service Researcher 

California Department of Fish & Game 

Kathy Purcell, Pacific Southwest Range and Experiment Station (USDA Forest Service) 

Craig Thomas, Sierra Forest Legacy 

Sue Britting, Sierra Forest Legacy 

Kent Duysen; Larry Duysen, Sierra Forest Products 

Big Sandy Rancheria  

Ray Laclergue, Landowner 

Southern California Editor 

John Mount, Private Citizen 

Scott Nestor, San Joaquin Valley Air Pollution Control District 

Rich Bagley, Highway 168 Fire Safe Council 

Page 3: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 4 

Consultation and Coordination 

 Environmental Assessment Dinkey North  Restoration Project  4‐2 

September 2010ICF J&S 00468.09

 

Gina Bartlett (Facilitator), Center for Collaborative Policy 

Ray Porter; Sue Exline; Ramiro Rojas; Sierra National Forest, USDA Forest Service 

ICF Jones & Stokes Environmental Consultants Tom Henry, Project Manager 

Mark Smith, Project Coordinator 

Mark Bethke, Project Director 

John Howe, Wildlife Biologist 

Will Kohn, Aquatic Biologist 

John Rector, Hydrologist/Soils 

Dave McCandliss, Fire/Fuels and Air Conformity Analysis 

Erwin Ward (Ward & Associates Subconsultants) 

Brad Schaffer, Botanist 

Page 4: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

Chapter 5 References 

 

Page 5: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

 Environmental Assessment Dinkey North Restoration Project  5‐1 

September 2010ICF J&S 00468.09

 

Chapter 5 References 

Printed Material Agee, J. K. and C. N. Skinner. 2005. Basic Principles of Forest Fuel Reduction Treatments. Forest 

Ecology and Management 211:83–96. 

Allen, A.W.   The Relationship between Habitat and Furbearers. Pages 164–179 in Wild furbearer management and conservation in North America. Novak, M., Baker, M.E. Obbard and B. Malloch, eds. Ontario Ministry of Natural Resources, Canada. 1150 pp. 

Alvarado, M. and A. Gallegos. 2005. 2005 Soil Monitoring Report for the Kings River Project. Sierra National Forest. 

Amaranthus, M., H. Jubas, and D. Arthur. 1989. Stream shading, summer streamflow and maximum water temperature following intense wildfire in headwater streams. Gen. Tech. Rep. PSW‐109. Symposium on fire and watershed management Sacramento, CA: USDA Forest Service. October 26‐28, 1988: 75‐78. 

Anderson, Michelle D. 2001. Salix scouleriana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2008, November 3]. 

Andrews, P. L. and R. G. Rothermel. 1982. Charts for Interpreting Wildland Fire Behavior Characteristics. USDA Forest Service, Intermountain Research Station, GTR‐131. 

Armour, C.L. 1988. Guidance for evaluating and recommending temperature regimes to protect fish. USFWS, National Ecology Research Center. Biological Report 88. Ft. Collins, CO. 

Aubry, K.B. and C.M. Raley. 1999. Ecological characteristics of fishers in southwestern Oregon. USDA Forest Service, Pacific Northwest Research Station, Olympia, WA. 7 pages. 

Aubry, K.B. and C.M. Raley. 2006. Ecological characteristics of fishers (Martes pennanti) in the Southern Oregon Cascade Range. USDA Forest Service, Pacific Northwest Research Station, Olympia Forestry Sciences Laboratory, Olympia, WA. 

Bagne, K. E., K. L. Purcell, and J.T. Rotenberry. 2008. Prescribed fire, snag population dynamics and avian nest site selection. Forest Ecology and Management. 255: 99‐105. 

Bakke. 2001. A Review and Assessment of the Results of Water Monitoring for Herbicide Residues for the Years 1991 to 1999. Vallejo, CA: Region 5, USDA Forest Service. 

Ballard, C. and B. Bahro. 2006.  ProbAcre Modeling. USDA Forest Service, Sierra National Forest, High Sierra Ranger District. District Files. 

Ballard, K. 1999. Barnes Mountain Underburn Monitoring Evaluation. Prather, CA: Kings River Ranger District, Sierra National Forest, Forest Service, U.S. Department Of Agriculture; p. 3 [unpublished internal report]. 

Page 6: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐2 

September 2010ICF J&S 00468.09

 

Bêche, L. A., S.L. Stephens and V. H. Resh. 2005. Effects of Prescribed Fire on a Sierra Nevada (California, USA) Stream and Its Riparian Zone. Forest Ecology and Management, 218(2005):37–59. 

Benavides‐Solorio, J., and L. H. MacDonald. 2001. Post‐Fire Runoff and Erosion from Simulated Rainfall on Small Plots, Colorado Front Range. Hydrological Processes, 15:2931–2952. 

Berg, N.A., D. Azuma, and A. Carlson. 2002. Effects of wildfire on in‐channel woody debris in the eastern Sierra Nevada, California. Gen. Tech. Rep. PSW‐GTR‐181. USDA Forest Service. 

Beschta, R.L.; Bilby, R.E.; Brown, G.W.; Holtby, L.B.; Hofstra, T.D. 1987. Stream temperature and aquatic habitat: fisheries and forestry interactions. University of Washington, Seattle, Washington: Institute of Forest Resources, 57: 191‐232. In: Sal, E.O.; Cundy, T.W. eds. Proceedings: Forestry and fisheries interactions.  

Beukema, S. J., E. D. Rienhardt, W. A. Kurz, N. L. Crookston. 2002. An overview of the fire and fuels extension of the forest vegetation simulator. Retrieved from: www.fs.fed.us/fmsc/. 

Binns, N.A. and F.M. Eiserman. 1979. Quantification of fluvial trout habitat in Wyoming. Transactions of the American Fisheries Society 108:215‐228. 

Birch, K. R. and N. K. Johnson. 1992. Stand‐level wood‐production costs of leaving live, mature trees at regeneration harvest in coastal Douglas‐fir stands. West. Journal of Applied Forestry. 7:65‐68. 

Bisson, P.A, B.E. Rieman, C. Luce, P.F. Hessburg, D.C. Lee, J.L. Kershner, G.H. Reeves, and R.E. Greswell. 2003. Fire in aquatic ecosystems of the western USA: current knowledge and key questions. Forest ecology and management 178(1&2): 213‐229. 

Bisson, P.A.; Bilby, R.E.; Bryant, M.D.; Dolloff, C.A.; Grette, G.B.; House, R.A.; Murphy, M.L.; Koski, V.K.; Sedell, J.R. 1987. Large woody debris in forest streams in the Pacific Northwest: past, present, and future. University of Washington, Seattle, Washington: Institute of Forest Resources. In: Sal, E.O.; Cundy, T.W. eds. Proceedings: Forestry and fisheries interactions 57: 143‐190. 

Biswell, H. H. 1989. Prescribed burning in California Wildlands Vegetation Management. Berkeley, CA: University of California Press; 255 p. 

Black, S.H. 2005. Logging to control insects: the science and myths behind managing forest insect “pests.” A Synthesis of Independently Reviewed Research. The Xerces Society for Invertebrate Conservation, Portland, OR. 

Bland, J.D. 1993. Forest grouse and mountain quail investigations: A final report for work completed during the summer of 1992. Unpubl. report, Wildl. Mgmt. Div., Calif. Dept. Fish & Game, 1416 Ninth St., Sacramento, CA. 

Bland, J.D. 1997. Biogeography and conservation of blue grouse Dendragapus obscurus in California. Wildlife Biology 3(3/4):270. 

Bland, J. D. 2002. Surveys of Mount Pinos Blue Grouse in Kern County, California, Spring 2002. Unpubl. report, Wildl. Mgmt. Div., Calif. Dept. Fish & Game, 1416 Ninth St., Sacramento, CA 95814. 

Bland, J.D. 2006. Features of the Forest Canopy at Sierra Sooty Grouse Courtship Sites, Summer 2006. CDFG Contract No. S0680003.  

Page 7: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐3 

September 2010ICF J&S 00468.09

 

Boussu, M.F. 1954. Relationships between trout populations and cover on a small stream. Journal of Wildlife Management 18:229‐239. 

Bowman, J., G.J. Forbes, and T.G. Dilworth. 2001. The spatial component of variation in small‐mammal abundance measured at three scales. Canadian Journal of Zoology 79:137‐144.  

Bowman, J., J.A.G. Jaeger, and L. Fahrig. 2002. Dispersal distance of mammals is proportional to home range size. Ecology 83:2049‐2055. 

Bradford, D.F. 1984. Temperature modulation in a high‐elevation amphibian, Rana muscosa. Copeia 984:966–976. 

Bradford, D. F. 1989. Allotopic distribution of native frogs and introduced fishes in the high Sierra Nevada lakes of California: Implication of the negative effects of fish introductions. Copeia, 1989:775‐778. 

Bradford, D. F., S. D. Cooper, T. M. Jenkins, Jr., K. Kratz, O. Sarnelle, and A. D. Brown. 1998. Influences of natural acidity and introduced fish on faunal assemblages in California alpine lakes. Canadian Journal of Fisheries and Aquatic Sciences, 55:2478‐2491. 

Bradford. D.F. 1991. Mass mortality and extinction in a high elevation population of Rana muscosa. Journal of Herpetology 25(2):174‐177. 

Bragg, D.C and J.L. Kershner. 2004. Sensitivity of a riparian large woody debris recruitment model to the number of contributing banks and tree fall patterns. Western Journal of Applied Forestry. April 2004. 19(2). 

Bragg, D.C., J.L. Kershner, and D.W. Roberts. 2000. Modeling large woody debris recruitment for small streams of the central Rocky Mountains. Gen. Tech. Rep. RMRS‐GTR‐55. Rocky Mountain Research Station, USDA Forest Service.  

Breece, C. R., T. E. Kolb, B. G. Dickson, J. D. McMillin, K. M. Clancy. 2008 Prescribed fire effects on bark beetle activity and tree mortality in southwestern ponderosa pine forests. Forest Ecology and Management. 255:119‐128. 

Brown, C. 2008. Summary of Pacific Treefrog (Pseudacris regilla) Occupancy in the Sierra Nevada within the range of the Mountain Yellow‐legged Frog (Rana muscosa). Sierra Nevada Amphibian Monitoring Program draft assessment, January 18, 2008. 

Brunellel, Andrea, and R. Scott Anderson. 2002. Sedimentary charcoal as an indicator of late‐Holocene drought in the Sierra Nevada, California, and its relevance to the future. The Holocene (2003) 13(1): 21–28. 

Buck, S.G., Mullis C., and A.S. Mossman. 1983. Final report: Corral Bottom‐Hayfork Bally fisher study. Humboldt State University and USDA Forest Service, Arcata, California.  

Buck, S.G., Mullis, C., Mossman, A.S., Show, I., and C. Collahan. 1994. Habitat use by fishers in adjoining heavily and lightly harvested forest. Pages 368‐376 in Buskirk, S.W., Harestad, A.S., Raphael, M.G., and R.A. Powell (editors) Martens, sables and fishers: biology and conservation. Cornell University Press, Ithaca, New York.  

Page 8: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐4 

September 2010ICF J&S 00468.09

 

Burnett, R. D., and D. L. Humple. 2003. Songbird monitoring in the Lassen National Forest: Results from the 2002 field season with summaries of 6 years of data (1997–2002). PRBO Conservation Science Contribution Number 1069. 36pp. 

Burnett, R.D., D.L. Humple, T.Gardali, and M.Rogner. 2005. Avian monitoring in Lassen National Forest 2004 Annual Report. PRBO Conservation Science Contribution Number 1242. 96pp. 

Buskirk, S.W., and R.A. Powell. 1994. Habitat ecology of fishers and American martens. Pp. 283‐296 in Marten, sables, and fishers: biology and conservation (S.W. Buskirk, A.S. Harestad, M.G. Raphael, and R.A. Powell, eds.). Cornell University Press, Ithaca, New York.  

Busse, M.D.; Ratcliff, A.W.; Shestak, C.J.; Powers, R.F. 2001. Glyphosate toxicity and the effects of long‐term vegetation control on soil microbial communities. Soil Biology and Biochemistry 33: 1777‐1789. 

Butler, B. W., and J. D. Cohen. 2004. Firefighter Safety Zones: How Big Is Big Enough? Fire Management Today 58(1):13–16. 

Camp, C.L. 1917. Description of Bufo canorus, a new species of toad from the Yosemite National Park. University of California Publications in Zoology, Vol. 17, No. 6, pp. 59‐62. 

Campbell, L.A. 2004. Distribution and habitat associations of mammalian carnivores in the central and southern Sierra Nevada. Ph.D. Dissertation. University of California, Davis. 

Caprio, A. and D. Graber. 2000. Returning Fire to the Mountains: Can We Successfully Restore the Ecological Role of Pre‐Euroamerican Fire Regimes to the Sierra Nevada? In Proceedings: Wilderness Science in a Time of Change. Rocky Mountain Research Station, RMRS‐P‐000. Ogden, UT. 

Carroll, C., W.J. Zielinski, and R.F. Noss. 1999. Using presence‐absence data to build and test spatial habitat models for the fisher in the Klamath Region, U.S.A. Conservation Biology 13:1344‐1359. 

CDFG (California Department of Fish and Game). 2004a. Resident Game Bird Hunting Final Environmental Document. August 5, 2004. State of California, The Resources Agency, Department of Fish and Game. 182 pp + appendices. 

CDFG (California Department of Fish and Game). 2004b. Report of the 2004 Game Take Hunter Survey. State of California, The Resources Agency, Department of Fish and Game. 20pp. 

CDFG (California Department of Fish and Game). 2005. Users manual for version 8.1 of the California Wildlife Habitat Relationships System and Bioview. Sacramento, California. 

CDFG (California Department of Fish and Game). 2005 California Department of Fish and Game and California Interagency Wildlife Task Group. California Wildlife Habitat Relationships (CWHR) version 8.1. personal computer program. Sacramento, California. On‐Line version. http://www.dfg.ca.gov/biogeodata/cwhr/cawildlife.asp. (Accessed: January 3, 2008). 

CDFG (California Department of Fish and Game). 2008. California Wildlife Habitat Relationship, version 8.2 personal computer program. California Interagency Wildlife Task Group, Sacramento, California. 

Central Valley Regional Water Quality Control Board. 2004. Water Quality Control Plan for the Tulare Lake Basin, Second Edition. Available: 

Page 9: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐5 

September 2010ICF J&S 00468.09

 

<http://www.waterboards.ca.gov/centralvalley/water_issues/basin_plans/>. Accessed June 24, 2010. 

CH2MHill. 1995. A Desk Reference for NEPA Air Quality Analysis. USDA Forest Service. 

Chamberlin, T.W., R.D. Harr, and F.H. Everest. 1991. Timber harvesting, silviculture, and watershed processes. American Fisheries Society Special Publication 19:181‐206. 

Clark, B. 2001. Soils, Water, and Watersheds. Chapter V in: Fire Effects Guide. National Wildlife Coordinating Group, Fire Use Working Team. Available: <http://www.nwcg.gov/pms/RxFire/FEG.pdf>. Accessed June 24, 2010. 

Coe, D. B. 2006. Sediment Production and Delivery from Forest Roads in the Sierra Nevada, California. MS Thesis, Colorado State University, Fort Collins, CO.  

Cohen, J. D. 1999. Reducing the Wildland Fire Threat to Homes: Where and How Much? In: Gonzales‐Caban, A., P. N. Omi, technical coordinators. Proceedings of the Symposium on Fire Economics, Planning, and Policy: Bottom Lines; 1999 April 5­9. San Diego, CA. Gen. Tech. Rep. PSW‐GTR‐173. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. p. 189‐195. 

Cohen, J. D. and R. D. Stratton. 2008. Home Destruction Examination: Grass Valley Fire, Lake Arrowhead, CA. R5‐TP‐026b. Available: <http://www.firelab.org/indexphpoptioncomjombib?task=showbib&id=16&return=index.php%3Foption%3Dcom_jombib%26amp%3Bcatid%3D0>. Accessed: April 9, 2010. 

Collins, B. M., S. L. Stephens, J. J. Moghaddas, J. J. Battles. 2010. Challenges and approaches in planning fuel treatments across fire‐excluded forested landscapes. Journal of Forestry. 108: 24‐31.  

Conroy, W.J. 2003. ANOVA of Instream Turbidity Measurements for TMDL Effectiveness Monitoring of Forest BMPs. In: Conference Proceedings of the American Society of Agricultural Engineers, Annual International Meeting, July 28‐30, Las Vegas, NV. ASAE Paper #032349.  

CPIF (California Partners in Flight). 2002. http://www.prbo.org/calpif/htmldocs/mapdocs/conifer/2002/fospmap2002.html. 

CPIF (California Partners in Flight). 2004. http://www.prbo.org/calpif/htmldocs/mapdocs/riparian/2004/ywarmap2004.htm. 

Crookston, N.L., 1997. Suppose: An interface to the Forest Vegetation Simulator. IN Proceedings: Forest Vegetation Simulator Conference, General Technical Report INT_GTR‐373, UT: USDA Forest Service. 

Crookston, N.L., and G. E. Dixon. 2005, The forest vegetation simulator: A review of its structure, content, and applications. Computers and Electronics in Agriculture. 49 (2005): 60–80. 

Cummins, K.W. 1974. Structure and function of stream ecosystems. BioScience 24:631‐641. 

Davidson, C. 2004. Declining downwind: amphibian population declines in California and historical pesticide use. Ecological Applications 14(6): pp. 1892‐1902.  

Davidson, C. and R.A. Knapp. 2007. Multiple stressors and amphibian declines: dual impacts of pesticides and fish on yellow‐legged frogs. Ecological Applications, 17(2), 587‐597. 

Page 10: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐6 

September 2010ICF J&S 00468.09

 

Davis, F.W., C. Seo, and W.J. Zielinski. 2007. Regional variation in home‐range scale habitat models for fisher (Martes pennanti) in California. Ecological Applications 17:2195–2213. 

Davis, William C. 1999. Ecophysiology of Hydrothyria venosa – An aquatic lichen. Arizona State University. PhD Dissertation.  

Davies‐Colley, R.J; D. G. Smith. 2001. Turbidity, suspended sediment, and water clarity: a review. Journal of the American Water Resources Association 37(5):1085‐1101. 

Dean, T. J. and V. C. Baldwin, Jr. 1996. Crown management and stand density. In: Carter, Mason C., ed. Growing trees in a greener world: industrial forestry in the 21st century; 35th LSU forestry symposium. Baton Rouge, LA: Louisiana State University Agricultural Center, Louisiana Agricultural Experiment Station: 148‐159a‐e. [159ii revised]. 

Dixon, G.E., 1994. Western Sierra Nevada Prognosis geographic variant of the Forest Vegetation Simulator. WO Timber Management Service Center, USDA‐ Forest Service, Fort Collins, CO. 

Douglas, C.W., and M.A. Strickland. 1987. Fisher. In: Wild furbearer management and conservation in North America. Novack, M., Baker, J.A., Obbard, M.E., and Malloch, B. (eds.) Ontario Ministry of Natural Resources and the Ontario Trappers Association. 

Drew, T.J. and J.W. Flewelling. 1979. Stand density management: an alternative approach and its application to Douglas‐fir plantations. Forest Service. 25: 518‐532. 

Drumm, M. K. 1996. Fire History in Mixed Conifer Series of the Kings River Adaptive Management Area, Sierra National Forest. Arcata, CA. Humboldt State University. M.S. Thesis. 

Duane, T.P. 1996. Human settlement, 1850‐2040. Pp. 235‐360. In: Sierra Nevada Ecosystem Project: Final report to Congress, Vol. II. Assessments and scientific basis for management options. Report No. 37. Centers for Water and Wildland Resources, University of California, Davis, CA. 

Dunning, D.; L. H. Reineke. 1933. Preliminary yield tables for second­growth stands in the California pine region. Tech. Bull. 354. Washington DC: USDA Forest Service; 24 p. 

Dwire, K.A. and J.B. Kauffman. 2003. Fire and riparian ecosystems in landscapes of the western USA. Forest ecology and management 178(1&2): 61‐74. 

Dwire, K.A., C.C. Rhoades, and M.K. Young. 2006. Potential effects of fuel management activities on riparian areas. RMRS GTR‐10. In: Elliot, B.; Potyondy, J.; Kershner, J. (eds). Proceedings: Cumulative Watershed Effects of Fuel Management: A Western Synopsis. 

Earle, R.D. 1978. The fisher‐porcupine relationship in Upper Michigan. M.S. Thesis. Michigan Technical University, Houghton, MI. 

Eddinger, H. 2003. Biological Assessment / Evaluation of the Mt. Toppers 4WDC. Signed March 18, 2003. USDA Forest Service, Sierra National Forest, High Sierra Ranger District. 18 pages plus attachments. 

Elskew, L. G. 1995. Forest health through siviculture. Proceedings of the 1995 national silviculture work shop, 1995 May 8‐11; Mescalero, New Mexico. General Technical Report. RM‐GTR‐267. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 246 p. 

Page 11: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐7 

September 2010ICF J&S 00468.09

 

EPA (U.S. Environmental Protection Agency). 1991. Monitoring guidelines to evaluate effects of forestry activities on streams in the Pacific Northwest and Alaska. Center for streamside studies in forestry, fisheries and wildlife. College of Forest Resources/College of Ocean and Fishery Sciences, University of Washington, Seattle, Washington.  

Erickson, H. E., P. Soto, D. W. Johnson, B. Roath, C. Hunsaker.2005. Effects of vegetation patches on soil nutrient pools and fluxes within a mixed‐conifer forest. Forest Science. 51(3) 2005: 211‐220. 

Erman, N.A. 1996. Status of aquatic invertebrates. In: Sierra Nevada ecosystem. Proceedings: Final report to Congress, 35(2). Centers for water and wildland resources, University of California, Davis, Davis, CA. 

Fahrig, L. 2001. How much habitat is enough? Biological Conservation 100:65‐74. 

Fellers, G.M., L.L McConnell, D. Pratt, and S. Datta  2004. Pesticides in mountain yellow‐legged frogs (Rana muscosa) from the Sierra Nevada mountains of California, USA. Environmental Toxicology and Chemistry, Vol. 23, No. 9, pp. 2170‐2177. 

Ferrell, G.T. 1996. The influence of insect pests and pathogens in Sierra forests. pp: 1177 In: Sierra Nevada Ecosystem Project: Final Report to Congress, Assessments and scientific basis for management options. Vol. II Ch. 21. Univ. of Calif. Centers for Water and Wildland Resources, Davis, CA 95616. 

Fettig, C. J., K. D. Klezpig, R. F. Billings, A. S. Munson, T. E. Nebeker, J. F. Negron, J. T. Nowak. 2007. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the Western and Southern United States. Forest Ecology and Management. 238: 24‐53. 

Fiske, J. N. 1981. Evaluating the need for release from competition from woody plants to improve conifer growth rates. In: Proceedings, third annual forest vegetation management conference, November, 4‐5, Redding, CA: Forest Vegetation Management Conference. pp 24‐54. 

Fiske, J. N. 1983. Estimating Effects of Competing Plants on Conifer Growth and Yield, and Determining Release Needs. In: Proceedings, annual forest vegetation management conference, November, 4‐5. Redding, CA: Forest Vegetation Management Conference. pp 128‐142. 

Flintham, S. J. 1904. Forest extension in the Sierra Forest Reserve. Bureau of Forestry. 

Fowler, C. 1988. Region 5: USDA Forest Service ‐ Tahoe National Forest. Habitat Capability Model for the Northern Goshawk. 

Fowler, C., B. Valentine, S. Sanders, and M. Stafford. 1991. Habitat Suitability Index Model: Willow Flycatcher (Empidonax traillii). March. 

Frazier J.W., K.B. Roby, J.A. Boberg, K. Kenfield, J.B. Reiner, D.L. Azuma, J.L. Furnish, B.P. Staab, S.L. Grant. 2005. Stream Condition Inventory Technical Guide. USDA Forest Service, Pacific Southwest Region—Ecosystem Conservation Staff. Vallejo, CA. 111 pp. 

Freel, M. 1991. A literature review for management of the marten and fisher on national forests in California. USDA. Forest Service, Pacific Southwest Region. Cover letter to Forests is dated 1992. 

Furniss, M.J., T.D. Roelofs, and C.S. Yee. 1991. Road construction and maintenance. American Fisheries Society Special Publication 19:297‐324. 

Page 12: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐8 

September 2010ICF J&S 00468.09

 

Furniss, R.L., and V. M. Carolin, 1977. Western forest insects. U.S. Department of Agriculture Miscellaneous Publications. 1339. Washington DC: U. S. Department of Agriculture, Forest Service. 

Gallegos, Alan J., 2004. Big Creek watershed analysis. Open‐file report. Clovis, CA: Sierra National Forest, USDA Forest Service; 64 p. 

Gallegos, A. 2006. 2006 Kings River Project—Revised Detailed CWE Assessment. Sierra National Forest Open File Report. Sierra National Forest, Clovis, CA. 31p. 

Ghassemi, M., L. Fargo, et al. 1981. Environmental Fates and Impacts of Major Forest Use Pesticides. EPA Contract No. 68‐02‐3174, U.S. Environmental Protection Agency, Office of Pesticides and Toxic Substances, Washington, D.C. 310 p.  

Giger, D. R. 1993, Soil Survey of Sierra National Forest Area, California. US Department of Agriculture, Forest Service. Open File Report, Clovis, CA. 

Golightly, R.T., T.F. Penland, W. J. Zielinski, and J.M. Higley. 2006. Fisher diet in the Klamath/North Coast Bioregion. Unpublished Report. Department of Wildlife, Humboldt State University. Arcata, California. USA. 

Gott, J. 2006. Watershed report for the Kings River Project – initial eight management units – final environmental impact statement. Prather, CA: Sierra National Forest, High Sierra Ranger District, USDA Forest Service.  

Gott, J., 2006. Kings River Project—Hydrology Specialist’s Report. Sierra National Forest, Clovis, CA. 50 p. 

Gott, J. 2008. Field Evaluation of Sedimentation in Rock Creek.  Open File Report, Sierra National Forest Supervisors Office, Clovis, CA. 3 p. 

Goude, C.C. 2000. Notice of Endangered Status for Keck’s Checker­Bloom, Fresno and Tulare Counties, California, February 16, 2000. Cover letter with February 16, 2000, Federal Register.  

Graber, D. M. 1996. “Status of Terrestrial Vertebrates.” In Sierra Nevada Ecosystem Project, Final Report to Congress, volume II Chapter 25. Assessments and Scientific basis for Management Options. Davis: University of California, Centers for Water and Wildland Resources. 26p. 

Graham, R. T. and S. McCaffrey. 2003. Influence of Forest Structure on Wildfire Behavior and the Severity of its Effects. Executive Summary of a report edited by Rocky Mountain Research Station, USDA Forest Service. 

Graham, R. T., A. E. Harvey, T. B. Jain, and J. R. Tonn. 1999. The Effects of Thinning and Similar Stand Treatments on Fire Behavior in Western Forests. Gen. Tech. Rep. PNW‐GTR‐463. Portland, OR: Pacific Northwest Research Station, USDA Forest Service. 

Graham, R. T., S. McCaffrey, and T. B. Jain. 2004.  Science Basis for Changing Forest Structure to Modify Wildfire Behavior and Severity. USDA Forest Service, Rocky Mountain Research Station, GTR 120. 

Grasso, R.L. 2005. Palatability and antipredator response of Yosemite toad (Bufo canorus) to nonnative brook trout (Salvelinus fontinalis) in the Sierra Nevada mountains of California. Masters Thesis, California State University at Sacramento. 

Page 13: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐9 

September 2010ICF J&S 00468.09

 

Greene, C. 1995. Habitat requirements of great gray owls in the Central Sierra Nevada. M.S. thesis, School of Natural Resources and environment. University of Michigan. 94 p. 

Gregory, S.V.; Lamberti G.V.; Erman, D.C.; Koski, K.V.; Murphy, M.L.; Sedell, J.R. 1987. Influence of forest practices on aquatic production. In: Salo, E.O.; Cundy, T.W. eds. Proceedings: Streamside management. Forest and fishery interactions. Institute of Forest Resources, University of Washington, Seattle, WA, 57: 233‐55. 

Gregory, S.V.; Swanson, F.J.; McKee, W.A.; Cummins, K. 1991. An ecosystem perspective of riparian zones. BioScience 41(8): 540‐551. 

Grenfell, W.E., and M. Fasenfest. 1979. Winter food habits of fishers, MArtes pennanti, in northwestern California. California Fish and Game 65:186‐189. 

Grinnell , J.; Miller, A. H.  1944.  The distribution of the birds of California.  Berkeley, CA: Cooper Ornithological Club, Pacific Coast Avifauna 27:203‐205. 

Grinnell, J., J.S. Dixon, and L.M. Linsdale. 1937. Furbearing mammals of California: their natural history, systematic status and relations to man. University of California, Berkeley, 1:1‐777. 

Gucinski, H., M. J. Furniss, R. R. Ziemer, and M. H. Brookes, eds. 2001. Forest Roads: A Synthesis of Scientific Information. PNW‐GTR‐509. Pacific Northwest Research Station, Portland, OR. 103p. 

Hale, M.E. and M.C. Cole. 1988. Lichens of California. University of California Press. California Natural History Guides: 54. 254 pp. 

Hanson, C. T. 2010. The myth of “catastrophic” wildfire: a new ecological paradigm of forest health. John Muir Project Technical Report 1. John Muir Project of Earth Island Institute, Cedar Ridge, California. 

Hanson, D.L. 1977. Habitat selection and spatial interaction in allopathic and sympatric populations of cutthroat and selected steelhead trout. Doctoral dissertation. University of Idaho, Moscow. 

Hanson, R. 2006. Summary of the biology and current taxonomy of plethodontid salamanders (genus Batrachospes) in the Sierra Nevada, California. Tech. Rep. prepared for Phil Strand, Fisheries Program Manager, Sierra National Forest, Clovis, CA; 42 p. 

Harrod, R. J., D. W. Peterson, N. A. Povak, and E. K. Dodson. 2009. Thinning and Prescribed Fire Effects on Overstory Tree and Snag Structure in Dry Coniferous Forest of the Interior Pacific Northwest. Forest Ecology and Management 258:712–721. 

Hatchett, B.; M. P. Hogan; M. E. Grismer. 2006. Mechanical mastication thins Lake Tahoe forest with few adverse impacts. California Agriculture 60(2): 77‐82. 

Hawkins, C.P. 2003. Development, evaluation, and application of a RIVPACS‐type predictive model for assessing the biological condition of streams in Region 5 (California) national forests. Completion Report. Western center for Monitoring and Assessment of Fresh Water Ecosystems. Utah State University. Logan, Utah 23 pp. 

Page 14: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐10 

September 2010ICF J&S 00468.09

 

Hayhoe, K.; Cayan, D.; Field, C.B.; Frumhoff, P.C.; Maurerf, E.P.; Miller, N.L.; Moser, S.C.; Schneider, S.H.; Cahill, K.N.; Cleland, E.E.; Dale, L.; Dale, Drapek, R.; Hanemann, R.M.; Kalkstein, L.S.; Lenihan, J.; Lunch, C.K.; Neilson, R.P.; Sheridan, S.C.; Verville, J.H. 2004. Emission pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences 101: 12422‐12427. 

Heath, S.K., and G. Ballard. 2003. Bird species composition, phenology, nesting substrate, and productivity for the Owens Valley alluvial fan, Eastern Sierra Nevada, California 1998–2002. Great Basin Birds 6(1):18–35. 

Heinemyer, K.S., and J.L. Jones. 1994. Fisher biology and management: a literature review and adaptive management strategy. Missoula, MT: USDA Forest Service Northern Region. 108pp. 

Hendrickson, J. R. 1954. Ecology and systematics of salamanders of the genus Batrachoseps. Publ. Zool. University of California. 54: 1‐46. 

Hickman, J.C. 1993. The Jepson Manual:  Higher Plants of California. University of California Press. Berkeley and Los Angeles, California. 

Hicks, B. J., R. L. Beschta, and R. D. Harr. 1991. Long‐Term Changes in Streamflow Following Logging in Western Oregon and Associated Fisheries Implications. Water Resources Bulletin, 27(2):217–226. 

Hicks, J. 1984. Bats not so bad after all. Outdoor California. September‐October. 

Hilton, S. and T. Lisle. 1993. Measuring the fraction of pool volume filled with fine sediment. Res. Note PSW‐RN‐414. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; 11 p. 

Hitt, N.P. 2003. Immediate effects of wildfire on stream temperature. Journal of Freshwater Ecology. 18: 171‐173. 

Hoffman, A.A., and M.W. Blows 1994. Species borders: ecological and evolutionary perspectives. Trends in Ecology and Evolution. 9:223‐227. 

Hollenstein, K., R.L. Graham, and W.D. Shepperd. 2001. Simulating the effects of fuel reduction and presettlement restoration treatments. Journal of Forestry. 99(10):12‐19. 

Hopkins, T. and P.C. Strand. 2002. Resource: fisheries, aquatics, and riparian areas, McNally Fire BAER, Phase 2. Sequoia National Forest, USDA Forest Service. September 10, 2002. 

http://www.prbo.org/calpif/htmldocs/mapdocs/conifer/2002/bbwomap2002.html.   

Hubbert, K.R., J.L. Beyers, and R.C. Graham. 2001. Roles of weathered bedrock and soil in seasonal water relations of Pinus jeffreyi and Arctostaphylos patula. Canadian Journal of Forest Research. 31:1947–1957. 

Huff, D.D., W.W. Hargrove, R. Graham, N. Nikolov and M.L. Tharp. 2002. A GIS/Simulation Framework for Assessing Change in Water Yield over Large Spatial Scales. Environmental Management, 29(2):164‐181.  

Hughes, R.M. and D.P. Larsen. 1987. Ecoregions: an approach to surface water protection. Journal of the Water Pollution Control Federation 60:486‐493. 

Page 15: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐11 

September 2010ICF J&S 00468.09

 

Hunt, R.L. 1969. Effects of habitat alteration on production, standing crops and yield of brook trout in Lawrence Creek, Wisconsin. Pages 281‐312 in Northcote (1969). 

Hurt. 1940. A sawmill history of the Sierra National Forest U. S. Forest Service. Fresno County, CA: Sierra National Forest, USDA Forest Service. 

ICF Jones & Stokes. 2010a. Biological Assessment and Biological Evaluation—Wildlife for the Dinkey North Restoration Project. September. (ICF J&S 00468.09.) Bakersfield, CA. Prepared for: Sierra National Forest, High Sierra Ranger District, Prather, CA. 

ICF Jones & Stokes. 2010b. Fire and Fuels Specialist Report for the Dinkey North Restoration Project. September. (ICF J&S 00468.09.) Irvine, CA. Prepared for: Sierra National Forest, High Sierra Ranger District, Prather, CA. 

ICF Jones & Stokes. 2010d. Watershed Specialist Report for the Dinkey North Restoration Project. September. (ICF J&S 00468.09.) Bakersfield, CA. Prepared for: Sierra National Forest, High Sierra Ranger District, Prather, CA. 

ICF Jones & Stokes. 2010e. Effects of Ground Application of Glyphosate on soil resources, water quality, aquatic species and terrestrial wildlife on the High Sierra Ranger District. Bakersfield, CA. Prepared for: Sierra National Forest, High Sierra Ranger District, Prather, CA. 

ICF Jones & Stokes. 2010f. Soils Specialist Report for the Dinkey North Restoration Project. September. (ICF J&S 00468.09.) Bakersfield, CA. Prepared for: Sierra National Forest, High Sierra Ranger District, Prather, CA. 

ICF Jones & Stokes. 2010g. Recreation and Visual Resources Specialist Report for the Dinkey North Restoration Project. September. (ICF J&S 00468.09.) Bakersfield, CA. Prepared for: Sierra National Forest, High Sierra Ranger District, Prather, CA. 

ICF Jones & Stokes. 2010h. Biological Assessment/Biological Evaluation for Threatened, Endangered, and Sensitive Plant Species for the Dinkey North Restoration Project. September. (ICF J&S 00468.09.) Bakersfield, CA. Prepared for: Sierra National Forest, High Sierra Ranger District, Prather, CA. 

ICF Jones & Stokes. 2010i.  Noxious Weed Risk Assessment, Dinkey North Restoration Project. August. (ICF J&S 00468.09.) Bakersfield, CA. Prepared for USDA Forest Service, High Sierra Ranger District, Prather, CA. 

ICF Jones & Stokes. 2010j. Management Indicator Species Report, Dinkey North Restoration Project. September. (ICF J&S 00468.09.) Bakersfield, CA. Prepared for USDA Forest Service, High Sierra Ranger District, Prather, CA. 

Innes, James C, Malcolm P. North, and Nathan Williamson. 2006. Effect of thinning and prescribed fire restoration treatments on woody debris and snag dynamics in a Sierran old‐growth, mixed conifer forest. Can. J. For. Res. 36:1–11. 

Jain, T. B. and R. T. Graham. 2004. Is forest structure related to fire severity? Yes, no, and maybe: methods and insights in quantifying the answer. USDA Forest Service Proceedings RMRS‐P‐34. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. pp 49‐63. 

Page 16: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐12 

September 2010ICF J&S 00468.09

 

Janicki, A. and D. Potter. 2003. Effects of Grass Seeding on Post‐Fire Erosion in a Sierra Nevada Pine‐Hardwood Community. USDA Forest Service – Stanislaus National Forest, Open‐File Report, Sonora, CA. 20 pgs.  

Jennings. 1996. Status of amphibians. In: Sierra Nevada Ecosystem Project: Final report to Congress, vol. II, chapter 31. Davis: University of California, Centers for Water and Wildland Resources. 

Jennings, M.R., and M.P. Hayes. 1994. Amphibian and reptile species of special concern in California. California Department of Fish and Game. 255 pp. 

Jockush, E. D. Wake, and K. Yanev. 1998. New species of slender salamanders, Batrachoseps (Amphibia: Plethodontidae), from the Sierra Nevada of California. Contribution in Science, Number 472. Natural History Museum of Los Angeles County. 16 p. 

Jockush, E.; Wake, D. 2002. Falling apart and merging: diversification of slender salamanders (Plethodontidae: Batrachoseps) in the American west. Biological Journal of the Linnean Society, 76: 361‐391. 

Johnson, Clay.  2003.  Archaeological sites and fire­induced changes.  Prepared for USDA Forest Service, Ashley National Forest, Vernal, UT. 

Jones, J.A., and G.E. Grant. 1996. Peak Flow Responses to Clear‐Cutting and Roads in Small and Large Basins, Western Cascades, Oregon. Water Resources Research, 32(4):959–974. 

Kagarise Sherman, C. 1980. A comparison of the natural history and mating system of two anurans: Yosemite toads (Bufo canorus) and black toads (Bufo exsul). PhD Dissertation, The University of Michigan, Ann Arbor, Michigan. 

Kagarise Sherman, C. and M. L. Morton. 1984. The toad that stays on its toes. Natural History 3/84. Pp. 73‐78. 

Kagarise Sherman, C. and M. L. Morton. 1993. Population declines of Yosemite toads in the eastern Sierra Nevada of California. Journal of Herpetology, 27:186‐198. 

Karlstrom, E. L. 1962. The toad genus Bufo in the Sierra Nevada of California: ecological and systematic relationships. University of California Publications in Zoology, 62:1‐104. 

Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant, and I.J. Schlosser. 1986. Assessing biological integrity in running waters: a method and its rationale. Illinois Natural   History Survey Special Publication 5, Champaign, IL. 

Kattleman, R. 1996. Hydrology and water resources. In: Sierra Nevada ecosystem. Proceedings: Final report to Congress, 30(2). Centers for water and wildland resources, University of California, Davis.  

Kauffman, J.B. and R.E. Martin. 1990. Sprouting shrub response to different seasons and fuel consumption levels of prescribed fire in Sierra Nevada mixed conifer ecosystems. Forest Science 36:748‐764. 

Keane, J. J. 1997. Memo to: Wendy Philpott, Wildlife Biologist, Sierra National Forests. RE: Northern goshawk network action plan and management guideline. February 18. 

Keeley, J. E. 2001. Fire And invasive species in Mediterranean‐climate ecosystems of California. pp 81‐94 In K.E. Galley and T.P. Wilson, editors. Proceedings of the invasive species work shop: The 

Page 17: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐13 

September 2010ICF J&S 00468.09

 

role of fire in the control and spread of invasive species. Miscellaneous Publication No. ll. Tall Timbers Research Station, Tallahassee, Florida. 

Keeley, J.E.; Stephenson, N.L. 2000. Restoring natural fire regimes to the Sierra Nevada in an era of global change. In: Cole; McCool; Borrie; O'Loughlin, (compilers), 2000. Wilderness science in a time of change conference—volume 5: wilderness ecosystems, threats, and management: 1999 May 23­27; Missoula, Montana. Proceedings RMRS‐P‐15‐VOL‐5. Ogden, Utah: Rocky Mountain Research Station, USDA Forest Service; 255‐265. 

Keppeler, E. T., and R. R. Ziemer. 1990. Logging Effects on Streamflow: Water Yield and Summer Low Flows at Caspar Creek in Northwestern California. Water Resources Research, 26(7):1669–1679. 

Kie, J. G. 1985. Production of deer brush and mountain whitethorn related to shrub volume and overstory crown closure. PSW‐377. Berkeley, CA. U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station. pp 3. 

Kiefer, M. 2000. Meeting prescribed fire objectives: long‐term fire effects monitoring in Sequoia and Kings Canyon National Parks. Watershed Council Network. Winter 2000. 

Kilgore, B.M. 1973. The ecological role of fire in Sierran conifer forests. Quaternary Research. 3: 496‐513. 

Kilpatrick, H.J. and P.W. Rego. 1994. Influence of season, sex and site availability on   fisher (Martes pennanti) rest‐site selection in the central hardwood forest. Can. J. Zool. 72: 1416‐1419.  

Knapp, E. E. and J. Keeley. 2006. Heterogeniety in fire severity within early season and late season prescribed fire burns in a mixed‐conifer forest. International Journal of Wildland Fire. 15: 37‐45. 

Knapp, R. A. 1996. Non‐native trout in the natural lakes of the Sierra Nevada: An analysis of their distribution and impacts on the native aquatic biota. Chapter 8. In: Sierra Nevada Ecosystem Project, Final Report to Congress, Volume III, Assessments and Scientific Basis for Management Options. University of California, Davis, Wildlife Resources Center Report (37):viii+1528 p. 

Knapp, E. E., S. L. Stephens, J. D. McIver, J. J. Moghaddas, and J. E. Keeley. 2004. Fire and fire surrogate study in the Sierra Nevada: evaluating restoration treatments at Blodgett Forest and Sequoia National Park. General Technical Review. PSW‐GTR‐193. Albany, CA. U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station. pp 79‐85. 

Knapp, R. A. and K. Matthews. 1998. Eradication of nonnative fish by gill‐netting from a small mountain lake in California. Restoration Ecology, 6:207‐213. 

Knapp, R. A., K.R. Matthews, H. K. Preisler, and R. Jellison. 2003. Developing probabilistic models to predict amphibian site occupancy in a patchy landscape. Ecological Applications, 13:1069‐1082. 

Knapp, R.A. D.M. Boaino, and V. Vredenburg. 2007. Removal of nonnative fish results in population expansion of a declining amphibian (mountain yellow‐legged frog, Rana muscosa). Biological Conservation 135 (2007) 11‐20. 

Kolb, T. E., K. M. Holmberg, M. R. Wagner, J. E. Stone. 1998. Regulation of ponderosa pine foliar physiology and insect resistance mechanisms by basal area treatments. Tree Physiology. 18(6): 375‐381. 

Page 18: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐14 

September 2010ICF J&S 00468.09

 

Kolb, T. E.; J. K. Agee, P. Z. Fulé, N. G. McDowell, K. Pearson, A. Sala, R. H. Waring. 2007. Perpetuating old ponderosa pine. Forest Ecology and Management. 249:141‐157. 

Kolb, T.E., M. R. Wagener, and W. W. Covington. 1995. Forest health from different perspectives. In Proceedings of National Silviculture Work Shop: Forest Health through Silviculture, General Technical Review. RM‐GTR–267. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. Pp 5‐13. 

Korte, A, and L.H. MacDonald. 2005. Road Sediment Production and Delivery in the Southern Sierra Nevada, California. American Geophysical Union, Fall Meeting 2005, Abstract #H51E‐0416. Available: <http://adsabs.harvard.edu/abs/2005AGUFM.H51E0416K>. Accessed 6/24/10. 

Krebs, C.J., B.L. Keller, and R.H. Tamarin. 1969. Microtus population biology: demographic changes in fluctuating populations of M. ochrogaster and M. pennsylvanicus in southern Indiana. Ecology 50:587‐607. 

Krohn, W.B., W.J. Zielinski, and R.B. Boone. 1997. Relations among fishers, snow, and martens in California: Results from small‐scale spatial comparisons. Pp 211‐232. In Proulx, G., H.N. Bryant, and P.M. Woodard, editors. Martes: taxonomy, ecology, techniques and management. Provincial Museum of Alberta, Alberta, Canada. 

Krohne, D.T., and G.A. Hoch. 1999. Demography of Peromyscus leucopus populations on habitat patches: the role of dispersal. Canadian Journal of Zoology 77:1247‐1253. 

Kuehn, D.W. 1989. Winter foods of fishers during a snowshoe hare decline. Journal of Wildlife Management. 53: 688‐692.  

Lake Tahoe Basin Management Unit. 2007. Lake Tahoe Basin Management Unit Multi Species Inventory and Monitoring: A Foundation for Comprehensive Biological Status and Trend Monitoring in the Lake Tahoe Basin. Draft Report. 

Landry, PA., and F.J. Lapointe. 1999. The genetic heterogeneity of deer mouse (Peromyscus maniculatus) populations in an insular landscape. Researches in Population Ecology 41:263‐268. 

Larson, M. M. and G. H. Schubert. 1969. Root competition between ponderosa pine seedlings and grass. USDA Forest Service, Research Paper RM‐RP‐54. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station; 12 p.  

Larsson, S., R. Oren, R.H. Waring, J.W. Barrett. 1983.  Attacks of mountain pine beetle as related to tree vigor of ponderosa pine. Forest Science. 29:395‐402. 

Ledwith, T. 1996. The effects of buffer strip width on air temperature and relative humidity in a stream riparian zone. The watershed management council, network 6(5). Via online: http://www.watershed.org/news/sum_96. 

Lee, D.C. 2005. Correspondence from Danny C. Lee to Kent Livezey, dated 13 October 2005, about Lee and Irwin (2005). In litt.  

Lee, D.C., and L.L. Irwin. 2005. Assessing risks to spotted owls from forest thinning in fire‐adapted forests of the western United States. Forest Ecology and Management 211:191–209. 

Lenihan, J. M.; Drapeck, R.; Bachelet, D.; Neilson, R.P. 2003. Climate change effects on vegetation distribution, carbon and fire in California. Ecological Applications 13: 1667‐1681. 

Page 19: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐15 

September 2010ICF J&S 00468.09

 

Lewis, J., S.R. Mori, E.T. Keppeler, and R.R. Ziemer. 2001. Impacts of Logging on Storm Peak Flows, Flow Volumes, and Suspended Sediment Loads in Caspar Creek, California. In: M.S. Wigmosta and S.J. Burges, eds., Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas. Water Science and Application Volume 2, p.85–125. American Geophysical Union, Washington, D.C. 

Lewis, J.C. and D.W. Stinson. 1998. Washington State status report for the fisher. Washington Department of Fish and Wildlife, Olympia, Washington.  

Lilieholm, R.J., L.S. Davis, R.C. Heald, S.P. Holmen. 1990. Effects of single tree selection harvests on stand structure, species composition and understory tree growth in a Sierra mixed conifer forest. Western Journal of Applied Forestry. 5(2): 43‐47.Lisle, T. E. and S. Hilton. 1999. Fine bed material in pools of natural gravel bed channels. Water Resources Research vol. 35, no 4. Pages 1291 – 1304. 

Lisle, T. E., S. Hilton. 1999. Fine bed material in pools of natural gravel bed channels. Arcata, California: Pacific Southwest Research Station, USDA Forest Service. Water Resources Research 35(4): 1291‐1304. 

Lisle, T.E. and S. Hilton. 1992. The volume of fine sediment in pools: an index of sediment supply in gravel‐bed streams. Water Resources Bulletin 28(2): 371‐383. 

Lowe, T. 1994. Fugitive dust analysis for timber haul on unpaved roads, Sierra National Forest. San Joaquin Valley, California: Planning Engineer, USDA Forest Service; 1‐6. 

Luce, C. H.; T. A. Black. 1999. Sediment production from forest roads in western Oregon. Water resources research 35(8): 2561‐2570. 

MacDonald, L.H. and J. D. Stednick. 2003. Forests and Water: A State­of­the Art Review for Colorado. CWRRI completion report 196. Colorado State University, Fort Collins, CO.  

MacDonald, L.H., D. Coe, and S. Litschert. 2004. Assessing Cumulative Watershed Effects in the Central Sierra Nevada: Hillslope Measurements and Catchment­Scale Modeling. Proceedings, Sierra Nevada Science Symposium, October 7‐10, 2002, Kings Beach, CA. PSW‐GTR‐193: 149–157. 

Maloney, P. E., and D. M. Rizzo. 2002. Pathogens and insects in a pristine forest ecosystem: the Sierra San Pedro Martir, Baja, Mexico. Canadian Journal of Forestry Research. 32: 448–457. 

Marsh, Steve.  2005.  Heritage resource management of the Kings River Project, Archaeological Reconnaissance Report 2005051554005.  Prepared for USDA Forest Service, Sierra National Forest, Clovis, CA.  2005. 

Marsh, Steve.  2009. Dinkey North Restoration Project, Cultural Resources Inventory Report, High Sierra Ranger District, Sierra National Forest, R2010051552018.  Prepared for USDA Forest Service, Sierra National Forest, Clovis, CA. 

Martin, D. L. 1992. Sierra Nevada Anuran Guide. Canorus Ltd. Ecological Research Team. Canorus Ltd. Press. San Jose. 28 pp. 

Martin, D. L. 2008. Decline, movement and habitat utilization of the Yosemite toad (Bufo canorus): an endangered anuran endemic to the Sierra Nevada of California. A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Ecology, Evolution and Marine Biology. University of California at Santa Barbara. 

Page 20: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐16 

September 2010ICF J&S 00468.09

 

Matthews, K. R., and K. L. Pope. 1999. A telemetric study of the movement patterns and habitat use of Rana muscosa, mountain yellow‐legged frog, in a high‐elevation basin in Kings Canyon National Park, California. Journal of Herpetology, 33:615‐624. 

Matthews, K.R. and C. Miaud. 2007 A Skeletochronological Study of the Age Structure, Growth, and Longevity of the Mountain Yellow‐legged Frog, Rana muscosa, in the Sierra Nevada, California. Copeia, 2007(4), pp. 986–993 

Mazzoni, A.K. 2002. Habitat Use by Fishers (Martes pennanti) in the Southern Sierra Nevada, California. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology in the College of Science and Mathematics. California State University Fresno. May. 

McCandliss, D. 1998. Prescribed burning in the Kings River Ecosystems Project Area: lessons learned. In Proceedings of a Symposium on the Kings River Sustainable Forest Ecosystems Project: Progress and Current Status.  General Technical Review. PSW‐GTR‐183. Albany, CA: U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station. Pp 37‐46. 

McCarter, JB.; and J.N. Long. 1986. A lodgepole pine density management diagram. Western Journal of Applied Forestry. 1:6‐11. 

McDade, M.H.; F. J. Swanson; W. A. McKee; J. F. Franklin; J. VanSickle. 1990. Source distances for coarse woody debris entering small streams in western Oregon and Washington. Canadian Journal of Forestry 20: 326‐330. 

McDonald, P.M. 1976. Inhibiting effects of ponderosa pine seed trees on seedling growth. Journal of Forestry. 74(4): 220‐224. 

McDonald, P. M. 1986. Grass in young conifer plantations – Hindrance and help. Northwest Science 60(4): 271‐278. 

McDonald, P. M. and G. O. Fiddler. 1990. Ponderosa pine seedlings and competing vegetation: ecology, growth, and cost. Research Paper. PSW‐RP‐199. Albany, CA: U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range  Experiment Station; 10 p. 

McDonald, P. M. and C. S. Abbot. 1994. Seedfall, regeneration, and seedling development in group‐selection openings. Research Paper. PSW‐RP‐220. Albany, CA: U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range  Experiment Station; 13 p. 

McDonald, P. M. and G. A. Everest. 1996. Response of young ponderosa pines, shrubs, and grasses to two release treatments. Research Note. PSW‐RN‐419. Albany, CA: U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range  Experiment Station 7 p. 

McDonald, P. M. and G. O. Fiddler.  1989.  Competing vegetation in ponderosa pine plantations:  ecology and control.  General Technical Report. PSW‐GTR‐113. Albany, CA: U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range  Experiment Station; 26 p. 

McDonald, P. M. and G. O. Fiddler.  1995. Development of a mixed‐shrub‐ponderosa pine community in a natural and treated condition. Research Paper. PSW‐RP‐224. Albany, CA: U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range  Experiment Station;  19 p. 

Page 21: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐17 

September 2010ICF J&S 00468.09

 

McDonald, P. M. and G. O. Fiddler.  1997.  Mechanical and chemical release in a 12‐year‐old ponderosa pine plantation. Research Paper. PSW‐RP‐232. U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range  Experiment Station; 12 p. 

McDonald, P. M. and G. O. Fiddler.  2001.  Timing and duration of release treatments affect vegetation development in a young California white fir plantation.  Research Paper. PSW‐RP‐246. Albany, CA: U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range  Experiment Station;  14 p. 

McDonald, P. M. and W. W. Oliver.  1983.  Woody shrubs retard the growth of ponderosa pine seedlings and saplings, p.65‐89. In Proceedings, 5th Annual Forest Vegetation Management Conf., Nov 2‐3, 1983, Redding, CA.;162 p. 

McDonald, P. M., G. O. Fiddler, and D. A. Potter. 2004. Ecology and manipulation of bearclover (Chamaebatia foliolosa) in northern and central California: The status of our knowledge. Gen. Tech. Rep. PSW‐GTR‐190. Albany, CA: U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range  Experiment Station; 26 p. 

McDonald, P. M., P. E. Reynolds. 1999. Plant community development after 28 years in small group‐selection openings. Research Paper. PSW‐RP‐241. Albany, CA: U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range  Experiment Station; 17 p. 

McHugh, C. W., T. E. Kolb, and J. L. Wilson. 2003. Bark beetle attacks on ponderosa pine following fire in Northern Arizona. Population Ecology, 32(3): 510‐522. 

McKelvey, K. S., C. N. Skinner, C. Chang, D. C. Erman, S. J. Husari, D. J. Parsons, J. W. van Wagtendonk, C. P. Weatherspoon. 1996. An overview of fire in the Sierra Nevada. In: Sierra Nevada Ecosystem Project: Final report to Congress, Volume II, Chapter 37. Univ. Calif., Davis, Wildland Resources Center Rep. 37. 1033‐1040;1528 p. 

McKelvy, K.S. and J.D. Johnston. 1992. Historical perspectives on forests of the Sierra Nevada and the transverse ranges of southern California: forest conditions at the turn of the century. In: The California spotted owl: a technical assessment of its current status. General Technical Review. PSW‐GTR‐133. Albany, CA, U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range  Experiment Station; 285 p.  

Meehan, W.R., editor. 1991. Influences of forest and rangeland management on salmonid fishes and their habitats. American Fisheries Society Special Publication 19. 

Meleason, M.A., S.V. Gregory, and J. Bolte. 2002. Simulation of stream wood source distance for small streams in the western Cascades, Oregon. Gen. Tech. Rep. PSW‐GTR‐181. USDA Forest Service. 

Meyer, M.D., M.P. North, and S.L. Roberts. 2008. Truffle abundance in recently prescribed burned and unburned forests of Yosemite National Park: Implications for mycophagous mammals. Fire Ecology 4:105‐114. 

Meyer, M. D, and H. Safford. 2010.  A summary of current trends and probable future trends in climate and climate‐driven processes in the Sierra National Forest and the neighboring Sierra Nevada. Pacific Southwest Region, USDA Forest Service, white paper.  

Meyers, W. H. 1938. Yield of even­aged stands of ponderosa pine. Tech. Bull. 630. Washington DC, USDA Forest Service: 59 p. 

Page 22: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐18 

September 2010ICF J&S 00468.09

 

Millar, C.I.; Woolfenden, W.B. 1999. The role of climate change in interpreting historical variability. Ecological Applications 9: 1207–1216. Available online: <http://www.fs.fed.us/psw/publications/millar/psw_1999_millar008.pdf>. 

Miller, C.; Urban, D. L. 1999. Forest pattern, fire, and climatic change in the Sierra Nevada. Ecosystems 2: 76‐87. 

Miller, J. D., H. D. Safford, M. Crimmins, and A. E. Thode. 2008. Quantitative Evidence for Increasing Forest Fire Severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA. Ecosystems 12(1):16–32. 

Miller, J. D., H. D. Safford. 2008. Sierra Nevada fire severity monitoring: 1984‐2000. Technical Paper. R5‐ TP‐027. Vallejo, CA, Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; 102 p. 

Miller, J. M. and F. P. Keen. 1960. Biology and control of the western pine beetle. Misc. Publ. 800. Washington, DC: U.S. Department of Agriculture; 381 p. 

Minshall, G.W. 2003. Responses of stream benthic macroinvertebrates to fire. In: Forest ecology and management. 178(1&2): 155‐161. 

Mitchell, R. G. and R, E. Martin. 1980. Fire and insects in pine culture of the Pacific Northwest. In proceedings Sixth Conference on Fire and Forest Meteorology, April 22‐24.  

Moore, R.D., D.L. Spittlehouse, and A. Story. 2005. Riparian microclimate and stream temperature response to forest harvesting: a review. Journal of American water resources association. August 2005: 813‐834. 

Moyle, P. B. 1973.  Effects of introduced bullfrogs, Rana catesbeiana, on the native frogs of the San Joaquin Valley, California.  Copeia:  18‐22. 

Moyle, P. B. 1976. Inland Fishes of California. The Regents of the University of California. 

Moyle, P. B. 2002. Inland Fishes of California. University of California Press. 502 pp. 

Moyle, P.B., R.M. Yoshiyama and R.A. Knapp. 1996a. Status of fish and fisheries. In: Sierra Nevada ecosystem project. Proceedings: Final report to Congress, 2: chapter 33. Centers for water and wildland resources, University of California, Davis. 

Moyle, P.B.; Kattleman, R.; Zomer, R.; Randall, P.J. 1996b. Management of riparian areas in the Sierra Nevada, In: Sierra Nevada Ecosystem Project. Proceedings: Final report to Congress, 3: chapter 1. Centers for water and wildland resources, University of California, Davis. 

Mullally, D.P. 1953. Observations on the ecology of the toad Bufo canorus. Copeia, No. 3. pp. 182‐183. 

Mullally D. P. and J. D. Cunningham. 1956. Ecological relations of Rana muscosa at high elevations in the Sierra Nevada. Herpetologica, 12:189‐198. 

Mutch, L.S. and D. Parsons. 1998. Mixed conifer forest mortality and establishment before and after prescribed fire in Sequoia National Park, California. Forest Science. 44 (2); 341‐355. 

Mutch, R. W. and W. Cook. 1996. Restoring Fire to Ecosystems: Methods Vary with Land Management Goals. In: Gen. Tech. Rep. INT‐GTR‐341. Proceedings of the use of fire in forest restoration. Ogden, UT: Intermountain Research Station, USDA Forest Service. 

Page 23: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐19 

September 2010ICF J&S 00468.09

 

Naiman, R.J., E.V. Balian, K.K. Bartz, R.E. Bilby, and J.J. Latterell. 2000. Dead wood dynamics in stream ecosystems. USDA Technical Report PSW‐GTR‐181. p 23‐48. 

National Council for Air and Stream Improvement (NCASI). 1999. Scale Considerations and the Detectability of Sedimentary Cumulative Watershed Effects. Technical Bulletin 776. Research Triangle Park, NC. National Council of the Paper Industry for Air and Stream Improvement, Inc. 328p. 

National Wildfire Coordinating Group (NWCG). 2001. National Snag Hazard Report.  

Neary, D.G.; J.D. Landsberg, A.R. Tiedemann, and P.F. Folliott. 2005a. Chapter 6: water quality. In: Wildland fire in ecosystems, effects of fire on soil and water. Proceedings: Gen. Tech. Rep., RMRS‐GTR‐42, USDA Forest Service, Rocky Mountain Research Station, 4: 119‐134. 

Neary, D.G., P.F. Ffolliot, J.D. Landsberg. 2005b. Chapter 5: fire and streamflow regimes. In: Wildland Fire in Ecosystems, Effects of Fire on Soil and Water. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS‐GTR‐42‐volume 4. pp. 107‐119. 

Newton, M. and Knight, F.B. 1981. Handbook of weed and insect control chemicals for forest resource managers. Timber Press.  

Norris, Vol. 1993. The Use of Buffer Zones to Protect Water Quality: A Review. Water Resources Management, 7:257–272. 

North, M., I. Jim, and H. Zald. 2006.  Comparison of thinning and prescribed fire restoration treatments to Sierran mixed‐conifer historic conditions. Canadian Journal of Forest Research. 37(2): 331‐342. 

North, M., J. Chen, B. Oakley, B. Song, M. Rudnicki, A. Gray, J. Innes. 2004. Forest stand structure and pattern of old‐growth western hemlock/Douglas‐fir and mixed‐conifer forests. Forest Science. 50(3): pp 299‐311. 

North, M., M. Hurteau, R. Fiegener, M. Barbour. 2005. Influence of fire and El Ninõ on tree recruitment varies by species in Sierran mixed conifer. Forest Science. 51(3): 187‐197. 

North, M., P. Stine, K. O’Hara, W. Zielinski, S. Stephens. 2009. An ecosystem management strategy for Sierran mixed‐conifer forests. General Technical Report. PSW‐GTR‐220. Albany, CA: U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station. 49 p. 

North, M.; J. Chen; B. Oakley; B. Song; M. Rudnicki; A. Gray; J. Innes. 2004. Forest stand structure and pattern of old­growth western  hemlock/douglas­fir and mixed­conifer forests. Forest Science 50(3): 299‐311. 

Oliver, C. D. 1995. Uneven‐aged stand Dynamics. In: O’Hara, K.L., ed. Uneven‐ aged management: opportunities, constraints and methodologies. MFCES Misce. Pub. No. 56. Missoula, MT: School of Forestry, University of Montana; 82‐93. 

Oliver, C. D. and B. C. Larson. 1996. Forest Stand Dynamics. John Wiley and Sons, New York, NY. 

Oliver, W. W. 1984. Brush reduces growth of thinned ponderosa pine in Northern California. Research Paper PSW‐RP‐172.  Berkeley, CA: U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station. 7p. 

Page 24: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐20 

September 2010ICF J&S 00468.09

 

Oliver, W. W. 1995. Is self‐thinning of ponderosa pine ruled by Dendroctonus bark beetles? P. 213‐218. General Technical Review. RM‐GTR‐267. Fort Collins, CO. U. S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 5 p. 

Oliver, W. W. and F. Uzoh. 1997. Maximum stand densities of ponderosa pine and red and white fir in Northern California. In 18th annual Forest Vegetation Management Conference. Sacramento, CA. 

Oliver, W. W.; R. F. Powers. 1978. Growth models for ponderosa pine: I. Yield of unthinned plantations in northern California. Res. Paper PSW‐133. Pacific Southwest Forest and Range Experiment Station, USDA Forest Service. 

Omi, P. N. and E. J. Martinson. 2002. Final Report: Effects of Fuels Treatments on Wildfire Severity. Fort Collins, CO: Western Forest Research Center, Joint Fire Sciences Program, Colorado State University. 

Omi, P. N. and E. J. Martinson. 2004. Fuel Treatments and Fire Regimes, Final Report. Fort Collins, CO. Western Forest Fire Research Center, Colorado State University. Submitted to the Joint Fire Science Program Governing Board. 

Paragi, T.F., S.M. Arthur, and W.B. Krohn. 1996. Importance of tree cavities as natal dens for fishers. Northern Journal of Applied Forestry. 13(2):79‐83. 

Parker, T. J., K. M. Clancy, R. L. Mathiasen. 2006. Interactions among fire, insects and pathogens in coniferous forests of the interior western United States and Canada. Agricultural and Forest Entomology. 8: 167‐169.  

Parks, C.G., E.L. Bull, R.O. Tinnin, J.F. Shepherd, and A.K. Blumton. 1999. Wildlife use of dwarf mistletoe brooms in Douglas‐fir in northeast Oregon. Western Journal of American Foresters. 14:100‐105. 

Parks, Sean and Ramiro Rojas. 2006. Modeling future vegetation in the Kings River Project Area. August. Open‐File Report. Prather, CA: Sierra National Forest, Forest Service, U.S. Department of Agriculture.  

Perry, D. A., H. Jing, A. Youngblood, D. R. Oetter. 2004. Forest structure and fire susceptibility in volcanic landscapes of the eastern High Cascades, Oregon. Conservation Biology. 18: 913‐926. 

Phillips, C. 1998. Fire­Return Intervals in Mixed­Conifer Forests of the Kings River Sustainable Forest Ecosystems Project Area. Unpublished internal report. 

Pianka, E.R. 1966. Latitudinal gradients in species diversity: a review of concepts. American Naturalist, 100(910):33‐46. 

Piirto, D. D. and R. R. Rogers. 2002. An ecological basis for managing giant sequoia ecosystems Environmental Management. 30(1): 110‐128. 

Pilliod. R., R.B. Bury, E.J. Hyde, C.A. Pearl, and P.S. Corn. 2003. Fire and amphibians in North America. Forest Ecology and Management 178: 163–181. 

Platts, W.S. 1991. Livestock grazing. American Fisheries Society Special Publication 19:389‐424. 

Poage, N. J. and J. C. Tappeiner, II. 2002. Long‐term patterns of diameter and basal area growth of old‐growth Douglas‐fir trees in western Oregon. Canadian Journal of Forest Research. 32: 1232‐1243. 

Page 25: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐21 

September 2010ICF J&S 00468.09

 

Pollet, J. and P. N. Omi. 2002. Effect of Thinning and Prescribed Burning on Crown Fire Severity in Ponderosa Pine Forest. International Journal of Wildland Fire 11(1):1–10. 

Pope, K.L. and K.R. Mathews. 2001. Movement Ecology and Seasonal Distribution of Mountain Yellow‐Legged Frogs, Rana muscosa, in a High‐Elevation Sierra Nevada Basin. Copeia, 2001(3), pp. 787–793 

Potter, D. 1994. Guide to forested communities of the upper montane in the central and southern Sierra Nevada. R5‐ECOL‐TP‐003. Albany, CA. Pacific Southwest Region (R5), Forest Service, U. S. Department of Agriculture.  p. 164. 

Powell, R.A. 1993. The fisher: life history, ecology, and behavior. University of Minnesota Press, Minneapolis, Minnesota, USA. 

Powell, R.A., and W.J. Zielinksi. 1994. Fisher. pp. 38‐73 in Scientific basis for conserving forest carnivores: marten, fisher, lynx and wolverine in the western United States (L.F. Ruggerio, K.B. Aubry, S.W. Buskirk, L.J. Lyon, and W.J. Zielinski, eds), United States Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado, General Technical Report RM‐254.  

Powers, R.F. et al. 2005. The North American long­term soil productivity experiment: Findings from the first decade of research . In the Journal “Forest Ecology and Management “ 220 (2005) 31–50. 

Powers, R.F., F. G. Sanchez, D. A. Scott, D. Page‐Dumroese. 2004. The North American long‐term soil productivity experiment: coast‐to‐coast findings from the first decade. USDA Forest Service Proceedings RMRS‐P‐34. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 16 p. 

Reardon, J.R., K.C. Ryan, L.F. DeBano, and D.C. Neary. 2005. Chapter 8: wetland and riparian systems. In: Wildland fire in ecosystems, effects of fire on soil and water. Proceedings: Gen. Tech. Rep. RMRS‐GTR‐42. Rocky Mountain Research Station, USDA Forest Service. 4: 149‐169. 

Reid, L. M. 2010. Channel Erosion, Mass Wasting, and Fuels Treatments. Chapter 6 in: Elliot, W.J., I.S. Miller, and L.J. Audin, eds. Cumulative Watershed Effects of Fuels Management in the Western United States. Gen. Tech. Rep. RMRS‐GTR‐231. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 299 p. Available: < http://www.fs.fed.us/rm/pubs/rmrs_gtr231.html>. Accessed 6/24/10. 

Reid, L., and T. Dunne. 1984. Sediment Production from Forest Road Surfaces. Water Resources Research 20(11):1753–1761. 

Reineke, L. H. 1933. Perfecting a stand density index for even‐aged forests. Journal of Agricultural Research. 46:627‐638. 

Reinhardt, E. D., R. E. Keane, D. E. Calkin, J. D. Cohen. 2008. Objectives and Considerations for Wildland Fuel Treatment in Forested Ecosystems of the Interior Western United States. Forest Ecology and Management 256(2008):1997–2006. 

Renn, C. E. 1970. Investigating Water Problems: A Water Analysis Manual. Chestertown, MD: LaMotte Company; 55 p. 

Page 26: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐22 

September 2010ICF J&S 00468.09

 

Resh, V.H. and D.G. Price. 1984. Sequential sampling: a cost‐effective approach for monitoring benthic macroinvertebrates in environmental impact assessments. Environmental Management 8:75–80. 

Resh, V.H. and D.M. Rosenberg. 1989. Spatial‐temporal variability and the study of aquatic insects. Canadian Entomologist 121:941–963. 

Rieman, B., Dunham, J. Luce, C. Rosenberger, A. 2005. Implications of changing fire regimes for aquatic systems. Pages 187‐191 In Taylor, L,; Zelnik, J.; Cadwallader, S., Hughes, (editors) Mixed Severity Fire Regimes: Ecology and Management. Symposium Proceedings, Spokane WA. November 15‐19, 2004. Washington State University, Pullman, WA. 6 pages. 

Roath and Prentice. 2001. Soil Report. North Fork, CA: Bass Lake Ranger District, Sierra National Forest, USDA Forest Service. District files. 

Robichaud, P.R., J.L. Beyers, and D.G. Neary. 2000. Evaluating the Effectiveness of Postfire Rehabilitation Treatments. RMRS‐GTR‐63. USDA Forest Service Rocky Mountain Research Station, Fort Collins, CO. 85p. 

Robichaud, P.R., L.H. MacDonald, and R.B. Foltz. 2006 (March 21, last update). Fuel management and erosion. Chapter 5 in: Elliot, W.J., and L.J. Audin, eds. Draft Cumulative Watershed Effects of Fuels Management in the Western United States. Available online: http://forest.moscowfsl.wsu.edu/engr/cwe/. 

Robichaud, P.R., L.H. MacDonald, and R.B. Foltz. 2010. Fuel Management and Erosion. Chapter 5 in: Elliot, W.J., I.S. Miller, and L.J. Audin, eds. Cumulative Watershed Effects of Fuels Management in the Western United States. Gen. Tech. Rep. RMRS‐GTR‐231. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 299 p. Available: <http://www.fs.fed.us/rm/pubs/rmrs_gtr231.html>. Accessed 6/24/10. 

Robinson, C.T., U. Uehlinger, and G.W. Minshall. 2005. Functional characteristics of wilderness streams twenty years following wildfire. West North American Naturalist 65(1): 1‐10. 

Robison, E.G. and R.L. Beschta. 1990. Identifying trees in riparian areas that can provide coarse woody debris to streams. Forest Science 36(3): 790‐801. 

Rojas, R. 2010. Dinkey North and South Modeling Description. Sierra National Forest, High Sierra Ranger District, Prather, CA. 

Rojas, Smith, Blaugrund. 2008. Revegetation of disturbed soils is expected within 5‐15 years of project disturbance. 

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.  

Rothermel, R. C. 1983. How to Predict the Spread and Intensity of Forest and Range Fires. National Wildfire Coordinating Group. PMS 436‐1. 

Ruediger, R. and  J. Ward.  1996.  Abundance and function of large woody debris in central Sierra Nevada streams.  In:  FHR current, fish habitat relationships technical bulletin, No. 20, May 1996. 

Ruggiero, L.F., K.B. Aubry, S.W. Buskirk, L.J. Lyon, and W.J. Zielinski. 1994. The Scientific Basis for Conserving Forest Carnivores ‐ American Marten, Fisher, Lynx and Wolverine in the Western 

Page 27: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐23 

September 2010ICF J&S 00468.09

 

United States. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station. Fort Collins, CO. GTR RM‐254. 

Safford, H. D. 2010. Presentation at Region 5 Fuels and Vegetation conference, McClellen Air Force Base, CA. 

Safford, H. D., D. A. Schmidt, and C. H. Carlson. 2009. Effects of Fuel Treatments on Fire Severity in an Area of Wildland‐Urban Interface, Angora Fire, Lake Tahoe, California. Forest Ecology and Management 258(2009):773–787. 

San Joaquin Valley Unified Air Pollution Control District. 2009. Website for the San Joaquin Valley Unified Air Pollution Control District. Available: <http://www.valleyair.org>.  

Sanders, H. 2005. Aquatic species biological assessment and biological evaluation, including management indicator species, for the Billy Creek, Haslett, Sycamore, and Thompson C&H grazing allotments environmental assessment for term grazing permits (2005 to 2015), including noxious weed treatments. High Sierra Ranger District, Sierra National Forest. 25 pages. 

Sanders, H. and R. Hopson. 2005. 2005 Kings River Project baseline assessment – cumulative watershed effects (CWE) review of channel conditions and fisheries habitat for sub‐watersheds over threshold of concern (TOC). Letter to Alan Gallegos – CWE Team Leader dated June 10, 2005. Sierra National Forest, High Sierra Ranger District. 16 pages. 

Sauer, J. R., J. E. Hines, and J. Fallon. 2007. The North American Breeding Bird Survey, Results and Analysis 1966–2006. Version 10.13.2007. USGS Patuxent Wildlife Research Center, Laurel, MD. 

Sauter, S.T., J. McMillan, and J. Dunham. 2001. Salmonid behavior and water temperature, Issue paper 1. United States EPA. EPA‐910‐D‐01‐001. 

Savage, M. 1994. Anthropogenic and natural disturbance and patterns of mortality in a mixed conifer forest in California. Canadian Journal of Forest Research. 24: 1149‐1159. 

Schnackenberg, E.S., and L.H. MacDonald. 1998. Detecting Cumulative Effects on Headwater Streams in the Riutt National Forest, Colorado. Journal of the American Water Resources Assoc., 34(5):1163–1177. 

Schoennagel, T., T.T. Veblen, W.H. Romme. 2004. The interaction of fire, fuels and climate across Rocky Mountain forests. BioScience 54(7): 661‐676. 

Sedell, J.R.; Bisson, P.A.; Swanson, F.J.; Gregory, S.V. 1988. What we know about large trees that fall into streams and rivers. In: Maser, C.; Tarrant, R.F.; Trappe, J.M.; J.F. Franklin. tech. eds. Proceedings from the forest to the sea: a story of fallen trees. Gen. Tech. Rep. PNW‐GTR‐229. Portland, OR: Pacific Northwest Forest and Range Experiment Station, USDA Forest Service. 

Sedgwick, J. A. 2000. Willow Flycatcher (Empidonax traillii). In The Birds of North America, No. 533 (A. Poole and F. Gill, eds.). The Birds of North America, Inc., Philadelphia, PA. 

Seglund, A.E. 1995. The use of resting sites by the Pacific fisher. Thesis, Humboldt State University, Arcata, California, USA.  

Page 28: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐24 

September 2010ICF J&S 00468.09

 

Self, S.E., and S.J. Kerns. 2001. Pacific fisher use of a managed forest landscape in northern California. SPI Wildlife Research Paper 6. Sierra Pacific Research and Monitoring and Sierra Pacific Industries Redding, California, USA. 32p. 

SERA. 2003. Glyphosate – Human health and ecological risk assessment: Final report. SERA TR 02‐43‐09‐04a. Fayetteville, NY: Syracuse Environmental Research Associates, Inc.  

Serena, M. 1982. The status and distribution of the willow flycatcher (Empidomax traillii) in selected portions of the Sierra Nevada, 1982. Calif. Dep. Fish and Game, Sacramento. Wildl. Manage. Branch Adm. Rep. No. 82‐5. 29pp.  

Sestrich, C.M. 2005. Changes in native and nonnative fish assemblages and habitat following wildfire in the Bitterroot River Basin, Montana. Master’s Thesis. Montana State University, Bozeman, Montana November 2005. 

Shakesby, R.A., and S.H. Doerr. 2006. Wildfire as a Hydrological and Geomorphological Agent. Earth­Science Reviews, 74(2006):269–307. 

Shaw, M.W. 1995. Simulation of population expansion and spatial pattern when individual dispersal distributions do not decline with distance. Proceedings of the Royal Society of London, Series B 259:243‐248. 

Sherlock, J. W. 2007. Intergrating stand density management with fuel reduction. In: Powers, R. F., tech. ed. Restoring fire adapted ecosystems: proceeding of the 2005 national silviculture workshop. General Technical report. PSW‐GTR‐203. Albany, CA: Pacific Southwest Region (R5), Forest Service, U. S. Department of Agriculture. pp 55‐66. 

Sherwin, R. 1998. Pallid bat information in Ecology, Conservation and Management of Western Bat Species. Bat Species Accounts. 

Shifley, S. R. 1998. Simulating forest Growth and yield in uneven‐age and mixed‐species stands: an overview of modeling methods. In: Proceedings of 1998 Society of American Forester Convention. 

Siegel, R.B. and D.F. DeSante. 1999. Version 1.0. The draft avian conservation plan for the Sierra Nevada Bioregion: conservation priorities and strategies for safeguarding Sierra bird populations. Institute for Bird Populations report to California Partners in Flight. Available on‐line: http://www.prbo.org/calpif/htmldocs/sierra.html. 

Siegel, R.B. and D.R. Kaschube. 2007. Landbird Monitoring Results from the Monitoring Avian Productivity and Survivorship (MAPS) Program in the Sierra Nevada. Final report in fulfillment of Forest Service Agreement No. 05‐PA‐11052007‐141. The Institute for Bird Populations. February 13, 2007. 33pp. 

Sierra Nevada Research Center. 2007. Plumas Lassen Study 2006 Annual Report. USDA Forest Service, Pacific Southwest Research Station, Sierra Nevada Research Center, Davis, California. 182 pp. 

Simon, T. L. 1980. An ecological study of the marten in the Tahoe National Forest, California. M.S. Thesis, California State University, Sacramento. 140pp. 

Skinner, C.N. 2002. Influence of fire on the dynamics of dead woody material in the forests of California and southwestern Oregon. Gen. Tech. Rep. PSW‐GTR‐181. USDA Forest Service.  

Page 29: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐25 

September 2010ICF J&S 00468.09

 

Smith, J.  2002.  Protecting archaeological sites with prescribed fire.  In: Loyd, J. M., Origer, T. M., and Fredrickson, D. A., (Eds.), The effects of fire and heat on obsidian. Papers presented in Symposium 2, The Effects of Fire/Heat on Obsidian at the 33rd Annual Meeting of the Society for California Archaeology April 23‐25, 1999.  Bureau of Land Management. Sacramento, CA.  

Smith, Thomas F.; Rizzo, David M.; North, Malcolm. 2005. Patterns of Mortality in an Old‐Growth Mixed‐Conifer Forest of the Southern Sierra Nevada, California. Forest Science 51(3). 

Spencer, W.D., H.L. Rustigian, R.M. Scheller, A. Syphard, J. Strittholt, and B. Ward. 2008.  Baseline evaluation of fisher habitat and population status, and effects of fires and fuels management on fishers in the southern Sierra Nevada. Unpublished report prepared for USDA Forest Service, Pacific Southwest Region. June 2008. 133 pp + appendices. 

Spencer, W.D.; Barrett, R.H.; Zielienski, W.J. 1983. Marten habitat preferences in the northern Sierra Nevada. Journal Wildlife Management. 47: 1181 –1186.Swetnam, T.W. 1993. Fire history and climate change in giant Sequoia groves. Tucson, Arizona: Laboratory of Tree‐Ring Research, University of Arizona. In: American Association of the Advancement of Science. Science 262(November 5th 1993): 885‐889. 

Spies, T. A., J. D. Miller, J. B. Buchanan, J. F. Lehmkuhl, J. F. Franklin, S. P. Healey, P. F. Hessburg, H. D. Safford, W. B. Cohen, R. S. H. Kennedy. E. E. Knapp, J. K. Agee, M. Moeur. 2009. Underestimating risk to the Northern Spotted Owl in fire‐prone forests: a response to Hanson, et al. Conservation Biology. 24(1) 330‐333. 

Squires, J.R., and R.T. Reynolds. 1997. Northern Goshawk (Accipter gentilis). In The Birds of North America, No. 298. (A. Poole and F. Gill, eds.). The Academy of Natural Sciences, Philadelphia, PA, and the American Ornithologists Union, Washington, D.C.  

Stebbins, R.C. 1985. Western reptiles and amphibians. Peterson Field Guides. Houghton Mifflin Company, Boston, MA. 336 pp. 

Stednick, J. D. 2000. Timber Management. Chapter 10 in: Dissmeyer, George E., ed. Drinking Water from Forests and Grasslands: A Synthesis of the Scientific Literature. GTR‐SRS‐39. Available: <http://www.srs.fs.fed.us/pubs/gtr/gtr_srs039/gtr_srs039‐part_3.pdf>. 

Stephens, S. L. 2005. Forest Fire Causes and Extent on United States Forest Service Lands. Berkeley, Ca.:  Division of Ecosystem Science, Department of Environmental Science, Policy, and Management, University of California. International Journal of Wildland Fire 14(2005):213–222. 

Stephens, S. L. and J. J. Moghaddas. 2005. Silvicultural and reserve impacts on potential fire behavior and forest conservation: Twenty‐five years of experience from Sierra Nevada mixed conifer forests. Biological Conservation. 125(3):369‐379. 

Stephenson, N. L. 1996. Ecology and management of giant sequoia groves. In: Sierra Nevada Ecosystem Project, Final Report to Congress, Vol. II, Assessments and Scientific Basis for Management Options. Wildland Resources Center Report 37. Davis, CA: Centers for Wildland Resources, University of California; 1528 p. 

Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union 38:913‐920. 

Page 30: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐26 

September 2010ICF J&S 00468.09

 

Strand, P. 2006. Resident trout management indicator species report for the Kings River Project – initial eight management units (2006 – 2008) – final environmental impact statement. Clovis, CA: Sierra National Forest, USDA Forest Service. 

Sudworth, G.B. 1900.  Stanislaus and Lake Tahoe Forest Reserves, California, and adjacent territory. United States Geological Survey Professional Paper No. 8, Series H, Forestry, 5. Government Printing Office, Washington D.C. 

Sudworth, G.B. 1900a. Notes on Regions in the Sierra Forest Reserve 1898‐1900. Unpublished. 

Sugihara, N. G., J. W. van Wagtendonk, K. E. Shaffer, J. Fites‐Kaufman, and A. E. Thode. 2006. Fire in California’s Ecosystems. Berkley: University of California Press.  

Swanston, D.N. 1991. Natural processes. American Fisheries Society Special Publication 19:139‐179. 

Swanston, F.J., G.W. Lienkaemper, and G.W. Sedell. 1976. History, physical effects, and management implications of large organic debris in western Oregon streams. General Technical Report PNW‐56, Portland, OR. USDA Forest Service. Pacific Northwest Forest and Range Experiment Station. 15 pp. 

Swetnam, T. W., C. D. Allen, and J. L. Betancourt. 1999. Applied historical ecology: using the past to manage for the future. Ecological Applications. 9(4), pp. 1189–1206. 

Swetnam, T. W., and A. M. Lynch. 1993. Multicentury, regional‐scale patterns of western spruce budworm outbreaks. Tucson, Arizona: Laboratory of Tree‐Ring Research, University of Arizona. Fort Collins, Colorado: Rocky Mountain Forest and Range Experiment Station, USDA Forest Service. Ecological Monographs 63(4): 399‐424. 

Tappeiner, J. C., and P. M. McDonald. 1996. Regeneration of Sierra Nevada Forests. P. 302–324 in Sierra Nevada ecosystem Project Science Team. Sierra Nevada Ecosystem Project final report to Congress: Status of the Sierra Nevada. Centers for Water and Wildland Resources, University of California, Davis, CA. 

Tappeiner, J. C., and S. R. Radosevich. 1982.  Effect of Bearmat (chamaebatia foliolosa) on soil moisture and ponderosa pine growth. Weed Science. 30: 98‐101. 

Tappeiner, J. C., D. Huffman, D. Marshall, T. A. Spies, J. D. Bailey. 1997. Density, ages, and growth rates in old‐growth and young‐growth forests in coastal Oregon. Canadian Journal of Forest Research. 27: 638.648. 

Taylor, A H. 2004. Identifying Forest Reference Conditions on Early cut‐over Lands, Lake Tahoe Basin, USA.  Ecological Applications, 14(6):1903‐1920. 

Timossi, I. 1990. California’s statewide wildlife habitat relationships system. Calif. Dept. of fish and Game. Sacramento, CA. Computerized database. 

Troendle, C.A., L.H. MacDonald, and C.H. Luce. 2010. Fuels Management and Water Yield. Chapter 7 in: Elliot, W.J., I.S. Miller, and L.J. Audin, eds. Cumulative Watershed Effects of Fuels Management in the Western United States. Gen. Tech. Rep. RMRS‐GTR‐231. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 299 p. Available: <http://www.fs.fed.us/rm/pubs/rmrs_gtr231.html>. Accessed 6/24/10. 

Page 31: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐27 

September 2010ICF J&S 00468.09

 

Truex, R. L., Zielinski, W.J., Golightly, R.T., Barrett, R.L., and S.M. Wisely. 1998. A meta‐analysis of regional variation in fisher morphology, demography, and habitat ecology in California (draft report submitted to California Department of Fish and Game). USDA Forest Service, Pacific Southwest Research Station, Redwood Sciences Lab, Fort Collins, Colorado.  

Truex, R.L. W.J. Zielinski, J.S. Bolis, and J.M. Tucker. 2009. Fisher population monitoring in the southern Sierra Nevada, 2002 – 2008. Paper presented at the 5th International Martes Symposium, Seattle, WA. September 8–12, 2009. 

Trumbo, Joel. 2000. Control of giant cane in riparian and wetland areas of northern and central California. California Dept. of Fish and Game. Unpublished internal report.  

U.S. Fish and Wildlife Service (USFWS).  2003.  12‐month Finding for a Petition to List the California Spotted Owl (Strix occidentalis occidentalis).  Federal Register 68 (31):7580‐7608. 

U.S. Fish and Wildlife Service (USFWS). 2004. Endangered and Threatened Wildlife and Plants; 12‐month Finding for a Petition to List the West Coast Distinct Population Segment of the Fisher (Martes pennant); Proposed Rule. Federal Register 69:18770‐18792. 

U.S. Fish and Wildlife Service (USFWS). 2006. 12‐month Finding for a Petition to List the California Spotted Owl (Strix occidentalis occidentalis) as Threatened or Endangered.  Federal Register 71 (100): 29886‐29908.   

U.S. Fish and Wildlife Service (USFWS). 2009. Endangered Species Lists. Last updated: April 22, 2009. Available: <http://sacramento.fws.gov/es/spp_list.htm>. Accessed: June 29, 2010. 

U.S. Fish and Wildlife Service (USFWS). 2010. USFWS list of federal endangered and threatened species that occur in or may be affected by projects in Sierra National Forest. Available: <http://www.fws.gov/sacramento/es/spp_list.htm>. Accessed: March 22, 2010. 

Uchytil, Ronald J. 1991 Salix geyeriana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2008, November 3]. 

Underwood, E. C., J. H. Viers, J. F. Quinn, M. North. In progress. Using topography to meet wildlife and fuels treatment objectives in fire‐suppressed landscapes. 

USDA (U. S. Department of Agriculture). 1926 Cruises of the Dinkey Creek Country, given to us by Mr. Cannon of the Sugar Pine Lumber, Company of Pinedale, Fresno county. 

USDA Forest Service. 1988. Environmental impact statement for vegetation management for reforestation (VMFEIS). San Francisco, CA: Pacific Southwest Region, USDA Forest Service. 

USDA (U.S. Department of Agriculture). 1990. Soil and water conservation handbook.  FSH 2509.22. San Francisco, CA: Pacific Southwest Region, USDA Forest Service. (Find on CD.) 

USDA (U. S. Department of Agriculture). 1991 Forest Service, R‐5 Forest Service Handbook. Siviculture, 2409.26b. 

USDA Forest Service. 1992. Sierra National Forest land and resource management plan. Clovis, CA. USDA Forest Service, Pacific Southwest Region, Sierra National Forest. September 24. 

USDA Forest Service. 1995a. Soil management handbook. FSH 2509.18‐95‐1. San Francisco, CA: Pacific Southwest Region. 

Page 32: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐28 

September 2010ICF J&S 00468.09

 

USDA Forest Service. 1995b. Sierra National Forest Land and Resource Management Plan Amendment. Forest Service, Sierra National Forest. 1995. 

USDA Forest Service. 1996. Letter to Forest Supervisors: Biological Assessment/Evaluation Checklist and Impact Analysis Checklist by John C. Robinson. January 14.  

USDA Forest Service. 1997. Goshawk Network Management Guidelines. Sierra National Forest. July 1, 1997. Revised August 18, 1997.  

USDA Forest Service. 1998. Sierra National Forest Sensitive Plant List. Pacific Southwest Region, Vallejo, CA. 

USDA Forest Service, 1999. Detailed CWE Analysis ‐ Horsethief  Project. Open File Report, Sierra National Forest Supervisors Office, Clovis, CA. 4 p. 

USDA (U.S. Department of Agriculture). 2000a. Water quality management for national forest system lands in California ­ Best management practices. San Francisco, CA: Pacific Southwest Region, USDA Forest Service. 

USDA Forest Service, 2000b. Detailed CWE Assessment ‐ Gertrude Timber Sale. Open File Report, Sierra National Forest Supervisors Office, Clovis, CA. 4 p.USDA Forest Service, 2001. Dawn Thinning Project ‐ Detailed CWE analysis. Open File Report, Sierra National Forest Supervisors Office, Clovis, CA. 2 p. 

USDA Forest Service, Sierra National Forest, 2000‐2005. Monitoring Records for Prescribed Fire on the High Sierra Ranger District. Open‐File Records. Prather, CA. 

USDA (U.S. Department of Agriculture). 2001a. First Amended Regional Programmatic Agreement among the USDA Forest Service, Pacific Southwest Region, California State Historic Preservation Officer, and Advisory Council on Historic Preservation Regarding the Process for Compliance with Section 106 of the National Historic Preservation Act for Undertakings on the National Forests of the Pacific Southwest Region (Regional PA). 

USDA Forest Service. 2001b. Sierra Nevada Forest Plan Amendment Final Environmental Impact Statement. Forest Service, Pacific Southwest Region. January 2001. 

USDA Forest Service. 2001c. USDA Forest Service Guide to Noxious Weed Prevention Practices. Washington, D.C. 

USDA Forest Service. 2001d. Sierra Nevada Forest Plan Amendment. Final Environmental Impact Statement. Chapter 3. Part 4. Volume 3 of 6. January. 

USDA Forest Service. 2004a. Sierra Nevada forest plan amendment, final supplemental environmental impact statement. Vallejo, CA: Pacific Southwest Region, USDA Forest Service. 

USDA Forest Service. 2004b. Sierra Nevada forest plan amendment, record of decision. Vallejo, CA: Pacific Southwest Region, USDA Forest Service. 72 p. 

USDA Forest Service. 2004c. Sierra Nevada Forest Plan Amendment Record of Decision and Final Supplemental Environmental Impact Statement. USDA Forest Service, Pacific Southwest Region. Vallejo, CA 492pp + 72 pp (ROD). January 7. 

USDA Forest Service. 2004d. Large Fire Suppression Costs, Strategies for Cost Management. August 26. Pacific Southwest Region; California Department of Forestry and Fire Protection. 

Page 33: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐29 

September 2010ICF J&S 00468.09

 

USDA Forest Service. 2004e. Best Management Practices Evaluation Program, 1992–2002 Monitoring Results. Pacific Southwest Region, Vallejo, CA. 76p. 

USDA Forest Service. 2005a. Sierra Nevada forest plan accomplishment monitoring report for 2004. USDA Forest Service, Pacific Southwest Region R5‐MR‐026. 8pp. 

USDA Forest Service. 2005b. Safety Advisory, Subject: Hazard Trees. September 23. Available: <http://www.nwcg.gov/branches/pre/rmc/httf/resources.html>. 

USDA Forest Service. 2005c. Fresno River Landscape Analysis, Forest Service, Pacific Southwest Region, Sierra National Forest, Clovis, CA. 

USDA Forest Service. 2005d. Wildland Fire in Ecosystems – Effects of Fire on Soil and Water. Rocky Mountain Research Station, General Technical Report RMRS‐GTR‐42‐Volum 4. 

USDA Forest Service. 2006a. Sierra Nevada forest plan accomplishment monitoring report for 2005. USDA Forest Service, Pacific Southwest Region R5‐MR‐000. 12pp. 

USDA Forest Service. 2006b. Draft Management Indicator Species Report for the Sierra National Forest. USDA Forest Service, Sierra National Forest. 

USDA Forest Service. 2006c. Biological Assessment and Biological Evaluation For the Initial Eight Management Units (2006‐2008) on the Kings River Project. USDA Forest Service, Sierra National Forest, High Sierra Ranger District. 

USDA Forest Service. 2006d. Cumulative Watershed Effects Analysis. Internal document. 30pp. 

USDA Forest Service. 2007a. Record of Decision, Sierra Nevada Forests Management Indicator Species Amendment. U.S. Forest Service, Pacific Southwest Region. December, 2007. 18pp. 

USDA Forest Service. 2007b. Sierra Nevada forest plan accomplishment monitoring report for 2006. USDA Forest Service, Pacific Southwest Region R5‐MR‐149. 12pp. 

USDA Forest Service. 2008a. Kings River Project Draft Supplemental Environmental Impact Statement. August. Prather, CA: High Sierra Ranger District, Sierra National Forest, USDA Forest Service. 

USDA Forest Service. 2008b. Kings River Project Biological Evaluation for the Pacific Fisher. USDA Forest Service, Pacific Southwest Region. Vallejo, CA. Unpublished internal report. 

USDA Forest Service. 2008c. Sierra Nevada Forests Bioregional Management Indicator Species (MIS) Report: Life history and analysis of Management Indicator Species of the 10 Sierra Nevada National Forests: Eldorado, Inyo, Lassen, Modoc, Plumas, Sequoia, Sierra, Stanislaus, and Tahoe National Forests and the Lake Tahoe Basin Management Unit. Pacific Southwest Region, Vallejo, CA. January 2008.  

USDA Forest Service. 2009. Fisher Analysis and Sustainability Tool, Southern Sierra Version. USDA Forest Service, Pacific Southwest Region. Vallejo, CA. 

USDA Forest Service. 2010a. Vegetation and Silviculture Specialist Report for the Dinkey North Restoration Project. August. Bakersfield, CA. Prepared for: Sierra National Forest, High Sierra Ranger District, Prather, CA. 

Page 34: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐30 

September 2010ICF J&S 00468.09

 

USDA Forest Service. 2010b. Economics Report for the Dinkey North Restoration Project. September. Prather, CA. Prepared for: Sierra National Forest, High Sierra Ranger District, Prather, CA. 

USDA Forest Service and ICF Jones & Stokes. 2010.  ICF Jones & Stokes. 2010c. Biological Assessment and Biological Evaluation, Aquatic Resources Report for the Dinkey North Restoration Project. September. (ICF J&S 00468.09.) Bakersfield, CA. Prepared for USDA Forest Service, Sierra National Forest, High Sierra Ranger District, Prather, CA. 

USDI National Park Service. 2004. Holmes Accident Investigation. Final Report. December. Sequoia and Kings Canyon National Parks. 

USFWS. 2002a. Endangered and Threatened Wildlife and Plants; 12‐Month Finding for a Petition to List the Yosemite Toad. Federal Register: December 10, 2002 (Volume 67, Number). Pp. 75834‐75843. 

USFWS. 2002b. Recovery Plan for the California red‐legged frog (Rana aurora draytonii). U.S. Fish and Wildlife Service, Portland, Oregon. 258 pp. 

USFWS. 2003. Endangered and Threatened Wildlife and Plants; 12‐Month Finding for a Petition to List the Mountain Yellow‐legged frog. Federal Register: January 16, 2003 (Volume 68, Number 11. Pp. 2283‐2303. 

USFWS. 2006. Endangered and Threatened Wildlife and Plants; 12‐month Finding for a Petition to List the California Spotted Owl (Strix occidentalis occidentalis) as Threatened or Endangered. Department of the Interior, Fish and Wildlife Service, 50 CFR Part 17. Federal Register: May 24, 2006, Volume 71, Number 100, pages 29886–29908.  

USFWS. 2008. USFWS Species Assessment and Priority Assessment Form for Rana muscosa, northern populations. 

USFWS. 2009. Endangered Species Lists. Last updated: April 22, 2009. Available: <http://sacramento.fws.gov/es/spp_list.htm>. Accessed: June 29, 2010. 

USGS (US Geological Survey). 1997. The stream segment and stream network temperature models. Fort Collins, CO and Colorado State University, College of Natural Resources: US Geological Survey, Biological Resource Division, Midcontinent Ecological Science Center, River Systems Management Section Version 1. 

USGS. 2000. The stream segment and stream network temperature models. Fort Collins, CO and Colorado State University, College of Natural Resources.: US Geological Survey, Biological Resource Division, Midcontinent Ecological Science Center, River Systems Management Section Version 2. 

USGS. 2002. Stream Segment Temperature Model (SSTEMP) Version 2.0 Revised August 2002. US Geological Survey, Biological Resource Division, Midcontinent Ecological Science Center, River Systems Management Section. 

Verner, J. K. S. McKelvey, B. R. Noon, R.J. Guiterrez, G.I. Gould, Jr., T. W. Beck (Technical Coordinators).  1992.  The California spotted owl: a technical assessment of its current status.  General Technical Report PSW‐GTR‐133.  Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture.  285p.   

Page 35: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐31 

September 2010ICF J&S 00468.09

 

Verner, J., and A.S. Boss, tech. cords. 1980. California wildlife and their habitats: western Sierra Nevada. Gen. Tech. Rep. PSW‐GTR‐37. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, CA. 439 pages.  

Vredenburg, V. T. 2004. Reversing introduced species effects: Experimental removal of introduced fish leads to rapid recovery of a declining frog. Proceedings of the National Academy of Sciences, 101:7646‐7650. 

Vredenburg, V.T., Fellers, G. & Davidson, C. 2005. The mountain yellow‐legged frog Rana muscosa (Camp 1917). In Status and conservation of US amphibians: 563–566.Lanoo, M. (Ed.). Berkeley: University of California Press. 

Vredenburg, V.T., R. Bingham, R. Knapp, J. A. T. Morgan, C. Moritz, and D. Wake. 2007. Concordant molecular and phenotypic data delineate new taxonomy and conservation priorities for the endangered mountain yellow‐legged frog. Journal of Zoology 271 (2007) 361–374. 

Vredenburg, V.T., R. Knapp, T.S. Tunstall, and C. Briggs. 2010. Dynamics of an emerging disease drive large‐scale amphibian population extinctions. Available: www.pnas.org/cgi/doi/10.1073/pnas.0914111107. 

Wagner, R.G., T. D. Petersen, D. W. Ross, S. R. Radosevich. 1989. Competition thresholds for the survival and growth of ponderosa pine seedlings associated with woody and herbaceous vegetation. New Forests. 3(2): 151‐170. 

Wallbrink, P.J., and Croke, J. 2002. A Combined Rainfall Simulator and Tracer Approach to Assess the Role of Best Management Practices in Minimizing Sediment Redistribution and Loss in Forests after Harvesting. Forest Ecology and Management 170:217–232. 

Wallin, Kimberly F.,  Kolb, Thomas  E., Skov, Kierstin R., and Wagner,  Michael R., 2003. Effects of Crown Scorch on Ponderosa Pine Resistance to Bark Beetles in Northern Arizona; Environ. Entomol. 32(3): 652‐661 

Wayman and North, 2007.   Initial response of mixed‐conifer understory plant community to burning and thinning restoration treatments.  Forest Ecology and Management. 239: 32‐44. 

Weatherspoon, C. P. and C. N. Skinner. 1995. An Assessment of Factors Associated with Damage to Tree Crowns from the 1987 Wildfires in Northern California. Forest Science 41(3):430–451. 

Weatherspoon, C. P. and C. N. Skinner. 1995. Landscape level strategies for fuel management in Sierra Nevada forests – Draft. July 20, 1994. 58 pp (SNEP, 1996). 

Weir, R.D. 2003. Status of the fisher in British Columbia. British Columbia Ministry of Sustainable Resource Management, Conservation Data Center, and the Ministry of Water, Land, and Air Protection, Biodiversity Branch. Victoria, British Columbia, Canada. 

Wells, S. 2003. Aquatic species biological assessment and biological evaluation, including management indicator species, for the South of Shaver fuels reduction project. High Sierra Ranger District, Sierra National Forest. 19 pages plus attachments. 

Wemple, Beverly C., Julia A. Jones, and Gordon E. Grant. 1996. Channel Network Extension by Logging Roads in Two Basins, Western Cascades, Oregon. Water Resources Bulletin, 32(6):1195–1207. 

Page 36: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐32 

September 2010ICF J&S 00468.09

 

Wisely, S.M., S.W. Buskirk, G.A. Russell, K.B. Aubry, and W.J. Zielinski. 2004. Genetic Diversity and Structure of the fisher (Martes pennanti) in a Peninsular and Peripheral Metapopulation. Journal of Mammalogy 85 (4): 640‐648.  

Wondzell, Steven M. and John G. King. 2003. Post‐Fire Erosional Processes in the Pacific Northwest and Rocky Mountain Regions. Forest Ecology and Management 178(2003):75–87. 

Woodall, C.W., C. E. Fiedler, and K.S. Milner. 2003. Stand density index in uneven‐aged ponderosa pine stands. Canadian Journal of Forest Research. 33: 96–100. 

Woods, S.W., W. McCaughey, R. Ahl, and J. Sappington. 2004. Effect of Alternative Silvicultural Treatments on Snow Accumulatin in Lodgepole Pine Stands, Montana, USA. Presented at the Western Snow Conference, 2004.  

Yaeger, J.S. 2005. Habitat at fisher resting sites in the Klamath province of northern California. M.S. Thesis, Humboldt State University, Arcata, California, USA. 64 p. 

Yanev, K.P. 1978. Evolutionary studies of the plethodontid salamander genus Batrachoseps. Ph. D. Dissertation, Univ. California, Berkeley. 251 pp. 

Yanev, K. P., and D. B. Wake. 1981. Genetic differentiation in a relict desert salamander, Batrachoseps campi. Herpetologica 37:16‐28. 

York, R. A., J. J. Battles, R. C. Heald, J. D. York. 2004. Group selection management in conifer forests: relationships between opening size and tree growth. Canadian Journal for Forest Research. 34: 630–641. 

York, R. A., J. J. Battles, R. C. Heald. 2004. Gap based silviculture in a Sierran mixed conifer forest: Effects of gap size on early survival and 7‐year seedling growth. General Technical Report. PSW‐GTR‐203.  Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture.  11p.   

Zeiner, D.C., W.F. Laudenslayer, Jr., K.E. Mayer, and M. White. 1988. California’s Wildlife Vol. 1. Amphibians and reptiles. California Statewide Wildlife Habitat Relationships System, California Department of Fish and Game, Sacramento, CA. 

Zeiner, D.C., W.F. Laudenslayer Jr., K.E. Mayer and M. White. 1990a. California's Wildlife, Volume II, Birds. California Statewide Wildlife Habitat Relationships System. State of California, The Resources Agency, Department of Fish and Game. Sacramento, CA. November. 

Zhang, J. W. W. Oliver, and M. D. Busse. 2006. Growth and development of ponderosa pine on sites of contrasting productivities: relative importance of stand density and shrub competition effect. Canadian Journal for Forest Research. 36(10): 2426‐2243. 

Zielinski, W.J. and R.H. Barrett. 1994. Southern Sierra Nevada fisher and Marten Study. Progress Report 13 May‐31 August. 

Zielinski, W.J., Kucera T.E., and R.H. Barrett. 1995. Current distribution of the fisher, Martes pennanti, in California. California Fish and Game 81(3):104‐12.  

Zielinski, W.J., Truex, R.I., Ogan, C.V. and Busse K. 1997. Detection surveys for fishers and American martens in California, 1989‐1994: summary and interpretations. Martes: taxonomy, ecology, 

Page 37: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Chapter 5

References 

 Environmental Assessment Dinkey North Restoration Project  5‐33 

September 2010ICF J&S 00468.09

 

techniques and management (ed. By G. Proulx, H.N. Bryant and P.M. Woodard), pp. 372‐392. Proceedings of the Second International Martes Symposium, Edmonton, Alberta, Canada.  

Zielinski, W.J. N.P. Duncan, E.C. Farmer, R.L. Truex, A.P. Clevenger, and R.H. Barrett. 1999. Diet of fishers (Martes pennanti) at the southern most extent of their range. Journal of Mammalogy 80 (3): 961‐969. 

Zielinski, W. J., R. L. Truex, G. A. Schmidt, F. V. Schlexer, K. N. Schmidt, R. H. Barrett. 2004a. Resting habitat selection by fishers in California. Journal of Wildlife Management. 68(3): 475‐492. 

Zielinski, W.J., R.L. Truex, G.A. Schmidt, F.V. Schlexer, K.N. Schmidt, R.H. Barrett. 2004b. Home Range Characteristics of Fishers in California. Journal of Mammalogy 85(4): 649‐657. 

Zielinski, W.J., and N.P. Duncan. 2004. Diets of sympatric populations of American martens (Martes americana) and fishers (Martes pennanti) in California. J. Mammal. 85(3):470‐477. 

Zielinski, W.J.; Truex, R.L.; Schlexer, F.V.; Campbell, L.A.; Carroll, C. 2005. Historical and contemporary distributions of carnivores in forests of the Sierra Nevada. California, USA. Journal of Biogeography 32: 1385‐1407. 

Zweifel, R.G. 1955. Ecology, distribution, and systematics of frogs of the Rana boylii group. Univ. of California Publ. Zool. 54:207‐292. 

Zwolinski, Malcom. 2000. The Role of Fire in Management of Watershed Responses. In: USDA Forest Service Proceedings RMRS‐P‐13. 

Personal Communication Bagne, K. 2003. Pacific Southwest Researcher. August 5, 2003—Personal communication between 

Karen Bagne and Stephanie Wells, High Sierra Ranger Assistant District Aquatic Biologist concerning ongoing research on salamanders in the Rush Creek and Big Creeks areas of the High Sierra Ranger District.  

Brown, Cathy. 2008. Personal communication on age of Yosemite toad. 

Hanson, R.W. 1998. Personal communication. Listed in CDFG Inland Fisheries Informational Leaflet No. 43 (A List of Individuals with Expertise in Working with the Amphibians and Reptiles of California CDFG (1994)) as individual having expertise on Relictual slender salamander. 

Liang, C.T. 2009. Personal communication on Yosemite toad movements and habitat. 

Moore, R. 2002. August 22—Personal conversations. Fresno, CA: Emergency Command Center, Sierra National Forest, USDA Forest Service. 

Truex, R. 2006. Sequoia National Forest, USDA Forest Service. Personal communication on unpublished data concerning the fisher with Kim Sorini‐Wilson, High Sierra Ranger District Wildlife Biologist, Sierra National Forest. 

 

Page 38: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

Appendix A Best Management Practices 

Page 39: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

   

 Environmental Assessment Dinkey North Restoration Project  A‐1 

September 2010ICF J&S 00468.09

 

Appendix A Best Management Practices 

BMP Name, Objective, and Direction  Application to the Dinkey North Project 

BMP 1­1 Timber Sale Planning Process: To incorporate water quality and hydrologic considerations into the timber sale planning process. 

Implemented through the Riparian Conservation Objectives/Forest Plan Consistency report, specification of operational BMPs, Environmental Analysis including interdisciplinary team office and field discussions, and incorporation of water quality protection measures in the Timber Sale Contract. 

BMP 1­4 Use of Sale Area Maps (SAM) and/or Project Maps for Designating Water Quality Protection Needs: To ensure recognition and protection of areas related to water quality protection delineated on a SAM or project map.  

The sale administrator and purchaser will review these areas on the ground prior to commencement of ground disturbing activities. Examples of water quality protection features that will be designated on the project map include: 1. Location of streamcourses and riparian zones to be protected, 

including the width of the protection zone for each area. 2. Wetlands (meadows, lakes, springs, etc.) and other sensitive areas 

(such as shallow soils) to be protected.   3. Boundaries of harvest units, specified roads and roads where 

hauling activities are prohibited or restricted, areas of different skidding and/or yarding methods, including post‐harvest fuels treatments, and water sources available for purchaser’s use. 

BMP 1­5 Limiting the Operating Period of Timber Sale Activities: To ensure that the purchasers conduct their operations, including erosion control work, road maintenance, and so forth, in a timely manner, within the time frame specified in the Timber Sale Contract. 

The purchaser’s contract operation period will be limited to contract‐specified periods when adverse environmental effects are not likely. The Sale Administrator will close down operations due to rainy periods, high water, or other adverse operating conditions in order to protect resources. 

BMP 1­8 Streamside Management Zone Designation: To designate a zone along riparian areas, streams and wetlands that will minimize potential for adverse effects from adjacent management activities. Management activities within these zones are designed to improve riparian values.  

Streamside management zones (SMZs ) have been supplemented with RMAs and RCAs (USDA 2004b) as described in Appendix E of the Final EIS and the Aquatics design measures.  Within SMZs, the constraints defined in Sierra Supplement No. 1 (USDA Forest Service, 1989) apply. This includes no self‐propelled ground based equipment, a minimum groundcover of 50%, and shade canopy may not be modified in a way that affects stream temperature.   Treatments in SMZs will follow the SMZ Prescription described in Watershed Design Measures to ensure compliance with these constraints. Modifications to these guidelines are possible where site‐specific needs exist if the action is reviewed by a hydrologist or fisheries biologist. 

BMP 1­9 Determining Tractor Loggable Ground: To minimize erosion and sedimentation resulting from ground disturbance of tractor logging systems.  

Limit ground skidding and machine piling with tractors to slopes less than 35%.  Endlining can be used to remove logs from steeper slopes. Ground disturbance on areas of shallow soils, notably soils adjacent and abutting to rock outcrops, will be avoided.   

Page 40: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix A

Best Management Practices 

 Environmental Assessment Dinkey North Restoration Project  A‐2 

September 2010ICF J&S 00468.09

 

BMP Name, Objective, and Direction  Application to the Dinkey North Project 

BMP 1­10 Tractor Skidding Design: By designing skidding patterns to best fit the terrain, the volume, velocity, concentration, and direction of runoff water can be controlled in a manner that will minimize erosion and sedimentation. 

The sale administrator and purchaser will designate all skid trails prior to ground disturbing activities.  If uncertainty arises regarding potential resource impacts of skid trail location, consult with an earth science specialist (i.e., hydrologist, aquatic biologist, or soil scientist).   

BMP 1­12 Log Landing Location:  To locate new landings in such a way as to avoid watershed impacts and associated water quality degradation   

The following criteria are to be used by the Sale Administrator when evaluating landings: a.  The cleared or excavated size of landings will not exceed that 

needed for safe and efficient skidding and loading operations. Trees considered dangerous will be removed around landings to meet the safety requirements of OSHA. 

b.  Selected landing locations will involve the least amount of excavation and fill possible. New landings must be located outside of SMZs. 

c.  Locate landings near ridges away from headwater swales in areas that will allow skidding without crossing stream channels, violating SMZs, or causing direct deposit of soil and debris to a stream.   

d.  Locate landings where the least number of skid roads will be required, and sidecast  material can be stabilized without entering drainages or affecting other sensitive areas. Keep the number of skid trails entering a landing to a minimum. 

e.  Position landings such that the skid road approach will be nearly level as feasible, to promote safety and to protect soil from erosion.

f.  Avoid excessive fills associated with landings constructed on old landslide benches.   

g.  Construct stable landing fills or improve existing landings by using appropriate compaction and drainage specifications.   

In some cases, using an existing landing located within an RCA is preferable to constructing a new landing outside of it.  These situations will be reviewed on a site‐by‐site basis by an earth science specialist (aquatics, hydrology, geology, or soils).   

BMP 1­13 Erosion Prevention and Control Measures during Timber Sale Operations: To ensure that the purchasers’ operations will be conducted reasonably to minimize soil erosion. 

Timber purchaser responsibilities for erosion control will be set forth in the Timber Sale Contract. Equipment will not be operated when ground conditions are such that excessive damage will result. The kinds and intensity of control work required of the purchaser will be adjusted by the sale administrator to ground and weather conditions with emphasis on controlling overland runoff, erosion, and sedimentation.  Erosion control work required by the contract will be kept current. At certain times of the year this means daily, if precipitation is likely or weekly when precipitation is predicted for the weekend.  Erosion prevention measures should be applied no later than October 1 and immediately upon completion of activity begun after November 1.  If the purchaser fails to perform seasonal erosion control work prior to any seasonal period of precipitation or runoff, the Forest Service may temporarily assume responsibility, complete the work, and use any 

Page 41: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix A

Best Management Practices 

 Environmental Assessment Dinkey North Restoration Project  A‐3 

September 2010ICF J&S 00468.09

 

BMP Name, Objective, and Direction  Application to the Dinkey North Project 

unencumbered deposits as payment for the work. BMP 1­16 Log Landing Erosion Protection and Control: To reduce the impacts of erosion and subsequent sedimentation associated with log landings by use of mitigating measures.   

Landings will be properly cross‐ditched, ripped (if soils are compacted), re‐contoured (as necessary), and mulched after use and before the winter precipitation period, whichever comes first. Excess woody material not needed for erosion control can be piled and burned. Upon completion of the project, consult with the hydrologist or soil scientist to determine the need for additional soil protection measures. 

BMP 1­17 Erosion Control of Skid Trails: To protect water quality by minimizing erosion and sedimentation derived from skid trails.  

Erosion control measures will be installed on all skid trails, tractor roads, and temporary roads.  Erosion control measures include, but are not limited to, cross ditches (water bars), organic mulch, and ripping.   Cross ditches will be spaced according to the guidelines below, maintained in a functioning condition, and placed in locations where drainage would naturally occur (i.e., swales).  The level of maintenance will be contingent upon existing or predicted weather patterns as determined by the Sale Administer (see BMP 1‐13).    Minimum Cross Drain Spacing  

% Slope  Maximum Spacing 0 ‐ 15  125 feet 15 ‐ 35  45 feet 

 

BMP 1­18 Meadow Protection during Timber Harvesting: To avoid damage to the ground cover, soil, and hydrologic function of meadows. 

Mechanical equipment is not permitted in meadows unless specifically authorized by an aquatic biologist and hydrologist. 

BMP 1­19 Streamcourse and Aquatic Protection: The objectives of this BMP are: To conduct management actions within these areas in a manner that maintains or improves riparian and aquatic values.   To provide unobstructed passage of stormflows.   To control sediment and other pollutants entering streamcourses. To restore the natural course of any stream as soon as practicable, where diversion of the stream has resulted from timber management activities.    

a.  The location and method of crossings on Class IV and V streams must be agreed to by the sale administrator (SA) prior to construction.  

b.  Stream crossings on Class I – III streams must be approved by the hydrologist and aquatic biologist.   

c.  Damage to stream banks and channels will be repaired to the extent practicable.   

d.  All sale‐generated debris will be removed from streamcourses, unless otherwise agreed to by the SA, and in an agreed upon manner that will cause the least disturbance.   

e.  Felled trees will not be pulled across perennial or intermittent stream channels without prior approval by the hydrologist or aquatic biologist.   

f.  Methods for protecting water quality while utilizing tractor skid trail design in stream course areas where harvest is approved include: (1) end lining, (2) falling to the lead, and (3) utilizing specialized equipment with low ground pressure such as feller buncher harvester.   

g.  Water bars or other erosion control structures will be located so as to disperse concentrated flows and filter out suspended sediments prior to entry into streamcourse.   

h.  Material from temporary road construction and skid trail streamcourse crossings will be removed and streambanks restored to the extent practicable.   

Page 42: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix A

Best Management Practices 

 Environmental Assessment Dinkey North Restoration Project  A‐4 

September 2010ICF J&S 00468.09

 

BMP Name, Objective, and Direction  Application to the Dinkey North Project 

i.  Special slash treatment site preparation activities will be prescribed in sensitive areas to facilitate slash disposal without use of mechanized equipment.   

j.  Project‐related bare soil areas (e.g. skid trails, landings, temporary roads, etc.) will be covered with existing native vegetation mulch, organic debris, or certified weed free straw to at least 50%, well distributed cover, and cross‐ditched per BMP 1‐17 requirements. 

BMP 1­20 Erosion Control Structure Maintenance:  To ensure that constructed erosion control structures are stabilized and working 

During the period of the timber sale contract, the purchaser will provide maintenance of soil erosion control structures contracted by the purchaser until they become stabilized, but not more than one year after their construction. If the purchaser fails to do seasonal maintenance work, the Forest Service may assume the responsibility and charge the purchaser accordingly. The Forest Service sale administrator is responsible for ensuring erosion control maintenance work is completed. 

BMP 1­21 Acceptance of Timber Sale Erosion Control Measures before Sale Closure: To ensure the adequacy of required erosion control work on timber sales.   

The sale administrator must inspect erosion control measures to ensure their adequacy prior to accepting closure on the unit and/or sale.  The effectiveness of erosion control measures will be evaluated using BMPEP protocols after the sale area has been through one or more wet seasons. This evaluation is to ensure that erosion control treatments are in good repair and functioning as designed before releasing the purchaser from contract responsibility.   The purchaser is responsible for repairing erosion control treatments that fail to meet criteria in the Timber Sale Contract, as determined by the Sale Administer, subject to the terms of the Contract.    

BMP 1­22 Slash Treatment in Sensitive Areas: To maintain or improve water quality by protecting sensitive areas from degradation which would likely result from using mechanized equipment for slash disposal.  

All burn piles made with mechanical equipment must be located outside of the SMZ. Hand piles will be kept at least 20 feet away from all streams, meadows, springs, seeps, and other sensitive aquatic areas.    

BMP 2­1 General guidelines for the Location and Design of Roads: To locate and design temporary roads with minimal resource damage.   

The following considerations are incorporated into the planning process of  temporary road location and design.  These measures are preventative, apply to all transportation activities, and indirectly protect water quality: a.  Temporary roads will be developed and operated to best meet the 

resource management objectives with the least adverse effect on environmental values.   

b.  Sensitive areas such as wetlands, inner gorges, and unstable ground will be avoided to the extent practicable. 

c.  Stream crossings will be designed to provide the most cost efficient drainage facility consistent with resource protection, facility needs, and legal obligations.   

BMP 2­3 Timing of Construction Activities: To minimize erosion by conducting operations during minimal runoff periods and when soils 

Ground‐disturbing activities will occur when soils are dry. In some cases soils may never dry sufficiently.  Ground‐disturbing work that occurs off of existing roads will occur during the dry season and will reduce ground disturbance as much as possible. 

Page 43: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix A

Best Management Practices 

 Environmental Assessment Dinkey North Restoration Project  A‐5 

September 2010ICF J&S 00468.09

 

BMP Name, Objective, and Direction  Application to the Dinkey North Project are dry and less prone to compaction.   BMP 2­7 Control of Road Drainage: To minimize the erosive effects of water concentrated on roads, to disperse runoff from road surfaces, to lessen sediment yield from roaded areas, and to minimize erosion of the road prism.   

Reconstructed roads will be designed to reduce hydrologic connectivity and soil erosion wherever feasible. The sale administrator or other Forest Service representative will ensure that roads are adequately maintained during project implementation to ensure that road drainage features function as designed. 

BMP 2­9 Timely Erosion Control Measures on Incomplete Roads and Stream Crossing Projects: To minimize erosion and sedimentation from disturbed ground on incomplete projects.     

Erosion control must be completed before the rainy season (usually October in the project area) to minimize any environmental damage from road reconstruction.  Preventative measures for timely erosion control include: a.  Removal of temporary culverts, culvert plugs, diversion dams, or 

elevated stream crossings. b.  Installation of temporary culverts, side drains, flumes, cross drains, 

diversion ditches, energy dissipaters, dips, sediment basins, berms, debris racks, or other facilities needed to control erosion.  

c.  Removal of debris, obstructions, and spoil material from channels and floodplains.  

d.    Planting vegetation, mulching, and/or covering exposed surfaces with jute mates or other protective material. 

BMP 2­10 Construction of Stable Embankments: To construct embankments with materials and methods which minimize the possibility of failure and subsequent water quality degradation.  

Roadways will be designed and constructed as stable and durable earthwork structures with adequate strength to support the treadway, shoulders, subgrade and road traffic loads. 

BMP 2­11 Control of Sidecast Material During Construction and Maintenance: To minimize sediment production originating from sidecast material during road construction or maintenance. 

Sidecasting is not permitted within SMZs.  Waste areas must be located where excess material can be deposited and stabilized. 

BMP 2­12 Servicing and Refueling Equipment: To prevent pollutants such as fuels, lubricants, bitumens and other harmful materials from being discharged into or near rivers, streams and impoundments, or into natural or man‐made channels.  

Storage of hazardous materials (including fuels) and servicing and refueling of equipment will be conducted at pre‐designated locations outside of RCAs.. If fueling and/or storage of hazardous materials are needed within RCAs, those sites must be reviewed and approved by the District Hydrologist or Aquatic Biologist. Additional protection measures, such as containment devices, may be necessary.   

BMP 2­13 Control of Construction and Maintenance Activities Adjacent to SMZs: To 

Construction and maintenance fills, sidecast, and end‐hauled materials will be kept out of SMZs except at designated crossing sites to minimize the effect to the aquatic environment.   

Page 44: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix A

Best Management Practices 

 Environmental Assessment Dinkey North Restoration Project  A‐6 

September 2010ICF J&S 00468.09

 

BMP Name, Objective, and Direction  Application to the Dinkey North Project protect water quality by controlling construction and maintenance actions within and adjacent to SMZs so that SMZ functions are not impaired.  BMP 2­14 Controlling In­Channel Excavation: To minimize stream channel disturbances and related sediment production. 

There will be no in‐channel or streambank excavation during any phase of project activities unless authorized by the district hydrologist or aquatic biologist. 

BMP 2­16 Stream Crossings on Temporary Roads and Skid Trails:  

Mechanical equipment crossing of perennial and intermittent (generally class I – III) streams is not permitted unless approved by the district hydrologist or aquatic biologist. Ephemeral streams (stream class IV and V) may be crossed at designated locations as agreed upon by the sale administrator and purchaser.  Designate skid trails to avoid stream crossings and SMZs wherever possible.  Designated crossings must be as perpendicular to the channel as possible and avoid sensitive soils and riparian vegetation damage. Stream banks must be repaired upon completion of the project. 

BMP 2­19 Disposal of Right­of­Way and Roadside Debris: To ensure that organic debris generated during road reconstruction is kept out of streams so that channels and downstream facilities are not obstructed.   

If slash generated by road work is disposed of within SMZs, it will be piled and burned or chipped.  Material may also be removed from the SMZ for disposal. 

BMP 2­21 Water Source Development Consistent with Water Quality Protection: To supply water for roads and fire protection while maintaining existing water quality. 

Water drafting will not occur in streams when the base discharge is less than 1.5 cfs, and will not draft more than 50% of the ambient discharge over 1.5 cfs.  New drafting sites shall be approved by the District Hydrologist or Fisheries/Aquatic Biologist and located to minimize sediment and maintain riparian resources, channel condition, meadow integrity, and aquatic species viability and habitat. Approaches will be as near perpendicular to the stream as possible and will be gravel surfaced or otherwise stabilized.  If water‐drafting is required, pumps with low entry velocity and suction strainers with screens less than 2 mm in size (1/8 in.) will be used. 

BMP 2­22 Maintenance of Roads: To maintain roads in a manner that provides for water quality protection by minimizing rutting, failures, sidecasting, and blockage of drainage facilities, all of which can cause erosion, sedimentation, and deteriorating watershed conditions. 

Roads needed for project activities will be brought to current engineering standards of alignment, drainage, and grade before use, and will be maintained through the life of the project. Roads will be inspected regularly to determine what work, if any, is needed to keep ditches, culverts, and other drainage facilities functional and the road stable.  

BMP 2­23 Road Surface Treatment to Prevent Loss of Materials:  

Surface stabilization will be considered where grades exceed 12% or road is within riparian conservation areas. 

Page 45: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix A

Best Management Practices 

 Environmental Assessment Dinkey North Restoration Project  A‐7 

September 2010ICF J&S 00468.09

 

BMP Name, Objective, and Direction  Application to the Dinkey North Project 

BMP 2­24 Traffic Control During Wet Periods: To reduce road surface disturbance and the rutting of roads, and to minimize sediment washing from disturbed road surfaces. 

On roads not designated for all weather or winter haul, heavy equipment operations will be limited until the period after the soil has dried in the top 12 inches in the spring. 

BMP 2­26 Obliteration or Decommissioning of Temporary Roads: To reduce sediment generated from temporary roads by obliterating or decommissioning them at the completion of the intended use. 

Temporary roads will be obliterated after serving their intended purpose for this project. This includes:  1. road effectively barricaded;  2. road effectively drained by measures such as re‐contouring or 

outsloping to return surface to near natural hydrologic function;  3. a well distributed mulch or organic cover provides at least 50% 

cover, or road surface is revegetated using local native species;  4. sideslopes are reshaped and stabilized to match the natural 

contour (as necessary); and  5. stream crossings are removed and natural channel geometry is 

restored.   If non‐local mulch is used (such as straw), it must be approved by the Forest Service as weed free.   

BMP 5­7 Pesticide Use Planning Process: To ensure that water quality and hydrologic considerations are incorporated into the planned use and application of glyphosate.  

The responsible line officer will ensure that appropriate environmental documentation, the Project Plan, and the Safety Plan are prepared and followed, and that the plans adequately specify management direction.  

BMP 5­8 Pesticide Application According to Label Directions and Applicable Legal Requirements:  To avoid water contamination by complying with all label instructions and restrictions for use.  

This BMP requires glyphosate applicators to strictly adhere to pesticide label instructions. 

BMP 5­10 Pesticide Spill Contingency Planning: To reduce contamination of water by accidental pesticide spills. 

A pesticide spill contingency plan will be developed and incorporated into the Project Safety Plan for the implementation of approved application of glyphosate. The Project Safety Plan will be incorporated into any contract or Force Account work plans.  

BMP 5­11 Cleaning and Disposal of Pesticide Containers and Equipment: To prevent water contamination resulting from cleaning or disposal of pesticide containers.   

The cleaning and disposal of glyphosate containers will be done in accordance with Federal, State, and local laws, regulations and directives. 

BMP 5­12 Streamside Wet Area Protection During Pesticide Spraying: To minimize the risk of pesticide inadvertently entering waters, or unintentionally altering the riparian area, SMZ, or wetland.  

When spraying glyphosate, an untreated strip of land and vegetation will be left alongside surface waters, wetlands, riparian areas, or SMZ.  Strip widths established by the IDT are 5 feet for dry channels and 25 feet for flowing channels (see Herbicide Use design criteria).   

Page 46: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix A

Best Management Practices 

 Environmental Assessment Dinkey North Restoration Project  A‐8 

September 2010ICF J&S 00468.09

 

BMP Name, Objective, and Direction  Application to the Dinkey North Project 

BMP 6­2 Consideration of Water Quality in Formulating Fire Prescriptions: To provide for water quality protection while achieving the management objectives through the use of prescribed fire.  

Prescribed burning is planned at the minimum intensity and severity necessary to achieve management objectives, and each Burn Plan will incorporate all relevant design measures from this EIS.   

BMP 6­3 Protection of Water Quality from Prescribed fire Effects: To maintain soil productivity, minimize erosion, and minimize ash, sediment, nutrients, and debris from entering water bodies. 

Fires will be allowed to back into riparian vegetation, but direct lighting within riparian vegetation will not occur.   All fire lines within RCAs will be water barred per BMP 1‐17 spacing requirements.  Fire lines within RCA (i.e., 150 ft., seasonal streams, and 300 ft. perennial streams, springs, and meadows) will be designed and constructed to reduce sediment entry into channels. Fire lines in RCAs will cross perpendicular to streams and follow the natural landscape contour as much as possible.  Firelines within the SMZ will be hand cut. Waterbars will be placed on either side of each stream crossing to prevent or reduce sediment entry into streams.    

BMP 7­3 Protection of Wetlands: To avoid adverse water quality impacts associated with destruction, disturbance, or modification of wetlands. 

Ground disturbing activities will not occur in wetlands or meadows.   

BMP 7­4 Oil and Hazardous Substance Spill Contingency Plan and Spill Prevention Containment and Countermeasure (SPCC) Plan: To prevent contamination of water from accidental spills. 

A spill contingency plan and spill prevention and countermeasure plan (SPCC) must be prepared if hazardous materials (including fuels and oils) stored on the Sierra National Forest exceed 1320 gallons, or if a single container exceeds 660 gallons. The plan will at a minimum include: the types and amounts of hazardous materials located in the project area, pre‐project identified locations for hazardous materials storage and fueling/maintenance activities (must be located outside of RCAs unless prior approval by District Hydrologist or Aquatic Biologist is obtained), methods for containment of hazardous materials and contents of on‐site emergency spill kit, and a contingency plan (including contact names with phone numbers) to implement in the event of a spill.   The SPCC plan must be approved by the Forest Service prior to project implementation. 

 

Page 47: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

Appendix B Monitoring Plan 

Page 48: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

 Environmental Assessment Dinkey North Restoration Project  B‐1 

September 2010ICF J&S 00468.09

 

Appendix B Monitoring Plan 

Monitoring is critical component of each of the action alternatives. Specific resource monitoring includes the following types of monitoring:  

Implementation Monitoring  Implementation monitoring includes a combination of administrative controls on project preparation, review of completed plans, and inspections during operation to ensure that project activities are accomplished consistent with any decision associated with this analysis. Administrative controls include having qualified staff prepare contracts and plans to implement the actions. Those plans are reviewed by higher level staff or Line Officers to ensure the plans include required resource protections measures. Project implementation is overseen by qualified staff with the delegated authority to make sure the project is implemented according to the approved plans, and to take corrective action during project implementation if actions are not in compliance with the approved plans.  

Effectiveness Monitoring  Effectiveness monitoring includes site review after treatments to determine if the required measures achieved the intended results. Examples include post burn surveys to determine if adequate ground cover remains after treatment. The protocols associated with the Best Management Practices Evaluation Program (BMPEP) will be applied concurrently with treatments to provide “real time” monitoring of the effectiveness of water quality protection measures.  

Vegetation  Changes in canopy cover, stand density and tree species by aspect zone and stocking and survival in plantations will be determined. In addition, fisher rest sites identified during sale preparation will be revisited to determine if they remained intact following treatments. .  

Direct effects to canopy cover, stand density and tree species will be measured using a variable radius plot for trees larger than 5” in diameter. Plots will be placed using a randomly grid over 25 percent of the stands. Ten percent of the plots will be placed in stands that receive a thinning from below treatment and the remainder will be in stands that are restoration and fisher emphasis. Plots will be located outside of plantations or shelterwood plant aggregations. Variable structure plots will be taken within 3‐years after the three major phases of activity are completed in stands (mechanical treatments and prescribed fire).  

In addition, plots will be placed within planted areas to determine survival and stocking in compliance with NFMA. Plots will use the regional standard staked tree plots.  

1‐years after planting.  

3‐years after planting  

Page 49: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix B 

Monitoring Plan 

  Environmental Assessment Dinkey North Restoration Project  B‐2 

September 2010ICF J&S 00468.09

 

5‐years after planting  

Twenty five percent of areas identified as high or medium quality fisher rest sites will be visited to determine if they remained intact following treatments. A variable plot will be placed in the center of the fisher rest site and the diameter of trees over 5” and larger will be measured.  

BMP evaluations T01: Streamside Management Zones; T02: Skid Trails; T04: Landings; T06; Special Erosion Control and Revegetation; and T07: Meadow Protection will be conducted on selected treatment units following the R5 Best Management Practices Evaluation Program (BMPEP). Where herbicides are used for silvicultural purposes, evaluation V28: Vegetation Manipulation will be conducted in selected units. See the description of watershed monitoring for more information.  

Transportation  Monitoring includes review of road contract packages and maintenance standards to insure that mitigation and design measures are implemented. Road projects are supervised by qualified inspectors to ensure that measures are implemented and corrective action is taken if those measures are not implemented correctly.  

BMPEP evaluations E08: Road Surface, Drainage, and Slope Protection; E09: Stream Crossings; E11: Control of Sidecast Material; and E13: In‐Channel Construction Practices will be conducted on selected road segments where road reconstruction or maintenance occurs. See the description of watershed monitoring for more information.  

Fuels – Prescribed Fire Monitoring  Direct and indirect effects of prescribed burns will be monitored using a modified National Park Service format. Monitoring plots will be initiated for all prescribed burn units using the Browns Planar Intercept method to collect pre‐ and post‐ burn dead and down fuel loading, and duff and litter consumption, and to inventory overstory and understory vegetation, brush, and down logs, soil hydrophobicity, and post burn severity. Plots are permanent and are re‐monitored immediately post burn (as conditions warrant), and at one, three and five years post burn. Plots are reset prior to second entry burns. Monitoring will not be done on pile burn projects.  

BMPEP evaluation F25: Prescribed Fire will be conducted in selected burn units. Evaluation V28: Vegetation Manipulation will be conducted in selected treatment units to evaluate tractor piling, mastication, and other mechanical treatments. See the description of watershed monitoring for more information.  

Botany/Noxious Weeds – Plant Species Composition and Invasive Plant Monitoring  

To date (April 2010), no known Sierra National Forest TES plant species were found in the Dinkey North stands. However, it does not preclude new findings of TES plant species in the future and if there are new occurrences found, the following monitoring will occur: 

Monitoring of known sensitive plant occurrences within the Dinkey North stands will be done when possible to ensure that populations are not being affected significantly. If observations reveal that significant impact is taking place, then treatments are expected to be modified to reduce impact and subsequent effects evaluations will take this into account.  

Page 50: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix B 

Monitoring Plan 

  Environmental Assessment Dinkey North Restoration Project  B‐3 

September 2010ICF J&S 00468.09

 

Noxious weed monitoring for Dinkey North stands will be done concurrently with planned noxious weed treatments as well as the standard post‐treatment surveys throughout the project following the early detection and rapid response (EDRR) strategy the Sierra NF employs for all projects. 

Wildlife  Fisher monitoring ­ The Kings River Fisher Project is funded through 2013. Using a variety of overlapping monitoring techniques, this project will provide estimates of population density, survival, and reproduction for the Kings River Project area, including the Dinkey North project. Live trapping will provide data on population structure and individual health. Telemetry, both conventional VHF and GPS, will provide data on animal movement, home range sizes and habitat use, dispersal, survival, and resting and denning sites. Scat detector dog surveys will provide additional information on population density, habitat use, and diet. Treatments applied in areas where fishers occur will be used to examine the effects of the treatments on fisher behavior and habitat selection.  

Spotted Owl monitoring – The PSW California spotted owl demographic study was initiated in 1990 to estimate spotted owl reproduction, survival, and population rate of change and to examine the effects of habitat and habitat alteration (timber harvest and fuels treatment) on these parameters. The demography study will continue over the next five years. Surveys will be conducted over much of the greater Dinkey Creek area. Owls will be captured and banded or resighted each year to determine survival and population trends. Reproduction will be monitored by locating nests and counting the number of fledglings produced. Results from owl surveys in treated areas will be compared to results from the larger demographic study area and may provide insights on the effects of the treatments on spotted owls. 

Northern goshawks will be monitored according to the 2002 goshawk protocol.  Surveys will be conducted within the Dinkey North project.  According to the Sierra Nevada Forest Plan Amendment surveys will be conducted when activities are planned within or adjacent to a PAC to establish or confirm the location of the nest or activity center.   

Soils  Monitoring of soil conditions will be conducted on a selection of activity areas to determine if soil standard and guidelines are being met for the project. Monitoring will be done in accordance with the regional protocol that has been developed for the Sierra Nevada Framework (TenPas 2005). Soil monitoring will be conducted along transects according to the protocol before and after the proposed treatments. Soil monitoring will be designed to determine the extent of detrimental soil compaction from mechanical treatments and soil cover present after both mechanical treatment and prescribed burn. During the implementation of the selected alternative pre‐treatment soil transects should be established followed by post‐treatment soil transects along the same transect. Timing for conducting post‐treatment soil transects is important to determine soil cover after prescribed burn, especially soil cover condition going into the following winter. Six soil transects have been established in the Dinkey North project area to determine the existing soil condition (Alvarado and Gallegos 2005). If soils transect data finds that soil compaction is exceeding regional standard and guidelines, then additional sub‐soiling will be conducted  to meet regional standards and guidelines. If soil cover guidelines are not being met, then modifications to the implementation of mechanical treatment and or prescribed burn will be established to meet regional standards and guidelines.  

Page 51: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix B 

Monitoring Plan 

  Environmental Assessment Dinkey North Restoration Project  B‐4 

September 2010ICF J&S 00468.09

 

Watershed  BMPEP evaluation T05: Timber Sale Administration will be conducted to evaluate the effectiveness of the TSA in enforcing the Timber Sale Contract. All other BMP monitoring will be coordinated and facilitated by Watershed staff.  

The SNF conducts BMP evaluations on sites randomly selected from all recent vegetation management projects and road work performed on the Forest in order to provide data suitable for Region‐wide interpretation, as described in the Best Management Practices Evaluation Program (BMPEP) User’s Guide (USDA 2002). Sites in this project may or may not be randomly selected.  

Additional non‐random BMP monitoring will also occur, in accordance with the requirements of the Central Valley Regional Water Quality Control Board’s Waiver of Discharge Requirements for Discharges Related to Timber Harvest Activities (Resolution No. R5‐2005‐0052). In selecting additional sites, emphasis will be placed on activities in sub‐watersheds with CWE concerns. One of the areas of focus should be at road stream crossings.  

BMP monitoring may be performed by employees in Resources, Engineering, or Timber, or by a small interdisciplinary group. Annual training in BMP monitoring will be provided by qualified Resources staff for all employees participating in data collection. Quality control will be provided by Resources, and will consist of revisiting a sample of monitored sites to ensure consistency with protocols.  

The 2004 BMPEP Monitoring Results Report (USDA 2004) found that SMZs had the lowest implementation and effectiveness ratings of any timber management BMP monitored under the program. In accordance with the action plan presented in that report, SMZ implementation and effectiveness monitoring will be an emphasis for this project.  

Results will be summarized annually and reported to the District Ranger, the Forest Watershed Staff Officer, the Regional Hydrologist, and the Central Valley Regional Water Quality Control Board.  

Aquatics  Monitoring will be carried out to determine the condition of aquatic habitat at plots established on Glen Meadow Creek, an unnamed tributary to Glen Meadow Creek, and the nearest control site.  Stream Condition Inventory (SCI) Monitoring (Frazier et al 2005), water temperature, benthic macroinvertebrates, and Properly Functioning Condition Assessment (USDI 1998) will be carried out at these sites. Baseline data  has been collected and plots should be re‐surveyed five years post completion of the final phase of project implementation, or prior to implementation should a major storm event (10‐year or greater) occur prior to project implementation. Analysis of stream condition will be provided to inform and adapt subsequent site‐specific NEPA analysis and decisions. 

Inventory and monitoring of stream crossings that impede aquatic species passage will be evaluated using the protocols and information provide by the Region 5 Aquatic Passage Cadre in conjunction with monitoring BMP E09: Stream Crossing as described under the transportation monitoring section 

Page 52: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix B 

Monitoring Plan 

  Environmental Assessment Dinkey North Restoration Project  B‐5 

September 2010ICF J&S 00468.09

 

Heritage  In accordance with the stipulations of the First Amended Regional Programmatic Agreement, monitoring will be conducted as necessary to ensure that identified cultural resource protection measures are effective.  Sierra NF heritage program staff will determine the schedule and requirements for monitoring, based on the project implementation schedule and locations of cultural resources.  A record will be completed of each monitoring event, and included in the Forest's Programmatic Agreement annual report. 

Human Health for Glyphosate and R‐11 Application  Herbicide use is proposed for the Dinkey North project in reforestation areas. There is little chance glyphosate or the surfactant R11 will reach waterways, following application by ground spraying; however in response to concerns by Californians for Alternatives to Toxics on past projects similar to Dinkey North, the District plans to carry out monitoring to test for glyphosate and R11 in waterways.  

Sample Collection 

Background data for this project will be collected prior to application. When a perennial stream is adjacent to an application area, one sample will be gathered from the stream above and below the application area prior to spraying glyphosate and R‐11. Sample collection will be accomplished according to Standard Methods. (Standard Methods, 20th edition, page 1‐27, 1‐28). Sample bottles will be obtained from a certified water quality laboratory. Bottles will be prepared by the laboratory in accordance with standard methods for the detection of glyphosate (page 6‐114). Sample bottles for R‐11 only need to be one liter plastic or glass. Samples will be collected for analysis of both glyphosate and R11 as follows: 

1. Samples will be collected the day prior to the application.  

2. The day of the application, samples will be collected immediately following application of the chemicals.  

3. Additional samples will be collected daily during project implementation. 

4. Additional sampling at the same locations in perennial streams adjacent to application areas will be collected following a significant rain event within 90 days of application. Significant means a rain that result in overland runoff.  

Quality Control 1. A blank sample of distilled water in a similar container for each chemical will be included with 

the transported samples for quality control. It will be labeled similarly to the other bottles. It should not be labeled as Distilled Water.  

2. Individual(s) collecting the samples will not be allowed to come in contact with any spray apparatus, or bulk containers of glyphosate or R‐11. Samplers will not ride in vehicles with people doing the application or come in contact with them during or after application or mixing of chemicals.  

3. A spiked sample containing the chemicals may included with the transported samples to test for the laboratory accuracy.  

Page 53: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix B 

Monitoring Plan 

  Environmental Assessment Dinkey North Restoration Project  B‐6 

September 2010ICF J&S 00468.09

 

Transportation and Storage 

All samples will be iced to 2° C, kept away from light and transported to the laboratory the same day of sampling or the following Monday if a weekend (samples may be safely stored up to 2 weeks under these conditions (pg 6‐114, B, 2)). 

Chain of custody procedures will be followed using the laboratory’s forms. (pg 1‐30) 

Page 54: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

Appendix C An Ecosystem Management Strategy for Sierran Mixed‐

Conifer Forests 

Page 55: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

United States Department of Agriculture

Forest Service

Pacific Southwest Research Station

General Technical ReportPSW-GTR-220March 2009

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsMalcolm North, Peter Stine, Kevin O’Hara, William Zielinski, and Scott Stephens

Page 56: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Authors Malcolm North is a research ecologist and Peter Stine is a program manager, U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Sta-tion, Sierra Nevada Research Center, 1731 Research Park Drive, Davis, CA 95618, [email protected], [email protected]. Kevin O’Hara is a professor of silvi-culture and Scott Stephens is an associate professor of fire sciences, Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114, [email protected], [email protected]. William Zielinski is a research ecologist, U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Redwood Sciences Lab, 1700 Bayview Drive, Arcata, CA 95521, [email protected].

Cover photos, clockwise from top: Lodgepole and white pine forest on the Lee Lake Trail, by Malcolm North; fisher, by Bill Zielinski; Aspen Valley mixed conifer, by Malcolm North; prescribed fire, by Malcolm North; and heavy fuel load, by Eric Knapp.

Page 57: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

AbstractNorth, Malcolm; Stine, Peter; O’Hara, Kevin; Zielinski, William; Stephens,

Scott. 2009. An ecosystem management strategy for Sierran mixed-conifer forests. Gen. Tech. Rep. PSW-GTR-220. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 49 p.

Current Sierra Nevada forest management is often focused on strategically reducing fuels without an explicit strategy for ecological restoration across the landscape matrix. Summarizing recent scientific literature, we suggest managers produce dif-ferent stand structures and densities across the landscape using topographic vari-ables (i.e., slope shape, aspect, and slope position) as a guide for varying treatments. Local cool or moist areas, where historically fire would have burned less frequently or at lower severity, would have higher density and canopy cover, providing habitat for sensitive species. In contrast upper, southern-aspect slopes would have low densities of large fire-resistant trees. For thinning, marking rules would be based on crown strata or age cohorts and species, rather than uniform diameter limits. Collectively, our management recommendations emphasize the ecological role of fire, changing climate conditions, sensitive wildlife habitat, and the importance of forest structure heterogeneity.

Keywords: Climate change, ecosystem restoration, forest heterogeneity, forest resilience, topographic variability, wildfire.

Page 58: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Contents 1 Introduction

2 RecentScientificInformation

3 Fuel Dynamics and Current Management Practices

5 Ecological Restoration Using Fire

7 Climate Change

10 SensitiveWildlife

11 Management of Large Structures

12 Other Key Structures and Habitats

15 ImportanceofHeterogeneity

16 Within-Stand Variability

19 Landscape-Level Forest Heterogeneity

22 Revising Silvicultural Prescriptions

22 Importance of Tree Species

22 Retention of “Defect” Trees

22 Revising the Desired Diameter Distribution

23 Groups of Large Trees

24 Managing the Intermediate Size Class

26 Allocation of Growing Space

26 Conclusion

28 Summary Findings

31 Research Needs

33 Acknowledgments

33 Metric Equivalents

33 Literature Cited

Page 59: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

1

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

1 See definition in http://www.whitehouse.gov/infocus/healthyforests/Healthy_Forests_v2.pdf.

IntroductionIn recent years, there has been substantial debate over Sierra Nevada forest manage-ment. All perspectives on this debate inevitably cite “sound science” as a necessary foundation for any management practice. Over the dozen years since publication of the last science summary, the Sierra Nevada Ecosystem Project (SNEP 1996), many relevant research projects have published findings in dozens of scientific journals, yet these have not been synthesized or presented in a form that directly addresses current land management challenges.

Current management usually cites a “healthy forest”1 as a primary objective. It is difficult, however, to define forest “health,” and, as a broad concept, “a healthy forest” provides few specifics to guide management or assess forest practices. Various constituencies have different ideas of forest health (i.e., sustainable timber production, fire resilience, biodiversity, etc.) making forest health unclear as an objective (Kolb et al. 1994). A premise of silviculture is that forest prescriptions can be tailored to fit a wide variety of land management objectives, once those objectives are defined. We attempt to define some of the key management objec-tives on National Forest System lands in the Sierra Nevada and how they might be approached through particular silvicultural prescriptions.

In this paper, we focus on summarizing forest research completed at differ-ent scales and integrating those findings into suggestions for managing forest landscapes. Although many experiments and forest treatments still occur at the stand level, ecological research and recent public input have emphasized the need to address cumulative impacts and coordinate management across the forest land-scape. We believe our synthesis has some novel and highly applicable management implications. This paper, however, is not intended to produce new research findings for the academic community; rather it is an effort to provide managers of Sierran forests with a summary of “the best available science.” Some of the suggestions in this paper are already used in different Forest Service management practices.

There are several aspects of forest management that this paper does not address, but we would like to particularly note two omissions. The USDA Forest Service is charged with multiple-use management, which can include more objectives (e.g., socioeconomic impacts) than our focus on ecological restoration of Sierran forests. Restoration practices need both public and economic support to be socially and financially viable. Also, we do not specifically address the issues of water yield and quality in this paper, although water is one of the Sierra’s most important resources.

Over the dozen years since publication of the last science summary, the Sierra Nevada Ecosystem Project, project findings have not been synthesized or presented in a form that directly addresses current land management challenges.

Page 60: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

2

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Although our focus is on forest conditions, the suggested management practices may also make forests more resilient to disturbances including climate change. Management practices that help restore the forest headwaters of Sierran watersheds will benefit water production and quality for downstream users.

Recent Scientific InformationCurrent Sierra Nevada forest management is often focused on landscape strategies intended to achieve immediate fuel reduction (e.g., strategically placed area treatments [SPLATs] [Finney 2001], defensible fuel profile zones [DFPZs], and defense zones) (SNFPA 2004). Fire scientists have developed effective models for the strategic placement of these fuel treatments across forest landscapes accounting for practical limitations of how much area can actually be treated in the coming decades (Finney 2001, Finney et al. 2007). These models have been particularly valuable for optimizing and prioritizing fuel treatment locations, and comparing likely fire behavior between treated and untreated landscapes (Ager et al. 2007, Bahro et al. 2007, Finney et al. 2007, Stratton 2006). Although these models have assisted managers in the strategic placement of fuel treatments, they don't have the capacity to evaluate ecosystem responses to treatments. Treatments often rely upon various diameter limits for mechanical tree removal and treat only a portion of the landscape, roughly 20 to 30 percent, relegating most of the forest matrix to continued degradation from the effects of fire suppression. With a focus on evaluating fire intensity and spread, these fuel strategies do not explicitly address how forests might be ecologically restored or wildlife habitat enhanced. Without addressing these issues, treatments often face legal challenges resulting in fuel-treated acres falling far behind Forest Service goals (e.g., approximately 120,000 ac/yr in the Sierra Nevada [Stephens and Ruth 2005]).

We have learned much in recent years that can contribute to how forests are managed within strategically placed fuel treatments and throughout the landscape matrix. The Forest Service is already using many ideas in this paper. In other instances, litigation, limited funding, and regulations have fostered practices, such as thinning to a diameter limit or limited use of prescribed fire, that no one is happy with. We hope this science summary contributes to revising and removing some of these restraints.

In this paper, we first summarize recent science findings on fuel dynamics that might improve current fuel treatment practices. Even with these changes, however, Sierra Nevada forest management still lacks an explicit strategy for enhancing forest resilience and wildlife habitat, or managing the majority of the forested landscape outside fuel-treated areas. To incorporate these goals into

Fuel strategies do not explicitly address how forests might be ecologically restored or wildlife habitat enhanced. Without addressing these issues, treatments often face legal challenges.

Page 61: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

3

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

current management, we then examine recent research on the ecological role of fire, forest resilience under changing climate conditions, and habitat requirements of sensitive wildlife. Research in all of these areas stresses the ecological importance of forest heterogeneity. Knowing the restoration importance of fire, we determined the pattern and stand structures for implementing this heterogeneity based on how fuel and fire dynamics varied topographically. We discuss how these variable forest conditions could be implemented with revised silvicultural practices. Finally we summarize the paper’s content in short bullet points, distilling the applied management implications and listing research needed to improve and modify implementation.

Fuel Dynamics and Current Management PracticesForest fuels are usually assessed in three general categories: surface, ladder, and canopy bulk density (Agee et al. 2000). Fuel treatments often focus on ladder fuels (generally defined to be variably sized understory trees that provide vertical continuity of fuels from the forest floor to the crowns of overstory trees [Keyes and O’Hara 2002, Menning and Stephens 2007]). Some studies and models, however, suggest a crown fire entering a stand is rarely sustained (i.e., sustained only under extreme weather conditions) if understory fuels are too sparse to generate sufficient radiant and convective heat (Agee and Skinner 2005, Stephens and Moghaddas 2005). Surface fuels merit as much attention as ladder fuels when stands are treated. Prescribed fire is generally the most effective tool for reducing surface fuels.

One approach to developing fuel prescriptions, similar to current Forest Service procedures, is using modeling software to understand how the load of different fuel sizes and weather conditions affect predicted fire intensity. For example, Stephens and Moghaddas (2005) have modeled fire behavior and weather using Fuels Management Analysis (FMA) (Carlton 2004) and Fire Family Plus software (Main et al. 1990), respectively. The FMA uses two modules, Dead and Down Woody Inventory (data supplied by the Brown 1974 fuel inventory) and Crown Mass (data supplied by inventories of trees by species, size, height, and crown ratio), to model a stand’s crowning and torching indices (the windspeed needed to produce an active and passive crown fire, respectively), scorch height, and tree mortality. All four outputs can be controlled by changing surface and ladder fuels, giving managers an opportunity to interactively develop target fuel conditions for a desired fire behavior. Fuels can be reduced until the crowning and torching indices are higher than conditions that are likely to occur even under extreme weather events (e.g., Stephens and Moghaddas 2005).

Surface fuels merit as much attention as ladder fuels when stands are treated. Prescribed fire is generally the most effective tool for reducing surface fuels.

Page 62: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

4

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

In addition to ladder and surface fuels, managers have been concerned with reducing canopy bulk density in DFPZs and the defense zone of wildland urban interaces (WUI). Overstory trees are commonly removed, and residual trees are evenly spaced to increase crown separation. The efficacy of canopy bulk density reduction in modifying fire behavior is largely a function of weather conditions. Research has suggested there is often limited reduction in crown fire potential through overstory thinning alone, without also treating surface fuels (Agee 2007, Agee and Skinner 2005, Agee et al. 2000, Stephens and Moghaddas 2005). How-ever, some field observations (JoAnn Fites Kaufmann, Forest Service Enterprise Team, Steve Eubanks, Tahoe National Forest) suggest that under severe weather conditions (e.g., sustained high winds) or on steep slopes, crown separation may reduce the risk of crown fire spread. Fire behavior under extreme conditions is still difficult to model, and, furthermore, what constitutes “extreme” (because many wildfires occur under hot, windy conditions) has not been defined (for the Southwest see Crimmins [2006]). In forests adjacent to homes or key strategic points, managers may want to reduce canopy bulk density to reduce potential fire severity under all possible weather scenarios. Outside of those cases, the value of crown separation in preventing crown fire spread may be limited (Agee et al. 2000, Stephens and Moghaddas 2005).

A concern with the widespread use of canopy bulk density thinning in defensi-ble fuel profile and defense zones is the ecological effects of the regular tree spacing (fig. 1). In the Sierra Nevada, historical data (Bouldin 1999, Lieberg 1902), narra-tives (Muir 1911), and reconstruction studies (Barbour et al. 2002, Bonnicksen and Stone 1982, Minnich et al. 1995, North et al. 2007, Taylor 2004) indicate mixed-conifer forests were highly clustered with groups of trees separated by sparsely treed or open gap conditions. This clustering can be important for regenerating shade-intolerant pine (Gray et al. 2005, North et al. 2004, York and Battles 2008, York et al. 2003), increasing plant diversity and shrub cover (North et al. 2005b), moderating surface and canopy microclimate conditions within the tree cluster (North et al. 2002, Rambo and North 2009), and providing a variety of microhabitat conditions for birds (Purcell and Stephens 2006) and small mammals (Innes et al. 2007, Meyer et al. 2007a). Studies in Baja’s Sierra San Pedro del Martir (SSPM) forests also indicate forest structures (live trees, snags, logs, and regeneration) are highly clustered (Stephens 2004, Stephens and Fry 2005, Stephens and Gill 2005, Stephens et al. 2007a). This forest in Mexico shares many characteristics of mixed-conifer forests found in the Sierra Nevada but has had little fire suppression and has not been harvested. Although these Baja forests have a different weather pattern than California’s Sierra Nevada (Evett et al. 2007), they can provide some insight

Mixed-conifer forests were highly clustered with groups of trees separated by sparsely treed or open gap conditions.

Page 63: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

5

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

into the structure and ecological dynamics of a mixed-conifer forest with an active fire regime. A recent study of stressed SSPM Jeffrey pine/mixed-conifer forests where a 2003 wildfire was preceded by a 4-year drought, found spatial heterogene-ity was a key feature in forest resiliency (Stephens et al. 2008). A clumped tree distribution, where groups are separated by gaps, might also slow crown fire spread (fig. 2), but we do not know of any studies that have examined this idea. Studies in other mixed-conifer forests (e.g., Klamath Mountains and eastern Washington) imply this heterogeneity may be an important characteristic of frequent fire’s effect on mixed-conifer forests (Hessburg et al. 2005, 2007; Taylor and Skinner 2004). Fuel treatments that produce uniform leave tree spacing reduce this ecologically important spatial heterogeneity.

Managing surface fuels and reducing the use of regular leave-tree spacing can improve current fuel treatments. These changes, however, have not addressed a fundamental public concern that current forest management lacks explicit strategies for ecological restoration and provision of wildlife habitat.

Ecological Restoration Using FireFire plays a pivotal role in reshaping and maintaining mixed-conifer ecosystems. Fire was once very common in most of the Sierra Nevada and has been a primary force shaping the structure, composition, and function of mixed-conifer forests (Fites-Kaufman et al. 2007, Franklin and Fites-Kaufman 1996, McKelvey et al.

Figure 1—Regular spacing of “leave” trees in a defensible fuel profile zone.

Eric

Kna

pp

Page 64: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

6

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

1996, Stephens et al. 2007b). Management strategies need to recognize that, in many situations, fire is both a viable fuel-treatment tool (Agee and Skinner 2005; Stephens et al. 2009) and an important jumpstart for many ecosystem processes stalled by accumulating surface fuels and the absence of frequent burning (North 2006). The main effect of low-intensity fire is its reduction of natural and activity (i.e., resulting from management activities) fuels, litter, shrub cover, and small trees. These reductions open growing space, provide a flush of soil nutrients, and increase the diversity of plants and invertebrates (Apigian et al. 2006, Knapp et al. 2007, Moghaddas and Stephens 2007, Murphy et al. 2006, Wayman and North 2007). By reducing canopy cover, fire also increases habitat and microclimate heterogeneity at site, stand, and landscape levels (Chen et al. 1999, Collins et al. 2007, Concilio et al. 2006, Falk et al. 2007, Hessburg et al. 2007, Miller and Urban 1999). Fire is an indispensable management tool, capable of doing much of the work to restore ecological processes (Bond and van Wilgen 1996, Covington et al. 1997, North 2006, Stephenson 1999, Sugihara et al. 2006).

By itself, prescribed fire will be difficult to apply in some forests owing to fuel accumulations, changes in stand structure, and operational limitations on its use.

Figure 2—An example of the clumped tree distribution and canopy gaps produced by an active fire regime. The photograph is an aerial view of the Beaver Creek Pinery, which has experienced very little fire suppression.

Car

l Ski

nner

Fire is both a viable fuel-treatment tool and an important jumpstart for many ecosystem processes stalled by accumulating surface fuels and the absence of frequent burning

Page 65: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

7

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Mechanical treatments can be effective tools to modify stand structure and influ-ence subsequent fire severity and extent (Agee et al. 2000, Agee and Skinner 2005) and are often a required first treatment in forests containing excessive fuel loads. Prescribed fire is generally implemented very carefully, killing only the smaller size class trees (Kobziar et al. 2006). In some cases, it is ineffective for restoring resil-ience, at least in the first pass (Ritchie and Skinner 2007). For example, prescribed fire may not kill many of the larger ladder-fuel or co-dominant true fir trees that have grown in with fire suppression (Knapp and Keeley 2006, North et al. 2007). In many stands, mechanical thinning followed by prescribed fire may be necessary to achieve forest resilience much faster than with prescribed fire alone (Schwilk et al. 2009, Stephens et al. 2009).

Some forests cannot be prescription burned, at least as an initial treatment, because of air quality regulations, increasing wildland home construction, and limited budgets. Yet restoration of these forests still depends on modifying fuels because it reduces wildfire intensity when a fire does occur (Agee and Skinner 2005) and can produce stand conditions that simulate some of fire’s ecological effects (Innes et al. 2006, Stephens and Moghaddas 2005, Wayman and North 2007). Mechanical control of fuels allows fire, both wildland fire and prescribed fire, to be more frequently used as a management tool.

Climate ChangeForest restoration has often examined past conditions, such as the pre-European period, as a basis for developing management targets. With climate change, how-ever, is restoring forests to these conditions even an appropriate goal? Returning to a pre-European condition, is unlikely to be feasible, because in addition to climate, livestock grazing and Native American ignitions have changed (Millar and Woolfenden 1999, Millar et al. 2007). Rather than strive for restoration of a fixed presettlement condition, managers could increase tree, stand, and landscape resiliency.

Research suggests global mean minimum temperatures may have already begun to rise (Easterling et al. 1997). One effect of this change for western forests would be earlier spring melt of mountain snowpacks. An analysis of Western U.S. fire season length over the last 50 years suggests that during the last two decades, fires begin earlier in the spring and occur later in the fall possibly owing to this trend in elevated nighttime minimum temperatures (Westerling et al. 2006). An analysis of fire severity and size in California has found an increase in both, along with a regional rise in temperature (Miller et al. 2009). Climate change effects on precipitation have been more difficult to predict with models suggesting regional

Forest restoration has often examined past conditions, such as the pre-European period, as a basis for developing management targets. With climate change, however, is restoring forests to these conditions even an appropriate goal?

Page 66: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

8

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

differences. For example, some models predict an increase in precipitation for northern California, some predict a decrease, and others suggest little change (Hayhoe et al. 2004, Lenihan et al. 2003). Most models predict the southern Sierra will receive less precipitation, with a higher percentage of it occurring as rain rather than snow (Miller et al. 2003). Climate models suggest there will be more frequent and stronger shifts between El Niño and La Niña events making changes in average precipitation difficult to predict. Perhaps one point of consensus is that most model-ers agree the climate will become more extreme, suggesting oscillations between wet and drought conditions will be more common.

The potential effects of these changes on vegetation, fire, and wildlife are largely speculative (Field et al. 1999, Skinner 2007). Studies of past vegetation communities under a range of climates show unique plant assemblages without modern analogs (Millar et al. 2007, Williams and Jackson 2007). This suggests species will not simply shift up in elevation or latitude in response to warming conditions. Some general predictions that grouped species by functional categories have predicted an increase in broad-leaved over needle-leaved species, a general increase in ecosystem productivity (i.e., total biomass), and a decrease in forest and an increase in shrub and grasslands (Lenihan et al. 2003). Changes in forest understory may vary depending on existing vegetation and the synergistic effects of increasing nitrogen enrichment from pollution and increased herbaceous fuels affecting burn intensity and frequency (Hurteau and North 2008). If Sierra precipitation decreases or experiences more frequent, intense La Niña events, forests are likely to become more drought stressed. One study examining several decades of mixed-conifer demography trends (van Mantgem and Stephenson 2007) suggests a recent increase in mortality may be related to increased drought stress from a warming climate. This drought stress would make current, high-density, Sierra forests more susceptible to pest and pathogen mortality, particularly from bark beetles (Ferrell 1996, Fettig et al. 2007, Maloney et al. 2008, Smith et al. 2005).

Managing forests under these conditions will be challenging. In the face of uncertainty, Millar et al. (2007) have suggested managers consider adaptive strategies focused on three responses: resistance (forestall impacts and protect highly valued resources), resilience (improve the capacity of ecosystems to return to desired conditions after disturbance), and response (facilitate transition of ecosystems from current to new conditions). All of these strategies acknowledge the influence of climate change and suggest management may fail if focused on re-creating past stand conditions using strict structural targets.

Species will not simply shift up in elevation or latitude in response to warming conditions.

Page 67: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

9

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Although historical forest conditions may not provide numerical guidelines, the past still has lessons for managing Sierran forests. Historical forests can provide a better understanding of the ecological processes that have shaped mixed-conifer forest and the habitat conditions to which wildlife have adapted (Falk 1990, Society for Ecological Restoration 1993). All reconstruction studies, old forest survey data sets, and 19th-century photographs (Gruell 2001, McKelvey and Johnson 1992) suggest that frequently burned forests had very low tree densities. For example, in the early 20th century, Lieberg (1902) estimated that stem density in the northern California forests he surveyed was only 35 percent of its potential because of mortality from frequent fire. Studies reconstructing pre-European conditions all indicate that forests had a greater percentage of pine, a clustered pattern with highly variable canopy cover, and a high percentage of the growing stock in more fire-resistant, large-diameter classes. These past conditions give general guidance but should not be taken as strict numerical targets for density or diameter distribution in silvicultural prescriptions. What these reconstructions do provide is inference about the cumulative process effects of fire, insects, pathogens, wind, and forest dynamics on stand structure and composition, producing forests resilient to most disturbances, including wildfire. A modeling comparison of different stand struc-tures grown over 100 years, including those produced by fuel treatments (Hurteau and North 2009), found a low-density forest dominated by large pines was most resilient to wildfire, sequestered the most carbon, and had the lowest carbon dioxide (CO2) emissions and thus contributed less to global warming. An analysis of carbon emissions and storage from different fuel treatments, found understory thinning followed by prescribed fire produced the greatest reduction in potential wildfire severity without severely reducing carbon stocks (North et al., in press). As climate changes, managing the process or behavior of fire (i.e., manipulating fuels to influ-ence burn intensity) may produce more resistant and resilient forests than managing for a desired number and size of trees.

An important benefit of forest management focused on affecting fire behavior is that in areas of wildland fire and prescribed burning, forest structure and composi-tion are allowed to reestablish to modern dynamic equilibrium by adapting to fire that occurs under current climate and ignition conditions (Falk 2006, Stephenson 1999). A recent analysis of fire severity data by 10-yr periods in Yosemite’s mixed-conifer forest (Collins et al. 2009) revealed a fair degree of stability in the propor-tion of area burned among fire severity classes (i.e., unchanged, low, moderate, high). This suggests that free-burning fires, over time, can regulate fire-induced effects across the landscape.

As climate changes, managing the process or behavior of fire may produce more resistant and resilient forests than managing for a desired number and size of trees.

Page 68: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

10

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Sensitive WildlifeA strategy for mixed-conifer ecological restoration will conserve wildlife and mini-mize habitat impacts for both the broader animal community as well as the specific needs for a subset of species of concern. For over 15 years, Sierran forest manage-ment devoted significant effort to meeting the needs of old-forest-associated spe-cies, particularly the California spotted owl (Strix occidentalis occidentalis) (Verner et al. 1992) and the Pacific fisher (Martes pennanti). Sound wildlife management strategies balance species needs (both sensitive and common) at a variety of spatial (microsite to foraging landscape) and temporal (immediate to long-term population viability) scales (Noss et al. 1997).

Managing for owl and fisher viability needs to account for a few shared charac-teristics of these top tropic species, including territoriality, large home range size, strong associations with late-seral forest structures, and long-distance travel for foraging contribute to improved owl and fisher viability. Both species are strongly associated with Sierran forest stands characterized by large trees and dense canopy cover (Verner et al. 1992, Zielinski et al. 2004b). These features are consistently selected by spotted owls for nesting (North et al. 2000), and by fishers for denning and resting sites in the Sierra Nevada (Mazzoni 2002; Zielinski et al. 2004a, 2004b) and elsewhere. Fishers use cavities in living and dead conifers and hardwoods (particularly California black oak [Quercus kellogii Newb.]) as daily refuges, and tend to select the largest individual trees in dense canopy stands (fig. 3). Individual trees are rarely reused as rest structures, at least consistently from night to night (Zielinski 2004b), so many different large trees are required. This behavior makes provision of resting habitat critical to fisher conservation (Zielinski 2004b). Spot-ted owls also use many different large trees within their home range for roosting (Verner et al. 1992). Large decadent trees are less common in the Sierra Nevada than they once were (Bouldin 1999), and providing for this structure requires protecting existing large trees, managing for their future development, and reducing major threats (i.e., high-severity fire and pest mortality).

Foraging habitat, unlike resting habitat, is much easier to provide for spotted owls and fishers. The fisher’s diet is very diverse and includes a variety of small mammals, birds, reptiles, fruits, and insects (Zielinski et al. 1999). Owls have a somewhat more specialized diet. In most locations they tend to prey on woodrats (Neotoma spp.), northern flying squirrels (Glaucomys sabrinus), and deer mice (Peromyscus maniculatus), at least during nesting season (Forsman et al. 2004, Williams et al. 1992). Although our current knowledge of fisher and owl foraging habitats is fairly limited, we do know that their array of prey species are associated with a variety of forest conditions suggesting that habitat heterogeneity at different

Prey species are as-sociated with a variety of forest conditions suggesting that habi-tat heterogeneity at different spatial scales across the landscape may be desirable for sustaining adequate food supplies.

Page 69: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

11

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

spatial scales across the landscape may be desirable for sustaining adequate food supplies (Carey 2003, Coppeto et al. 2006, Innes et al. 2007, Meyer et al. 2005). A cautious strategy would be emulating patterns created by natural disturbance to provide a heterogeneous mix of forest habitat across a managed landscape (Linden-mayer and Franklin 2002, North and Keeton 2008).

Management of Large StructuresMuch of the public apprehension over forest management practices stems from possible impacts to old-forest-associated species such as the Pacific fisher, Cali-fornia spotted owl, and northern goshawk (Accipiter gentilis). All three of these sensitive species depend on a forest structure usually dominated by large trees, snags, and downed logs, which provide suitable substrate for nesting, denning, and resting sites. Retaining these large snags and logs may increase fire hazard in these favorable habitat microsites, particularly in warming climate conditions. In some stands that have been depleted of larger trees, the best available structures may be intermediate-sized trees, generally defined as the 20- to 30-inch size class for conifers. In these stands, retaining conifers of this size is important not only for immediate wildlife needs, but also because they will become the next generation of large trees, (and eventually) snags and logs. Fisher rest structures include live trees

Figure 3—Pacific fisher resting on a limb of a large black oak. Although this picture is from the Klamath Mountains, it is typical of the stand conditions associated with fisher resting locations.

Rebe

cca

Gre

en

Page 70: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

12

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

(e.g., cavities, broken tops), snags (e.g., cavities, broken tops, stumps), platforms (nests, mistletoe growths, witches’ brooms), logs, and ground cavities (Zielinski et al. 2004b). We do not yet have a good understanding of how best to distribute potential rest sites or how many are needed.

Other Key Structures and HabitatsOther forest features that may be important to sensitive species as well as the broader wildlife community include hardwoods, shrubs, “defect” trees, and ripar-ian corridors. Hardwoods, particularly black oak, are increasingly regarded as an important species for providing food and cavities. Many small and large mammals and birds use acorns as a food source (McShea 2000), particularly in large masting years (Airola and Barrett 1985, Morrison et al. 1987, Tevis 1952). Oaks often have broken tops and large cavities from branch breakage, and are frequently used for resting and nesting sites by small mammals (Innes et al. 2007), forest carnivores (Zielinski et al. 2004b), and raptors (North et al. 2000, Richter 2005). In many areas, hardwoods are in decline because they have become overtopped and shaded by conifers. The larger oaks likely germinated and had much of their early growth in more open forest than exists today (Zald et al. 2008). Provisions are needed to create open areas within stands to facilitate hardwood recruitment. Thinning around large oaks that are prolific seed producers creates open conditions that favor oak regeneration. However, thinning around large, cavitary oaks that are currently shaded is a difficult decision. It is important to balance thinning to prolong the life of the oak against the possibility that reducing the canopy around the oak will decrease the overall habitat value of the rest structure. Managers might consider thinning around some, but not all, cavitary oaks if several are present within a stand.

In fire-suppressed forests, shrubs are often shaded out (Nagel and Taylor 2005, North et al. 2005b) reducing their size, abundance, and fruit and seed production in low-light forest understories. Anecdotal narratives (Lieberg 1902, Muir 1911), a forest reconstruction (Taylor 2004), and a few early plot maps2 suggest shrub cover in active-fire conditions might have been much higher than in current forests, mostly owing to large shrub patches that occupied some of the gaps between tree clusters (fig. 4). In SSPM’s active-fire Jeffrey pine/mixed-conifer forests, Stephens et al. (2008) found shrub cover was highly spatially variable, and often occurred in high-density patches. Some birds (Robinson and Alexander 2002) and small mammals, including spotted owl prey such as the woodrat (Coppeto et al. 2006,

2 Eric Knapp. 2008. Personal communication. Research ecologist, USDA Forest Service, Silviculture Laboratory, 3644 Avtech Parkway, Redding, CA. 96002.

Page 71: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

13

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Figure 4—Photograph taken in 1929 of mixed-conifer forest before thinning and approximately 40 years after the last fire, near Pinecrest, California. Note the extensive cover of understory shrubs, particularly under the canopy gap in the foreground.

Robe

rt D

unni

ng

Page 72: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

14

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Innes et al. 2007), are associated with these habitat patches. We also know that species of Ceanothus are an important source of available nitrogen (Erickson et al. 2005, Johnson et al. 2005, Oakley et al. 2006) that persists even after the shrubs have been removed by fire (Oakley et al. 2003). In forests where shrubs are currently rare, it is important for managers to consider protecting what shrubs remain and increasing understory light conditions for shrub establishment and patch expansion. Patch size and configuration of such habitat should vary (see discussion on habitat heterogeneity in the next section).

Forest management practices have sometimes removed decadent, broken-topped, or malformed trees that are actually some of the most important features of habitat for many wildlife species (Mazurek and Zielinski 2004, North et al. 2000, Thomas et al. 1976, Zielinski et al. 2004b). These “defect” trees are some of the rarest structures in current forest conditions, often rarer than large trees. Success-ful management strategies might consider incorporating a means of preserving what remains and adding more of these features across the landscape. The Green Diamond Resource Company developed a guide for identifying and ranking the potential habitat quality of these forest structures in the Klamath Mountains. Developing a similar guide for Sierra forests would be extremely useful.

Connecting habitat within a landscape using corridors has been extensively studied, but results often indicate that suitable forest conditions within the corridor and the optimal distribution of corridors differs by species (Hess and Fischer 2001). In the Sierra Nevada, with its extended summer drought, riparian forests may be particularly important habitat and movement corridors for many species. Owing to greater soil development and moisture retention, these corridors usually provide more vegetative cover, have greater plant and fungal abundance and diversity (Meyer and North 2005), and a moderated microclimate (Rambo and North 2008). Many small mammals are found in greater abundance in riparian areas (Graber 1996, Kattelmann and Embury 1996, Meyer et al. 2007a), and some of these species are selected prey of old-forest-associated species. Initial observations of fisher 3 (Seglund 1995, Zielinski et al. 2004a) suggest that riparian areas may be preferred movement corridors. Riparian corridor width would be better defined by overstory and understory vegetation than the set distances of 150 and 300 feet that are specified in the Sierra Nevada Forest Plan Amendment (SNFPA 2004).

3 Katherine Purcell. 2008. Personal communication. Research wildlife biologist, USDA Forest Service, Forestry Sciences Laboratory, 2081 E Sierra Ave., Fresno, CA 93710.

Page 73: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

15

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Riparian forests are less moisture limited than upland areas, are highly productive, and now have some of the heaviest ladder and surface fuel loads of any Sierran forest communities (Bisson et al. 2003, Stephens et al. 2004). Recent Western U.S. research suggests that although reduced, fire is still a significant influence on riparian forest structure, composition, and function in forests with historically frequent, low-intensity fire regimes (Dwire and Kauffman 2003, Everett et al. 2003, Olson 2000, Pettit and Naiman 2007, Skinner 2003). Although fire in Sierran riparian areas was probably less frequent than in surrounding uplands, we do not yet know what its historical frequency, intensity, and extent was in stream corridors. When inevitable wildfires burn these corridors, they are likely to be high-severity crown fires that can denude riparian areas of vegetation (Benda et al. 2003). Any management activity in riparian areas, including no action, has risks. We suggest that riparian corridors be treated with prescribed fire in spring or late fall (after rains) to help reduce surface fuels (Beche et al. 2005). In moist conditions, some observations4 suggest that low-intensity prescribed fire can reduce fuels while maintaining high canopy cover and large logs if fuels have high moisture content.

Importance of HeterogeneityA management strategy that includes methods for increasing forest heterogeneity at multiple scales will improve habitat quality and landscape connectivity. Creating vertical and horizontal heterogeneity in forests with frequent fire, however, has been a challenge. Multilayered canopies, often associated with Pacific Northwest old-growth forests (Spies and Franklin 1988), are not the best model for Sierran mixed-conifer forests because when adjacent trees are multilayered, the continuity of vertical fuels can provide a ladder for surface fire into the overstory canopy. Horizontal heterogeneity, however, used to be relatively common in Sierran mixed-conifer forests (Franklin and van Pelt 2004, Knight 1997, Stephens and Gill 2005). All of the Sierran reconstruction studies (Barbour et al. 2002, Bonnicksen and Stone 1982, Minnich et al. 1995, North et al. 2007, Taylor 2004) suggest mixed-conifer forests, under an active fire regime, had a naturally clumped distribution containing a variety of size and age classes.

4 Dave McCandliss, 2008. Personal communication. Fire management officer, USDA Forest Service, Sierra National Forest, 1600 Tollhouse Road, Clovis, CA 93611.

We suggest that riparian corridors be treated with prescribed fire in spring or late fall (after rains) to help reduce surface fuels.

Page 74: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

16

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Within-Stand VariabilityAt the stand level, vertical heterogeneity can still be provided by separating groups of trees by their canopy strata (fig. 5). For example, a group of intermediate-size trees that could serve as ladder fuels might be thinned or removed if they are grow-ing under large overstory trees. The same size trees in a discrete group, however, might be lightly thinned to accelerate residual tree growth or left alone if the group does not present a ladder fuel hazard for large, overstory trees. These decisions could be made using the revised silvicultural markings proposed (see “Allocation of Growing Space” section), where growing space is allocated by leaf area index among trees in different height strata. This strategy would produce within-stand vertical heterogeneity, albeit in discrete tree clusters, which will contribute to horizontal heterogeneity.

Figure 5—Transect of a mixed-conifer forest in Yosemite National Park’s Aspen Valley, which has experienced three understory burns within the last 50 years. Note that the stand has vertical heterogeneity but that trees in different canopy strata tend to be spatially separated.

Dra

win

g co

urte

sy o

f Rob

ert v

an P

elt.

To increase horizontal heterogeneity, we suggest using microtopography as a template (Sherlock 2007) (fig. 6). Wetter areas, such as seeps, concave pockets, and cold air drainages, may have burned less frequently or at lower intensity (fig. 7). Limiting thinning to ladder fuels in these areas is suggested because with their potentially higher productivity and cooler microclimate, they can support greater stem densities, higher canopy cover, and reduced fire effects. A concern with current uniform fuel reduction is that these microsite habitats associated with sensitive species would be eliminated. Surface fuel loads at these microsites should still be reduced to lower their vulnerability to high-intensity fire.

Page 75: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

17

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Figure 6—Stand-level schematic of how forest structure and composition would vary by small-scale topography after treatment. Cold air drainages and concave areas would have high stem densities, more fir and hardwoods. With increasing slope, stem density decreases and species composition becomes dominated by pines and black oak.

Mat

ure

tree

draw

iings

cou

rtes

y of

Rob

ert v

an P

elt

Page 76: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

18

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

In contrast, upslope areas, where soils may be shallower and drier and where fire can burn with greater intensity, historically had lower stem densities and canopy cover (Agee and Skinner 2005) (fig. 8). On these sites, thinning might reduce the density of small or, where appropriate, intermediate trees and ladder and surface fuels toward a more open condition. In some circumstances this thin-ning may reduce water stress, accelerating the development of large residual trees (Kolb et al. 2007, Latham and Tappenier 2002, McDowell et al. 2003, Ritchie et al. 2008). Within a stand, varying stem density according to potential fire intensity effects on stand structure would create horizontal heterogeneity.

Figure 7—Mixed-conifer stand structure at Aspen Valley, Yosemite National Park, produced by frequent, low-intensity fire. Note the higher stem density and hardwoods in the seep drainage in the background.

Mal

colm

Nor

th

Within a stand, varying stem density according to potential fire intensity effects on stand structure would create horizontal heterogeneity.

Page 77: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

19

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Figure 8—Upslope stand conditions where thinner soils and rock outcrops are often associated with drier conditions, and lower density forests, which burned frequently.

Landscape-Level Forest HeterogeneityLandscapes with an active fire regime are highly heterogeneous. In Baja’s active-fire Jeffrey pine/mixed-conifer forests, Stephens et al. (2007a) found that “aver-age” stand characteristics such as snag density, large woody debris, tree density, basal area, and surface fuel loads were rare (approximately 15 to 20 percent of the sampled stands) and varied by an order of magnitude among localized (0.25-ac) plots. Studies in the Sierra Nevada (Fites-Kaufman 1997, Urban et al. 2000) and Klamath Mountains (Beaty and Taylor 2001, Taylor and Skinner 2004) found that mixed-conifer structure and composition varied by fire patterns that were controlled by landscape physiographic features (fig. 9). Fire intensity, and consequently a more open forest condition, increased with higher slope positions and more southwesterly aspects. In eastern Washington mixed-conifer forests, Hessburg et al. (2005, 2007) also found a heterogeneous historical forest landscape shaped by topographic influ-ences on fire behavior. Cumulatively these studies suggest that forest landscapes varied depending on what structural conditions would be produced by topography’s influence on fire frequency and intensity.

Mal

colm

Nor

th

These studies suggest that forest landscapes varied depending on what structural conditions would be produced by topography’s influence on fire frequency and intensity.

Page 78: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

20

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

We suggest creating landscape heterogeneity in the Sierra Nevada by mimick-ing the forest conditions that would be created by the fire behavior and return interval associated with differences in slope position, aspect, and slope steepness (Sherlock 2007). In general, stem density and canopy cover would be highest in drainages and riparian areas, and then decrease over the midslope and become low-est near and on ridgetops (fig. 10). Stem density and canopy cover in all three areas would be higher on northeast aspects compared to southwest. Stand density would also vary with slope becoming more open as slopes steepen.

Figure 9—Landscape variation in burn intensity on the Moonlight Fire (2007), Plumas National Forest.

Eric

Kna

pp

We suggest creating landscape heteroge-neity in the Sierra Nevada by mimicking the forest conditions that would be created by the fire behavior and return interval associated with differences in slope position, aspect, and slope steepness.

Page 79: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

21

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Figure 10—Landscape schematic of variable forest conditions produced by management treatments that differ by topographic factors such as slope, aspect, and slope position. Ridgetops have the lowest stem density and highest percentage of pine in contrast to riparian areas. Midslope forest density and composition varies with aspect: density and fir composition increase on more northern aspects and flatter slope angles.

Mat

ure

tree

draw

iing

cou

rtes

y of

Rob

ert v

an P

elt

Page 80: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

22

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Revising Silvicultural PrescriptionsA new silviculture for Sierran mixed-conifer forest that balances ecological restora-tion and wildlife habitat with fuel reduction can meet multiple forest objectives. By necessity, recent Sierran silviculture has first been focused on reducing fire sever-ity through fuel reduction. For many reasons, including maintaining or restoring resilient forests, public safety, and property loss, fuel reduction remains a priority. We suggest that, with some modification, wildlife and ecological objectives can also be met.

Importance of Tree SpeciesDiameter-limit prescriptions applied equally to all species will not remedy the significant deficit of hardwoods and pines in current forests (Franklin and Fites-Kaufmann 1996, SNFPA 2004). Prescriptions that differ by species can retain hardwoods, which are important for wildlife, and favor pines that can increase the forest’s fire resilience. Given their current scarcity in many locations, there are few instances that warrant cutting either hardwoods or pines in mixed-conifer forests.

Retention of “Defect” TreesGiven the wildlife habitat value of large trees with multiple tops, rot, cavities, etc., managers may want to retain them whenever possible. These growth forms often result from disease or injury (e.g., from lightning, wind breakage, and being struck by adjacent falling tree), and are important structural features for many wildlife species. Disease incidence does not necessarily indicate that a tree is genetically more susceptible and therefore should be “culled” (Tainter and Baker 1996). Modern Sierran forests have a significant shortage of these “decadent” but essential habitat structures (McKelvey and Johnson 1992).

Revising the Desired Diameter DistributionThe proposed silvicultural approach is a multiaged-stand strategy driven by the need for wildlife habitat, fire-resistant stand structures, and restoration of stand and landscape patterns similar to active-fire conditions in mixed-conifer forests. Although we use the term multiage, we are most interested in size and structure, and their associated ecological attributes. Multiaged stands are a flexible means of including variable stand structures with two or more age classes and integrating existing stand structures into silvicultural prescriptions. More traditional forms of uneven-age silviculture were heavily reliant on achieving a reverse-J diameter distribution that reduced large-tree retention (O’Hara 1998). Past silviculture has often changed the slope of this line (i.e., adjusting the q-factor [Smith et al. 1996])

Page 81: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

23

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

in response to different forest types and stand conditions, but has not fundamentally changed the shape of the curve or its allocation of growing space. The reverse-J diameter distribution prescribes a stand structure with a surplus of small trees and limited space for large trees. Such a distribution is inconsistent with historical Sier-ran mixed-conifer forests where fire reduced small-tree abundance while retaining fire-resistant, large-diameter trees (North et al. 2005a, 2007) (fig. 11). Research suggests that fire-prone forests rarely had reverse-J diameter distributions (Bouldin 1999; O’Hara 1996, 1998; Parker and Peet 1984).

Figure 11—Density of live trees (stems per hectare) in seven size classes for seven conditions in the Teakettle Experiment. The five fuel-reduction treatments (prescribed burn only, understory thin, understory thin and burn, overstory thin, and overstory thin and burn) retain the same reverse-J-shaped diameter distribution as the pretreatment (fire-suppressed old growth) and do not approximate the reconstruction of the diameter distribution in 1865 active-fire conditions. Reconstruction methods probably underestimate the number of small stems in 1865 active-fire conditions, but even a three- to fourfold increase would not produce a reverse-J distribution (reprinted from North et al. 2007).

24020016012080

30

20

10

00 25 50 75 100 125 >150

Den

sity

(ste

ms/

ha)

Diameter at breast height (cm)

PretreatmentBurn/no thinUnburned/understory thinBurn/understory thinUnburned/overstory thinBurn/overstory thin1865 reconstruction

Groups of Large TreesClusters of intermediate to large trees (i.e., >20 inches diameter at breast height [d.b.h.]) are sometimes marked for thinning with the belief that they are overstocked and thinning would reduce moisture stress. Some evidence, however, suggests these groups of large trees may not be moisture stressed by within-group competition

Research suggests that fire-prone forests rarely had reverse-J diameter distributions.

Page 82: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

24

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

because they have deep roots that can access more reliable water sources including fissures in granitic bedrock (Arkley 1981, Hubbert et al. 2001, Hurteau et al. 2007, Plamboeck et al. 2008). Reconstructions of Sierran forests with active fire regimes (Barbour et al. 2002, Bonnicksen and Stone 1982, Minnich et al. 1995, North et al. 2007, Taylor 2004) have consistently found large trees in groups. These groups, however, can be at risk if intermediate and small trees grow within the large tree groups. Thinning these small and intermediate trees will reduce fire laddering.

Managing the Intermediate Size ClassMany studies have documented the importance of large tree structures in forests for many ecological processes and their value for wildlife habitat (see summaries in Kohm and Franklin 1997, Lindenmayer and Franklin 2002). However, “large” varies with forest type and site productivity, and there is no set size at which a tree takes on these attributes. We only address this question of 20- to 30-in d.b.h. trees because it is so pivotal in the current management strategies for Sierran forests and is driving much of the discussion around fuel treatment thinnings.

What is achieved by thinning intermediate sized (20- to 30-in d.b.h.) trees? Some research suggests that for managing fuels, most of the reduction in fire sever-ity is achieved by reducing surface fuels and thinning smaller ladder-fuel trees (see summaries in Agee et al. 2000, Agee and Skinner 2005, Stephens et al. 2009). What is considered a ladder fuel differs from stand to stand, but typically these are trees in the 10- to 16-in d.b.h. classes. If trees larger than this are thinned, it is important to provide reasons other than for ladder-fuel treatment. These may include addi-tional fuel reduction such as thinning canopy bulk density in strategic locations. Or it could be other ecological objectives such as restoration of an active-fire stand structure, managing for open habitat that includes shrubs, or accelerating the development of large leave trees. Although large trees are often old, studies have found diameter growth increases significantly when high densities of adjacent small stems are removed (Das et al. 2008, Latham and Tappeiner 2002, McDowell et al. 2003, Ritchie et al. 2008, Skov et al. 2004). There may be socioeconomic purposes for harvesting intermediate-sized trees such as generating revenue to help pay for fuel treatment or providing merchantable wood for local sawmills (Hartsough et al. 2008). Clear statement of the objectives for thinning intermediate-sized trees will help clarify management intentions.

Under what conditions could intermediate trees be thinned? We suggest the following criteria but stress that these criteria are based on working hypotheses. The first selection criteria is species. Thinned intermediate-size trees should only be fire-sensitive, shade-tolerant species such as white fir (Abies concolor (Gord.

If trees larger than 10 to 16 inches in d.b.h. are thinned, it is important to provide reasons other than for ladder-fuel treatment.

Under what conditions could intermediate trees be thinned?

Page 83: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

25

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

& Glend.) Lindl. ex Hildbr.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and incense-cedar (Calocedrus decurrens (Torr.) Florin). In mixed-conifer forest, attempt to keep intermediate-size pines and hardwoods because of their relative scarcity and importance to wildlife and fire resilience. A second criterion would be tree growth form. Some intermediate-size trees can still function as ladder fuel, particularly those that were initially grown in more open conditions (fig. 12). These trees can have live and dead limbs that extend down close to the forest floor provid-ing a continuous fuel ladder. A third condition is middle to upper slope topographic position. In these slope positions, some thinning of intermediate-size trees may help accelerate the development of large “leave” trees. We suggest, however, that these criteria not be applied to riparian areas, moist microsites often associated with deeper soils, concave topography, or drainage bottoms because these areas may have supported higher tree densities and probably greater numbers of intermediate-size trees (Meyer et al. 2007b).

Figure 12—Fire suppressed stand in the Teakettle Experimental Forest with white fir (Abies concolor) 20- to 30-in d.b.h. with ladder fuel potential.

Mal

colm

Nor

th

Page 84: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

26

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Allocation of Growing SpaceWe propose a form of multiaged silviculture for Sierra mixed-conifer forest that is flexible to meet diverse forest objectives, that would retain existing large trees and promote recruitment of more large structures, and that provides for sustainability. The silvicultural system is based on leaf area representing the occupied growing space of trees and stands. By segmenting stand-level leaf area index among canopy strata, we can develop tools to allocate growing space and provide flexibility for creating heterogeneous stand structures and meet ecological objectives (fig. 13) (O’Hara 1996, O’Hara and Valappil 1999). For example, leaf area could be allocated primarily to larger trees in one stand where these large trees are present and important structural components. In other stands, large trees may be absent and leaf area is allocated to developing cohorts to expedite development of large structural features. Trees are harvested and timber is an output, but the silvicultural system’s focus is on retained stand structures, not what is removed for harvest. On the ground, this system provides for a diverse stand structure with both vertical (in discrete groups) and horizontal heterogeneity. It is prescribed one stand at a time and creates landscape-level heterogeneity by varying the stocking regime. Treatments are intended to create a mixture of structures sustained throughout the period between active management entries.

The proposed silvicultural system recognizes canopy strata as the primary unit for allocation of growing space. Within these strata, space is allocated to species or species groups. A resulting stocking matrix might consist of three canopy strata and three species groups (e.g., pines, white fir and incense-cedar, and others) provid-ing for a stocking matrix with nine cells. This approach generally simplifies the marking of trees and also can modify species composition (O’Hara et al. 2003). This silvicultural revision will, however, require a new research project to adapt the MultiAge Stocking Assessment Model (MASAM) to Sierra Nevada mixed-conifer forests.

ConclusionA central premise of this paper is that the risks of carefully considered active forest management are lower than the risks of inaction and continued fire suppression in the Sierras’ fire-prone forest types. We recognize the need to address specific management priorities (e.g., sensitive species) while developing practical and ecologically sound silvicultural guidelines. Many of the ideas contained within this ecosystem management strategy are not new, but their implementation will require some innovations, and they may provide a greater range of management options than do current practices. Our scientific understanding of mixed-conifer

The risks of carefully considered active forest management are lower than the risks of inaction and continued fire suppression in the Sierras’ fire-prone forest types.

Page 85: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

27

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Figure 13—MultiAged Stocking Assessment model of a three-strata (or three-cohort) Oregon ponderosa pine (Pinus ponderosa Dougl. ex Laws.) stand. Growing space can be allocated in a variety of patterns providing flexibility in stand structure design (from O’Hara et al. 2003). (— = not calculated.)

Cohort 400

Cohort 40 0000000000

TOTAL Leaf area index (LAI)

Number of trees/cohort/acrePercent of LAI/cohort

Leaf area index/cohort ECCLeaf area index/cohort BCCLeaf area/tree (ft2) ECCBA/cohort (ft2/ac) ECCBA/cohort (ft2/ac) BCCAverage volume increment/tree (ft3/yr) ECCAverage volume increment/CC (ft3/ac/yr)Quadratic mean DBH/cohort (in) ECCTree vigor (in3/ft2/yr)Stand density index ECCStand density index BCC

6Cohort 1

2550

Cohort 13.01.3

5,227.272.529.71.0220.723.1

0.40895.246.6

Cohort 24035

Cohort 22.10.7

2,286.947.614.40.6416.314.8

0.46074.628.7

Ponderosa pine MASAM — OREGON

Cohort 35515

Cohort 30.9

0712.819.8

00.185.08.1

0.44039.4

0

Diagnostic Information

User-Specified Variables

TOTAL120100

TOTAL6.02.0—

139.844.1

—42.0

——

209.275.3

Page 86: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

28

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

ecosystems is rudimentary, and, therefore, it is important to continue learning from these strategies as they are applied. We have tried to identify information that is supported by many studies, that is suggested by fewer but often recent studies, and that we can only infer from lines of evidence or observation but do not yet know with any degree of certainty. In the “Research Needs” section below, we identify some of the topics raised in this paper that need further investigation, although management will also be improved by trying some of the proposed strategies and learning what works and what fails.

This project began at the invitation of Forest Service Pacific Southwest Region managers who asked if we could develop a summary of current research to inform mixed-conifer management. In bringing together authors representing different key disciplines affecting Sierran forests, we did not know whether recent fire science, forest ecology, and wildlife biology research would provide contrasting or complementary management concepts or whether the concepts could be translated into silviculture practices. It was soon clear that each discipline’s research findings coalesced around the importance of variable forest structure and fuels conditions for ecological restoration, forest resilience, and resulting diversity of wildlife habi-tat. We know that fire was the most important process influencing these ecosystems and that fire behavior was influenced by topography. This suggests managers could use localized site conditions and landscape position as a guide for varying forest treatments. The various treatments can be based on flexible thinning guidelines using tree species and canopy position to vary retention by site conditions. In sum, our management strategy is based on emulating forest conditions that would have been created by low-intensity, frequent fire throughout the forest matrix.

Summary FindingsSierra Nevada mixed-conifer forests could benefit from a new management strategy that goes beyond short-term fuel treatment objectives and incorporates long-term ecological restoration and habitat improvement into forestry practices. This strategy is compatible with current landscape fuel treatments (i.e., SPLATs, DFPZs, and WUI defense zones), but strives to incorporate ecological restoration and wildlife habitat needs that have not been explicitly addressed. This strategy can be imple-mented using a multiage silvicultural system to meet fuel reduction, ecosystem restoration, and wildlife habitat objectives. Important facets of the strategy include:

• Mechanicalfuelsmanagement:When stands cannot be burned, reducing fuels to moderate fire behavior is still a key priority because wildfire is likely to burn the area eventually. A few of the ecological benefits of fire are achieved with mechanical fuel reduction, but thinning is not an effective

In bringing together authors representing different key disci-plines affecting Sierran forests, we did not know whether they would provide contrasting or complementary management con-cepts; however, each discipline’s research findings coalesced around the importance of variable forest structure and fuels conditions.

Page 87: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

29

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

substitute for fire in affecting ecosystem processes. Reducing surface fuels is as important as reducing ladder fuels.

• Limituseofcrownseparationinfueltreatments: Sparingly apply canopy bulk density reduction and increased tree crown separation only in key strategic zones. More research is needed, but current models suggest its effects on reducing crown fire spread are limited, and the regular leave-tree spacing does not mimic tree patterns in active-fire-regime forests.

• Theecologicalimportanceoffire:Prescribed fire can help reduce surface fuels and restore some of the ecological processes with which mixed-conifer forests have evolved.

• Treatmentsfocusedonaffectingfirebehavior: Efforts to restore pre-European forest conditions are likely to fail in the face of climate change and also do not provide flexible prescriptions that adapt to different site conditions. Focus treatments on affecting potential fire behavior by manip-ulating fuel conditions, thereby allowing forests to equilibrate to fire under modern conditions and increasing forest heterogeneity.

• Retentionofsuitablestructuresforwildlifenest,den,andrestsites: Trees providing suitable structure for wildlife include large trees and trees with broken tops, cavities, platforms, and other formations that create struc-ture for nests and dens. These structures typically occur in the oldest trees. Develop and adopt a process for identifying, and thus protecting, such trees for use by inventory and prescription-marking crews.

• Stand-leveltreatmentsforsensitivewildlife:Areas of dense forest and relatively high canopy cover are required by California spotted owls, fish-ers, and other species. Identify and manage areas where, historically, fire would have burned less frequently or at lower severity owing to cooler microclimate and moister soil and fuel conditions for the higher stem and canopy densities that they can support.

• Largetreesandsnags: Given their current deficit in mixed-conifer forest and the time necessary for their renewal, protect most large trees and snags from harvest and inadvertent loss owing to prescribed fire.

• Landscape-leveltreatmentsforpreyofsensitivewildlife:In the absence of better information, habitat for the prey of owls and fishers may best be met by mimicking the variable forest conditions that would be produced by frequent fire. Reductions in stem density and canopy cover would emulate the stand structure produced by local potential fire behavior, varying by a site’s slope, aspect, and slope position.

Page 88: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

30

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

• Retainhardwoodsanddefecttreesandpromoteshrubpatches:Hardwoods (particularly black oak) and defect trees (i.e., those with cavi-ties, broken tops, etc.) are valued wildlife habitat and should be protected whenever possible. Increasing understory light for shrub patch develop-ment, can increase habitat for some small mammals and birds.

• Riparianforestfuelreduction: Prescribed burning of riparian forest will help reduce fuels in these corridors that are also important wildlife habitat.

• Spatialdispersionoftreatments:Trees within a stratum (i.e., canopy layers or age cohorts) would often be clumped, but different strata would usually be spatially separated for fuel reasons. Give particular attention to providing horizontal heterogeneity to promote diverse habitat conditions.

• Spatialvariationinforeststructure:“Average” stand conditions were rare in active-fire forests because the interaction of fuels and stochastic fire behavior produced highly heterogeneous forest conditions. Creating “aver-age” stand characteristics replicated hundreds of times over a watershed will not produce a resilient forest, nor one that provides for biodiversity. Managers could strive to produce different forest conditions and use topog-raphy as a guide for varying treatments. Within stands, important stand topographic features include concave sinks, cold air drainages, and moist microsites. Landscape topographic features include slope, aspect, and slope position.

• Standdensityandhabitatconditionsvarybytopographicfeatures:Basic topographic features (i.e., slope, aspect, and slope position) result in fundamental differences in vegetation composition and density producing variable forest conditions across the Sierra landscape. Drainage bottoms, flat slopes, and northeast-facing slopes generally have higher site capacity, and thus treatments retain greater tree densities and basal areas.

• Tree-species-specificprescriptions:Hardwoods and pines, with much lower densities in current forests compared with historical conditions, would rarely be thinned. Thinning would be focused on firs and incense-cedar. Address pine plantations separately.

• Silviculturalmodelandstrategy:Tree diameter distributions in active-fire forests vary but often have nearly equal numbers in all diameter size classes because of periodic episodes of fire-induced mortality and subse-quent recruitment. Stand treatments that significantly reduce the proportion of small trees and increase the proportion of large trees compared to cur-rent stand conditions will improve forest resilience.

Page 89: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

31

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

• Treatmentofintermediate-sizetrees: In most cases, thinning 20- to 30-in d.b.h. trees will not affect fire severity, and, therefore, other objectives for their removal should be provided. Where those objectives are identified, silvicultural prescriptions would only remove intermediate-size trees when they are shade-tolerants on mid or upper slope sites.

• Fieldimplementationofsilviculturalstrategy:Modify marking rules to ones based on species and crown strata or size and structure cohorts (a proxy for age cohorts) rather than uniform diameter limits applied to all species.

• Allocationofgrowingspace:A large proportion of the growing space would be allocated to the largest tree stratum.

• Assessmentoftreatmenteffects: Emphasis is on what is left in a treated stand rather than what is removed.

Research NeedsSome of our management recommendations are currently based on inferences from studies in other forest types. There are many aspects of Sierra Nevada ecosystems that are still poorly understood. The list below is focused on research needed to investigate and refine some of the suggested management practices. These studies and implementing the suggested strategy will undoubtedly raise new questions. Working together, forest managers and researchers can exchange information and identify unknowns as they develop.

1. Quantify the leaf area and growth relationships needed to develop stock-ing control relationships for Sierra Nevada mixed-conifer forest. This will allow completion of a Sierra Nevada MASAM for the Kings River Project (KRP) area or any other area in the Sierra where this approach could be implemented. This tool will allow the design and assessment of a variety of multiaged-stand structures that include, among others, older residual trees, development of resilient structures, and accommodation of prescribed burning regimes.

2. Develop and implement an adaptive monitoring strategy to assess the effi-cacy of a multiaged strategy at both the stand and landscape scales. This information will include both on-the-ground monitoring of treated stands and simulations using Sierra Nevada MASAM. This input will be used to refine the strategy over time and make large-scale assessments of landscape patterns for wildlife habitat, potential fire behavior, and general diversity of

Page 90: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

32

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

vegetation patterns. A multiaged strategy would be adjusted pending results of monitoring efforts to accommodate other resource objectives such as wildlife, fire, or forest restoration.

3. Assess the potential outcomes of this proposed silvicultural approach on vegetation response and wildlife habitat features of interest. This could be combined with a comparison to other possible silvicultural strategies to evaluate the similarities and differences of approaches. Research would also assess the effects of any treatment on predicted fisher resting habi-tat using either a predictive microhabitat model (Zielinski et al. 2004b) or a habitat model based on Forest Inventory and Analysis (FIA) protocols (Zielinski et al. 2006).

4. More closely examine the distribution of tree size and canopy density characteristics within female fisher home ranges to establish the means and variances of tree number/density by size class, for both conifers and hardwoods. This would require overlaying the boundaries of female fisher home ranges, which have been estimated on the Sierra and Sequoia National Forests (Mazzoni 2002, Zielinski et al. 2004a), and then using both remotely sensed and ground-based methods to described the vegeta-tion within these areas. Once we have estimates of the average number of, say, white fir between 20 and 30 in d.b.h. per acre within the average female home range, we will be able to compare this and other characteristics with the average number of this species and size class predicted to occur as residuals after proposed treatments. If the selected tree size or density characteristic, when measured after treatment, is significantly lower than what occurs in female home ranges, then the proposed management activity would not be consistent with fisher conservation.

5. Determine fire histories of riparian areas to identify fire frequency, inten-sity, and extent. How far does the riparian influence for dampening fire extend away from the stream? What stream characteristics (i.e., bank slope, stream size, etc.) affect the size of the riparian influence zone? What were historical fuel loads in these forests? How can riparian systems be managed to reduce adverse fire effects while maintaining wildlife habitat? In current wildfires, are riparian forests typically experiencing high-intensity crown fires, or are moister fuels and microclimate still dampening fire behavior?

Page 91: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

33

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

6. Determine how forest structure and composition varied by topographic feature under an active-fire regime in the Sierra Nevada. There have been studies in the Klamath Mountains and eastern Washington, but no information is available for California forests. The research would identify which topographic features matter, and stand structure and fuels loads associated with different physiographic areas.

AcknowledgmentsWe acknowledge the following reviewers who contributed valuable insights and written comments that helped us shape this paper: Sue Britting, Steve Eubanks, Chris Fettig, Mark Finney, Jerry Franklin, Julie Gott, Dave Graber, Steve Hanna, Chad Hanson, Paul Hessburg, Matthew Hurteau, Jerry Jensen, Bobette Jones, JoAnn Fites Kaufmann, John Keane, Eric Knapp, Mike Landram, Dave McCandliss, Connie Millar, Joe Sherlock, Carl Skinner, Kim Sorini-Wilson, Nate Stephenson, Craig Thomas, Don Yasuda, and three anonymous reviewers. Thanks to Robert van Pelt, University of Washington, and Steve Oerding, Academic Technology Services, University of California, Davis for providing graphics. We are also grateful to Maichi Phan for her help with formatting the manuscript.

Metric EquivalentsWhenyouknow: Multiplyby: Tofind:

Acres (ac) 0.405 HectaresInches (in) 2.54 CentimetersFeet (ft) .305 Meters

Literature CitedAgee, J.K. 2007. The role of silviculture in restoring fire-adapted ecosystems.

Keynote address. In: Powers, R.F., tech. ed. Restoring fire-adapted ecosystems: proceedings of the 2005 national silviculture workshop. Gen. Tech. Rep. PSW-GTR-203. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: ix-xviii.

Agee, J.K.; Bahro, B.; Finney, M.A.; Omi, P.N.; Sapsis, D.B.; Skinner, C.N.; van Wagtendonk, J.W.; Weatherspoon, C.P. 2000. The use of shaded fuel breaks in landscape fire management. Forest Ecology and Management. 127: 55–66.

Page 92: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

34

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Agee, J.K.; Skinner, C.N. 2005. Basic principles of forest fuel reduction treatments. Forest Ecology and Management. 211: 83–96.

Ager,A.A.;Finney,M.A.;Kerns,B.K.;Maffei,H.2007. Modeling wildfire risk to northern spotted owl (Strix occidentalis caurina) habitat in central Oregon, USA. Forest Ecology and Management. 246(1): 45–56.

Airola, D.A.; Barrett, R.H. 1985. Foraging and habitat relationships of insect-gleaning birds in a Sierra Nevada mixed-conifer forest. The Condor. 87(2): 205–216.

Apigian, K.O.; Dahlsten, D.L.; Stephens, S.L. 2006. Fire and fire surrogate treatment effects on leaf litter arthropods in a western Sierra Nevada mixed-conifer forest. Forest Ecology and Management. 221: 110–122.

Arkley, R.J. 1981. Soil moisture use by mixed conifer forest in a summer-dry climate. Soil Science Society of America Journal. 45: 423–427.

Bahro,B.;Barber,K.H.;Sherlock,J.W.;Yasuda,D.A.2007. Stewardship and fireshed assessment: a process for designing a landscape fuel treatment strategy. In: Powers, R.F., tech. ed. Restoring fire-adapted ecosystems: proceedings of the 2005 national silviculture workshop. Gen. Tech. Rep. PSW-GTR-203. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 41–54.

Barbour,M.;Kelley,E.;Maloney,P.;Rizzo,D.;Royce,E.;Fites-Kaufmann,J. 2002. Present and past old-growth forest of the Lake Tahoe Basin, Sierra Nevada. U.S. Journal of Vegetation Science. 13: 461–472.

Beaty, R.M.; Taylor, A.H. 2001. Spatial and temporal variation of fire regimes in a mixed-conifer forest landscape, Southern Cascades, California, USA. Journal of Biogeography. 28: 955–966.

Beche, L.A.; Stephens, S.L.; Resh, V.H. 2005. Effects of prescribed fire on a Sierra Nevada (California, USA) stream and its riparian zone. Forest Ecology and Management. 218: 37–59.

Benda, L.; Miller, D.; Bigelow, P.; Andras, K. 2003. Effects of post-wildfire erosion on channel environments, Boise River, Idaho. Forest Ecology and Management. 178: 105–119.

Bisson,P.A.;Rieman,B.E.;Luce,C.;Hessburg,P.F.;Lee,D.C.;Kershner,J.L.; Reeves, G.H.; Gresswell, R.E. 2003. Fire and aquatic ecosystems of the western USA: current knowledge and key questions. Forest Ecology and Management. 178(1–2): 213–229.

Page 93: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

35

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Bond, W.J.; van Wilgen, B.P. 1996. Fire and plants. London: Chapman and Hall. 263 p.

Bonnicksen, T.M.; Stone, E.C. 1982. Reconstruction of a presettlement giant sequoia-mixed conifer forest community using the aggregation approach. Ecology. 63: 1134–1148.

Bouldin, J.R. 1999. Twentieth-century changes in forests of the Sierra Nevada. Davis, CA: University of California. 222 p. Ph.D. dissertation.

Brown, J.K. 1974. Handbook for inventorying downed woody material. Gen. Tech. Rep. INT-16. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest Range and Range Experiment Station. 24 p.

Carey, A.B. 2003. Biocomplexity and restoration of biodiversity in temperate coniferous forest: inducing spatial heterogeneity with variable-density thinning. Forestry. 76(2): 127–136.

Carlton, D. 2004. Fuels Management Analyst Plus software. Version 3.02. Estacada, OR: Fire Program Solutions LLC.

Chen,J.;Saunders,S.C.;Crow,T.R.;Naiman,R.J.;Brosofske,K.D.;Mroz,G.D.; Brookshire, B.L.; Franklin, J.F. 1999. Microclimate in forest ecosystem and landscape ecology. BioScience. 49: 288–297.

Collins, B.M.; Kelly, M.; van Wagtendonk, J.; Stephens, S.L. 2007. Spatial patterns of large natural fires in Sierra Nevada wilderness areas. Landscape Ecology. 22: 545–557.

Collins, B.M.; Miller, J.D.; Thode, A.E.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L. 2009. Interactions among wildland fires in a long-established Sierra Nevada natural fire area. Ecosystems. 12: 114–128.

Concilio, A.; Soung, R.; Ma, S.; North, M.; Chen, J. 2006. Soil respiration response to experimental disturbances over three years. Forest Ecology and Management. 228: 82–90.

Coppeto, S.A.; Kelt, D.A.; Van Vuren, D.H.; Wilson, J.A.; Bigelow, S. 2006. Habitat associations of small mammals at two spatial scales in the northern Sierra Nevada. Journal of Mammalogy. 87(2): 402–413.

Covington,W.W.;Fule,P.Z.;Moore,W.W.;Hart,S.C.;Kolb,T.E.;Mast,J.N.;Sackett, S.S.; Wagner, M.R. 1997. Restoring ecosystem health in ponderosa pine forests of the Southwest. Journal of Forestry. 95: 23–29.

Page 94: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

36

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Crimmins, M.A. 2006. Synoptic climatology of extreme fire-weather conditions across the Southwest United States. International Journal of Climatology. 26: 1001–1016.

Das, A.; Battles, J.; van Mantgem, P.; Stephenson, N. 2008. Spatial elements of mortality risk in old-growth forests. Ecology. 89: 1744–1756.

Dwire,K.A.;Kauffman,J.B.2003. Fire and riparian ecosystems in landscapes of the western USA. Forest Ecology and Management. 178: 61–74.

Easterling, D.; Horton, B.; Jones, P.; Peterson, T.; Karl, T.; Parker, D.; Salinger,M.;Razuvayev,V.;Plummer,N.;Jamason,P.;Folland,C. 1997. Maximum and minimum temperature trends for the globe. Science. 277: 364–367.

Erickson, H.E.; Soto, P.; Johnson, D.W.; Roath, B.; Hunsaker, C. 2005. Effects of vegetation patches on soil nutrient pools and fluxes with a mixed-conifer forest. Forest Science. 51: 211–220.

Everett,R.;Schellhaas,R.;Ohlson,P.;Spurbeck,D.;Keenum,D.2003. Continuity in fire disturbance between riparian and adjacent sideslope Douglas-fir forests. Forest Ecology and Management. 175(1-3): 31–47.

Evett,R.;Franco-Vizcaino,E.;Stephens,S.L.2007. Comparing modern and past fire regimes to assess changes in prehistoric lightning and anthropogenic ignitions in a Jeffrey pine-mixed conifer forest in the Sierra San Pedro Martir, Mexico. Canadian Journal of Forest Research. 37: 318–330.

Falk, D.A. 1990. Discovering the future, creating the past: some reflections on restoration. Restoration Management Notes. 8: 71.

Falk, D.A. 2006. Process-centred restoration in a fire-adapted ponderosa pine forest. Journal for Nature Conservation. 14: 140–151.

Falk,D.A.;Miller,C.;McKenzie,D.;Black,A.E.2007. Cross-scale analysis of fire regimes. Ecosystems. 10: 809–823.

Ferrell, G.T. 1996. The influence of insect pests and pathogens in the Sierra forests. In: Sierra Nevada Ecosystem Project: final report to Congress. Davis, CA: University of California, Centers for Water and Wildland Resources. Volume 2, Chapter 45.

Page 95: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

37

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Fettig,C.J.;Lepzig,K.D.;Billings,R.F.;Munson,A.S.;Nebeker,T.E.;Negron,J.F.; Nowak, J.T. 2007. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the Western and Southern United States. Forest Ecology and Management. 238: 24–53.

Field, C.B.; Daily, G.C.; Davis, F.W.; Gaines, S.; Matson, P.A.; Melack, J.; Miller, N.L. 1999. Confronting climate change in California: ecological impacts on the Golden State. Union of Concerned Scientists and Ecological Society of America. Cambridge, MA: UCS Publications. 63 p.

Finney, M.A. 2001. Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. Forest Science. 47: 291–228.

Finney, M.A.; Selia, R.C.; McHugh, C.W.; Ager, A.A.; Bahro, B.; Agee, J.K. 2007. Simulation of long-term landscape-level fuel treatment effects on large wildfires. International Journal of Wildland Fire. 16(6): 712–727.

Fites-Kaufman,J.1997. Historic landscape pattern and process: fire, vegetation, and environment interactions in the northern Sierra Nevada. Seattle, WA: University of Washington. Ph.D. dissertation. 175 p.

Fites-Kaufman,J.A.;Rundel,P.;Stephenson,N.;Weixelman,D.A.2007. Montane and subalpine vegetation of the Sierra Nevada and Cascade Ranges. In: Barbour, M.G.; Keeler-Wolf, T.; Schoenherr, A.A., eds. Terrestrial vegetation of California. Berkeley, CA: University of California Press: 456–501.

Forsman,E.D.;Anthony,R.G.;Meslow,E.C.;Zabe,C.J.2004. Diets and foraging behavior of northern spotted owls in Oregon. Journal of Raptor Research. 38: 214–230.

Franklin,J.F.;Fites-Kaufmann,J.A.1996. Assessment of late-successional forests of the Sierra Nevada. In: Sierra Nevada Ecosystem Project: final report to Congress. Vol. II. Assessments and scientific basis for management options. Wildlands Resources Center Report No. 37. Davis, CA: University of California, Centers for Water and Wildlands Resources: 627–661.

Franklin, J.F.; van Pelt, R. 2004. Spatial aspects of structural complexity in old-growth forests. Journal of Forestry. 102: 22–28.

Graber,D.M.1996. Status of terrestrial vertebrates. In: Sierra Nevada Ecosystem Project: final report to Congress. Vol. II. Assessments and scientific basis for management options. Wildlands Resources Center Report No. 37. Davis, CA: University of California, Centers for Water and Wildlands Resources: 709–726.

Page 96: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

38

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Gray, A.N.; Zald, H.; Kern, R.A.; North, M. 2005. Stand conditions associated with tree regeneration in Sierran mixed conifer-forests. Forest Science. 51: 198–210.

Gruell, G.E. 2001. Fire in Sierra Nevada forests: a photographic interpretation of ecological change since 1849. Missoula, MT: Mountain Press Publishing Co. 238 p.

Hartsough,B.R.;Abrams,S.;Barbour,R.J.;Drews,E.S.;McIver,J.D.;Moghaddas, J.J.; Schwilk, D.W.; Stephens, S.L. 2008. The economics of alternative fuel reduction treatments in Western United States dry forests: financial and policy implications from the national Fire and Fire Surrogate Study. Forest Economics and Policy. 10: 344–354.

Hayhoe,K.;Cayan,D.;Field,C.B.;Frumhoff,P.C.;Maurer,E.P.;Miller,N.L.;Moser, S.C.; Schneider, S.H.; Cahill, K.N.; Cleland, E.E.; Dale, L.; Drapek, R.; Hanemann, R.M.; Kalkstein, L.S.; Lenihan, J.; Lunch, C.K.; Neilson, R.P.; Sheridan, S.C.; Verville, J.H. 2004. Emissions pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences. 101: 12422–12427.

Hess, G.R.; Fischer, F.A. 2001. Communicating clearly about conservation corridors. Landscape and Urban Planning. 55: 195–208.

Hessburg,P.F.;Agee,J.K.;Franklin,J.F.2005. Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras. Forest Ecology and Management. 211: 117–139.

Hessburg,P.F.;Salter,R.B.;James,K.M.2007. Re-examining fire severity relations in pre-management era mixed conifer forests: inferences from landscape patterns of forest structure. Landscape Ecology. 22: 5–24.

Hubbert,K.R.;Beyers,J.L.;Graham,R.C.2001. Roles of weathered bedrock and soil in seasonal water relations of Pinus jeffreyi and Arctostaphylos patula. Canadian Journal of Forest Research. 31: 1947–1957.

Hurteau, M.; North, M. 2008. Mixed-conifer understory response to climate change, nitrogen, and fire. Global Change Biology. 14: 1543–1552.

Hurteau, M.; North, M. 2009. Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenarios. Frontiers in Ecology and the Environment. doi:10.1890/080049.

Page 97: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

39

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Hurteau, M.; Zald, H.; North, M. 2007. Species-specific response to climate reconstruction in upper-elevation mixed-conifer forests of the western Sierra Nevada, California, USA. Canadian Journal of Forest Research. 37: 1681–1691.

Innes, J.; North, M.; Williamson, N. 2006. Effect of thinning and prescribed fire restoration treatments on woody debris and snag dynamics in a Sierran old-growth mixed-conifer forest. Canadian Journal of Forest Research. 36: 3183–3193.

Innes, R.J.; Van Vuren, D.H.; Kelt, D.A.; Johnson, M.L.; Wilson, J.A.; Stine, P.A. 2007. Habitat associations of dusky-footed woodrats (Neotonia fuscipes) in mixed-conifer forest of the northern Sierra Nevada. Journal of Mammalogy. 88: 1523–1531.

Johnson,D.W.;Murphy,J.F.;Susfalk,R.B.;Caldwell,T.G.;Miller,W.W.;Walker, R.F.; Powers, R.F. 2005. The effects of wildfire, salvage logging, and post-fire N-fixation on the nutrient budgets of a Sierran forest. Forest Ecology and Management. 220: 155–165.

Kattlemann,R.;Embury,M.1996. Riparian areas and wetlands. In: Sierra Nevada Ecosystem Project: final report to Congress. Vol. III. Assessments, commissioned papers, and background information. Wildlands Resources Center Report No. 37. Davis, CA: University of California, Centers for Water and Wildlands Resources: 201–274.

Keyes, C.R.; O’Hara, K.L. 2002. Quantifying stand targets for silvicultural prevention of crown fires. Western Journal of Applied Forestry. 17: 101–109.

Knapp, E.E.; Keeley, J.E. 2006. Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest. International Journal of Wildland Fire. 15: 37–45.

Knapp, E.E.; Schwilk, D.W.; Kane, J.M.; Keeley, J.E. 2007. Role of burning season on initial understory vegetation response to prescribed fire in a mixed conifer forest. Canadian Journal of Forest Research. 37: 11–22.

Knight, R. 1997. A spatial analysis of a Sierra Nevada old-growth mixed-conifer forest. Seattle, WA: University of Washington. 84 p. M.S. thesis.

Kobziar,L.;Moghaddas,J.;Stephens,S.L.2006.Tree mortality patterns following prescribed fires in a mixed conifer forest. Canadian Journal of Forest Research. 36: 3222–3238.

Page 98: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

40

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Kohm, K.; Franklin, J., eds. 1997. Creating a forestry for the 21st century: the science of ecosystem management. Washington, DC: Island Press. 475 p.

Kolb,T.E.;Agee,J.K.;Fule,P.Z.;McDowell,N.G.;Pearson,K.;Sala,A.;Waring, R.H. 2007. Perpetuating old ponderosa pine. Forest Ecology and Management. 249: 141–157.

Kolb,T.E.;Wagner,M.R.;Covington,W.W.1994. Utilitarian and ecosystem perspectives: concepts of forest health. Journal of Forestry. 92: 10–15.

Latham, P.; Tappeiner, J.C. 2002. Response of old-growth conifers to reduction in stand density in western Oregon forests. Tree Physiology. 22: 137–146.

Lenihan, J.; Drapek, R.; Bachelet, D.; Neilson, R. 2003. Climate change effects on vegetation distribution, carbon, and fire in California. Ecological Applications. 13: 1667–1681.

Lieberg,J.B.1902. Forest conditions in the northern Sierra Nevada, California. Professional Paper No. 8, Series H, Forestry 5. Washington, DC: U.S. Geological Survey. 194 p.

Lindenmayer, D.; Franklin, J. 2002. Conserving forest biodiversity: a comprehensive multiscaled approach. Washington, DC: Island Press. 351 p.

Main, W.A.; Paananen, D.M.; Burgan, R.E. 1990. Fire family plus. Gen. Tech. Rep. NC-GTR-138. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest and Range Experiment Station. 35 p.

Maloney,P.;Smith,T.;Jensen,C.;Innes,J.;Rizzo,D.;North,M.2008. Initial tree mortality, and insect and pathogen response to fire and thinning restoration treatments in an old growth, mixed-conifer forest of the Sierra Nevada, California. Canadian Journal of Forest Research. 38: 3011–3020.

Mazurek,M.J.;Zielinski,W.J.2004. Individual legacy trees influence vertebrate diversity in commercial forests. Forest Ecology and Management. 193: 321–334.

Mazzoni,A.K.2002.Habitat use by fishers (Martes pennanti) in the southern Sierra Nevada, California. Fresno, CA: California State University. M.S. thesis.

McDowell,N.;Brooks,J.R.;Fitzgerald,S.A.;Bond,B.J.2003. Carbon isotope discrimination and growth response of old Pinus ponderosa to stand density reductions. Plants, Cell, and the Environment. 26: 631–644.

Page 99: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

41

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

McKelvey, K.S.; Johnson, J.D. 1992. Historical perspectives on forests of the Sierra Nevada and the Transverse Ranges of Southern California: forest conditions at the turn of the century. In: Verner, J.; McKelvey, K.S.; Noon, B.R.; Gutierrez, R.J.; Gould, G.I., Jr.; Beck, T.W., tech. coords. The California spotted owl: a technical assessment of its current status. Gen. Tech. Rep. PSW-133. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 225–246.

McKelvey, K.S.; Skinner, C.N.; Chang, C.; Erman, D.C.; Husari, S.J.; Parsons, D.J.; van Wagtendonk, J.W.; Weatherspoon, P.C. 1996. An overview of fire in the Sierra Nevada. In: Sierra Nevada Ecosystem Project: final report to Congress. Vol. II. Assessments and scientific basis for management options. Wildlands Resources Center Report No. 37. Davis, CA: University of California, Centers for Water and Wildlands Resources: 1033–1040.

McShea, W.J. 2000. The influence of acorn crops on annual variation in rodent and bird populations. Ecology. 81: 228–238.

Menning, K.M.; Stephens, S.L. 2007. Fire climbing in the forest: a semi-qualitative, semiquantitative approach to assessing ladder fuel hazards. Western Journal of Applied Forestry. 22: 88–93.

Meyer, M.; Kelt, D.; North, M. 2005. Nest trees of northern flying squirrels in the Sierra Nevada. Journal of Mammalogy. 86: 275–280.

Meyer, M.; Kelt, D.; North, M. 2007a. Microhabit associations of northern flying squirrels in burned and thinned stands of the Sierra Nevada. American Midland Naturalist. 157: 202–211.

Meyer, M.D.; North, M. 2005. Truffle abundance in riparian and upland forests of California’s southern Sierra Nevada. Canadian Journal of Botany. 83: 1015–1020.

Meyer,M.;North,M.;Gray,A.;Zald,H.2007b. Influence of soil thickness on stand characteristics in a Sierra Nevada mixed-conifer forest. Plant and Soil. 294: 113–123.

Millar, C.I.; Stephenson, N.L.; Stephens, S.L. 2007. Climate change and forests of the future: managing in the face of uncertainty. Ecological Applications. 17: 2145–2151.

Millar,C.I.;Woolfenden,W.B.1999.The role of climate change in interpreting historical variability. Ecological Applications. 9: 1207–1216.

Page 100: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

42

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Miller,C.;Urban,D.L.1999. Interactions between forest heterogeneity and surface fire regimes in the southern Sierra Nevada. Canadian Journal of Forest Research. 29: 202–212.

Miller,N.L.;Bashford,K.E.;Strem,E.2003. Potential impacts of climate change on California hydrology. Journal of the American Water Resources Association. 39: 771–784.

Miller,J.D.;Safford,H.D.;Crimmins,M.;Thode,A.E.2009.Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA. Ecosystems. 12: 16–32.

Minnich,R.A.;Barbour,M.G.;Burk,J.H.;Fernau,R.F.1995.Sixty years of change in Californian conifer forests of the San Bernardino Mountains. Conservation Biology. 9: 902–914.

Moghaddas, E.E.; Stephens, S.L. 2007. Thinning, burning, and thin-burn fuel treatment effects on soil properties in a Sierra Nevada mixed-conifer forest. Forest Ecology and Management. 250: 156–166.

Morrison, M.L.; With, K.A.; Timossi, I.C.; Block, W.M.; Milne, K.A. 1987. Foraging behavior of bark-foraging birds in the Sierra Nevada. The Condor. 89: 201–204.

Muir, J. 1911. My first summer in the Sierra. New York, NY: Houghton-Mifflin Co. 336 p.

Murphy, D.; Johnson, D.; Miller, W.; Walker, R.; Blank, R. 2006. Prescribed fire effects on forest floor and soil nutrients in a Sierra Nevada forest. Soil Science. 171: 181–199.

Nagel, T.A.; Taylor, A.H. 2005. Fire and persistence of montane chaparral in mixed conifer forest landscapes in the northern Sierra Nevada, Lake Tahoe Basin, California, USA. Journal of the Torrey Botanical Society. 132: 442–457.

North, M. 2006. Restoring forest health: fire and thinning effects on mixed-conifer forests. Science Perspectives 7. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 6 p.

North, M.; Chen, J.; Oakley, B.; Song, B.; Rudnicki, M.; Gray, A.; Innes, J. 2004. Forest stand structure and pattern of old-growth western hemlock/Douglas-fir and mixed-conifer forest. Forest Science. 50: 299–311.

Page 101: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

43

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

North,M.;Hurteau,M.;Fiegener,R.;Barbour,M.2005a.Influence of fire and El Niño on tree recruitment varies by species in Sierran mixed conifer. Forest Science. 51: 187–197.

North, M.; Hurteau, M.; Innes, J. [In press]. Fire suppression and fuels treatment effects on mixed-conifer carbon stocks and emissions. Ecological Applications.

North, M.; Innes, J.; Zald, H. 2007. Comparison of thinning and prescribed fire restoration treatments to Sierran mixed-conifer historic conditions. Canadian Journal of Forest Research. 37: 331–342.

North, M.; Keeton, W. 2008. Emulating natural disturbance regimes: an emerging approach for sustainable forest management. In: Lafortezza, R.; Chen, J.; Sanesi, G.; Crow, T., eds. Patterns and processes in forest landscape: multiple use and sustainable management. New York: Springer-Verlag Inc: 341–372. Chapter 17.

North,M.;Oakley,B.;Chen,J.;Erickson,E.;Gray,A.;Izzo,A.;Johnson,D.;Ma,S.;Marra,J.;Meyer,M.;Purcell,K.;Rambo,T.;Roath,B.;Rizzo,D.;Schowalter, T. 2002. Vegetation and ecological characteristics of mixed-conifer and red-fir forests at the Teakettle Experimental Forest. Gen. Tech. Rep. PSW-GTR-186. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 52 p.

North,M.;Oakley,B.;Fiegener,R.;Gray,A.;Barbour,M.2005b.Influence of light and soil moisture on Sierran mixed-conifer understory communities. Plant Ecology. 177: 13–24.

North,M.;Steger,G.;Denton,R.;Eberlein,G.;Munton,T.;Johnson,K.2000.Association of weather and nest-site structure with reproductive success in California spotted owls. Journal of Wildlife Management. 64: 797–807.

Noss, R.F.; O’Connell, M.A.; Murphy, D.D. 1997. The science of conservation planning: habitat conservation under the Endangered Species Act. Washington, DC: Island Press. 263 p.

Oakley, B.; North, M.; Franklin, J. 2003. The effects of fire on soil nitrogen associated with patches of the actinorhizal shrub Ceanothus cordulatus. Plant and Soil. 254: 35–46.

Oakley, B.; North, M.; Franklin, J. 2006. Facilitative and competitive effects of a N-fixing shrub on white fir saplings. Forest Ecology and Management. 233: 100–107.

Page 102: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

44

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

O’Hara, K.L. 1996. Dynamics and stocking-level relationships of multiaged ponderosa pine stands. Forest Science. 42(4): 1–34. Suppl. 33.

O’Hara, K.L. 1998. Silviculture for structural diversity: a new look at multiaged systems. Journal of Forestry. 96(7) 4–10.

O’Hara, K.L.; Valappil, N.I. 1999. MASAM–a flexible stand density management model for meeting diverse structural objectives in multiaged stands. Forest Ecology and Management. 118(1-3): 57–71.

O’Hara, K.L.; Valappil, N.I.; Nagel, L.M. 2003. Stocking control procedures for multiaged ponderosa pine stands in the inland Northwest. Western Journal of Applied Forestry. 18(1): 5-14.

Olson, D.L. 2000. Fire in riparian zones: a comparison of historical fire occurrence in riparian and upslope forests in the Blue Mountains and Southern Cascades of Oregon. Seattle, WA: University of Washington. M.S. thesis.

Parker, A.J.; Peet, R.K. 1984. Size and age structure of conifer forests. Ecology. 65: 1685–1689.

Pettit, N.E.; Naiman, R.J. 2007. Fire in the riparian zone: characteristics and ecological consequences. Ecosystems. 10: 673–687.

Plamboeck,A.;North,M.;Dawson,T.2008. Conifer seedling survival under closed-canopy and manzanita patches in the Sierra Nevada. Madrono 55: 193–203.

Purcell, K.L.; Stephens, S.L. 2006. Changing fire regimes and the avifauna of California oak woodlands. Studies in Avian Biology. 30: 33–45.

Rambo,T.;North,M.2008. Spatial and temporal variability of canopy microclimate in a Sierra Nevada riparian forest. Northwest Science. 82: 259–268.

Rambo,T.;North,M.2009. Canopy microclimate response to pattern and density of thinning in a Sierra Nevada Forest. Forest Ecology and Management. 257: 435–442.

Richter, D.J. 2005. Territory occupancy, reproductive success, and nest site characteristics of goshawks on managed timberlands in central and northern California 1993-2000. California Fish and Game. 91: 100–118.

Ritchie, M.W.; Skinner, C.N. 2007. Probability of tree survival after wildfire in an interior pine forest of northern California: effects of thinning and prescribed fire. Forest Ecology and Management. 247: 200–208.

Page 103: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

45

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Ritchie, M.W.; Wing, B.M.; Hamilton, T.A. 2008. Stability of the large tree component in treated and untreated late-seral interior ponderosa pine stands. Canadian Journal of Forest Research. 38: 919–923.

Robinson,J.;Alexander,J.2002.CalPIF (California Partners in Flight). Version 1.0. The draft coniferous forest bird conservation plan: a strategy for protecting and managing coniferous forest habitats and associated birds in California. Stinson Beach, CA: Point Reyes Bird Observatory. http://www.prbo.org/calpif/plans.html. (27 January 2009).

Schwilk, D.W.; Keeley, J.E.; Knapp, E.E.; McIver, J.; Bailey, J.D.; Fettig, C.J.; Fiedler, C.E.; Harrod, R.J.; Moghaddas, J.J.; Outcalt, K.W.; Skinner, C.N.;Stephens,S.L.;Waldrop,T.A.;Yaussy,D.A.;Youngblood,A.2009. The national Fire and Fire Surrogate study: effects of alternative fuel reduction methods on forest vegetation structure and fuels. Ecological Applications. 19: 285–304.

Seglund, A. 1995. The use of resting sites by the Pacific fisher. Arcata, CA: Humboldt State University. M.S. thesis.

Sherlock, J.W. 2007. Integrating stand density management with fuel reduction. In: Powers, R.F., tech. ed. Restoring fire-adapted ecosystems: proceedings of the 2005 national silviculture workshop. Gen. Tech. Rep. PSW-GTR-203. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 55–66.

Skinner, C.N. 2003. A tree-ring based fire history of riparian reserves in the Klamath Mountains. In: Faber, M.P., ed. California riparian systems: processes and floodplain management, ecology, and restoration. Mill Valley, CA: Pickleweed Press: 116–119.

Skinner, C.N. 2007. Silviculture and forest management under a rapidly changing climate. In: Powers, R.F., tech. ed. Restoring fire-adapted ecosystems: proceedings of the 2005 national silviculture workshop. Gen. Tech. Rep. PSW-GTR-203. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 21–32.

Skov,K.R.;Kolb,T.E.;Wallin,K.F.2004. Tree size and drought affect ponderosa pine physiological response to thinning and burning treatments. Forest Science. 50: 1–11.

Smith, D.M.; Larson, B.C.; Kelty, M.J.; Ashton, P.M.S. 1996. The practice of silviculture: applied forest ecology. New York: Wiley. 537 p.

Page 104: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

46

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Smith,T.;Rizzo,D.;North,M.2005. Patterns of mortality in an old-growth mixed-conifer forest of the southern Sierra Nevada, California. Forest Science. 51(3): 266–275.

Sierra Nevada Ecosystem Project [SNEP]. 1996. Sierra Nevada Ecosystem Project: final report to Congress. Davis, CA: University of California, Center for Water and Wildland Resources.

Sierra Nevada Forest Plan Admendment [SNFPA]. 2004. Sierra Nevada forest plan amendment: final environmental impact statement. Vallejo, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Region. Volumes 1–6.

SocietyforEcologicalRestoration.1993. Mission statement. Restoration Ecology. 1: 206–207.

Spies, T.A.; Franklin, J.F. 1988. The structure of natural young, mature, and old-growth Douglas-fir forests in Oregon and Washington. In: Ruggiero, L.F.; Aubry, K.B.; Carey, A.B.; Huff, M.H., tech. coords. Wildlife and vegetation of unmanaged Douglas-fir forests. Gen. Tech. Rep. PNW-GTR-285. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 91–110.

Stephens, S.L. 2004. Fuel loads, snag density, and snag recruitment in an unmanaged Jeffrey pine-mixed conifer forest in northwestern Mexico. Forest Ecology and Management. 199: 103–113.

Stephens, S.L.; Fry, D.L. 2005. Spatial distribution of regeneration patches in an old-growth Pinus jeffreyi-mixed conifer forest in northwestern Mexico. Journal of Vegetation Science. 16: 693–702.

Stephens,S.L.;Fry,D.;Franco-Vizcaíno,E.2008. Wildfire and forests in northwestern Mexico: the United States wishes it had similar fire problems. Ecology and Society. http://www.ecologyandsociety.org/vol13/iss2/art10/. (20 March 2009).

Stephens,S.L.;Fry,D.L.;Franco-Vizcaino,E.;Collins,B.M.;Moghaddas,J.J. 2007a. Coarse woody debris and canopy cover in an old-growth Jeffrey pine-mixed conifer forest from the Sierra San Pedro Martir, Mexico. Forest Ecology and Management. 240: 87–95.

Stephens, S.L.; Gill, S.J. 2005. Forest structure and mortality in an old-growth Jeffrey pine-mixed conifer forest in north-western Mexico. Forest Ecology and Management. 205: 15–28.

Page 105: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

47

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Stephens,S.L.;Martin,R.E.;Clinton,N.2007b. Prehistoric fire area and emissions from California’s forests, woodlands, shrublands, and grasslands. Forest Ecology and Management. 251: 205–216.

Stephens,S.L.;Meixner,T.;Poth,M.;McGurk,B.;Payne,D.2004. Prescribed fire, soils, and stream water chemistry in a watershed in the Lake Tahoe Basin, California. International Journal of Wildland Fire. 13: 27–35.

Stephens, S.L.; Moghaddas, J.J. 2005. Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a mixed conifer forest. Forest Ecology and Management. 215: 21–36.

Stephens, S.L.; Moghaddas, J.J.; Ediminster, C.; Fiedler, C.E.; Hasse, S.; Harrington, M.; Keeley, J.E.; McIver, J.D.; Metlen, K.; Skinner, C.N.; Youngblood,A.2009. Fire and treatment effects on vegetation structure, fuels, and potential fire severity in six western U.S. forests. Ecological Applications. 19: 305–320.

Stephens, S.L.; Ruth, L.W. 2005. Federal forest fire policy in the United States. Ecological Applications. 15: 532–542.

Stephenson, N.L. 1999. Reference conditions for giant sequoia forest restoration: structure, process, and precision. Ecological Applications. 9: 1253–1265.

Stratton, R.D. 2006. Guidance on spatial wildland fire analysis: models, tools, and techniques. Gen. Tech. Rep. RMRS-GTR-183. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 15 p.

Sugihara,N.G.;vanWagtendonk,J.W.;Fites-Kaufman,J.2006.Fire as an ecological process. In: Sugihara, N.G.; van Wagtendonk, J.W.; Shaffer, K.E.; Fites-Kaufman, J.; Thode, A.E., eds. Fire in California’s ecosystems. Berkeley, CA: University of California Press: 58–74.

Tainter, F.H.; Baker, F.A. 1996. Principles of forest pathology. New York: John Wiley and Sons, Inc. 803 p.

Taylor, A. 2004. Identifying forest reference conditions on early cut-over lands, Lake Tahoe Basin, USA. Ecological Applications. 14: 1903–1920.

Taylor, A.; Skinner, C. 2004. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecological Applications. 13: 704–719.

Page 106: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

48

An Ecosystem Management Strategy for Sierran Mixed-Conifer ForestsGENERAL TECHNICAL REPORT PSW-GTR-220 An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

Tevis, L., Jr. 1952. Autumn foods of chipmunks and golden-mantled ground squirrels in the northern Sierra Nevada. Journal of Mammalogy. 33(2): 198–205.

Thomas,J.W.;Miller,R.J.;Black,H.;Rodiek,J.E.;MaserC.;Sabol,K.,eds. 1976. Guidelines for maintaining and enhancing wildlife habitat in forest management in the Blue Mountains of Oregon and Washington. Transactions of the North American Wildlife and Natural Resources Conference. 41: 452–476.

Urban,D.L.;Miller,C.;HalpinP.N.;Stephenson,N.L.2000. Forest gradient response in Sierran landscapes: the physical template. Landscape Ecology. 15: 603–620.

van Mantgem, P.J.; Stephenson, N.L. 2007. Apparent climatically induced increase of tree mortality in a temperate forest. Ecology Letters. 10: 909–916.

Verner,J.;McKelvey,K.S.;Noon,B.R.;Gutierrez,R.J.;Gould,G.I.,Jr.;Beck, T.W. 1992. The California spotted owl: a technical assessment of its current status. Gen. Tech. Rep. GTR-PSW-133. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 285 p.

Wayman, R.; North, M. 2007. Initial response of a mixed-conifer understory plant community to burning and thinning restoration treatments. Forest Ecology and Management. 239: 32–44.

Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. 2006. Warming and earlier spring increases Western U.S. forest wildfire activity. Science. 313: 940–943.

Williams, D.F.; Verner, J.; Sakai, H.F.; Waters, J.R. 1992. General biology of major prey species of the California spotted owl. In: Verner, J.; McKelvey, K.S.; Noon, B.R.; Gutierrez, R.J.; Gould, G.I., Jr.; Beck T.W., tech. coords. The California spotted owl: a technical assessment of its current status. Gen. Tech. Rep. PSW-GTR-133. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 207–224.

Williams, J.W.; Jackson, S.T. 2007. Novel climates, no-analog communities, and ecological surprises. Frontier in Ecology and the Environment. 5: 475–482.

York,R.A;Battles,J.J.2008. Growth response of mature trees versus seedlings to gaps associated with group selection management in the Sierra Nevada, California. Western Journal of Applied Forestry. 23: 94–98.

Page 107: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

49

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

York,R.A.;Battles,J.J.;Heald,R.C.2003. Edge effects in mixed conifer group selection openings: tree height response to resource gradients. Forest Ecology and Management. 179: 107–121.

Zald, H.S.J.; Gray, A.N.; North, M.P.; Kern, R.A. 2008. Initial tree regeneration responses to fire and thinning treatments in a Sierra Nevada mixed conifer forest. Forest Ecology and Management. 256: 168–179.

Zielinski,W.J.;Duncan,N.;Farmer,E.;Truex,R.;Clevenger,A.;Barrett,R.H. 1999. Diet of the fisher at the southernmost extent of its range. Journal of Mammalogy. 80: 961–971.

Zielinski,W.J.;Truex,R.L.;Dunk,J.R.;Gaman,T.2006. Using forest inventory data to assess fisher resting habitat suitability in California. Ecological Applications. 16: 1010–1025.

Zielinski,W.J.;Truex,R.L.;Schmidt,G.;SchlexerR.;Barrett,R.H.2004a. Home range characteristics of fishers in California. Journal of Mammalogy. 85: 649–657.

Zielinski,W.J.;Truex,R.L.;Schmidt,G.;SchlexerR.;Barrett,R.H.2004b. Resting habitat selection by fishers in California. Journal of Wildlife Management. 68: 475–492.

Page 108: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations
Page 109: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

Forest Service Law Enforcement Officer Report: Nationwide Study

Federal Recycling ProgramPrinted on Recycled Paper

Pacific Southwest Research Station

PO Box 245

Berkeley, CA 94701

www.fs.fed.us/psw

This publication is available online at http://www.fs.fed.us/psw/. You may also order additional copies of it by sending your mailing information in label form through one of the following means. Please specify the publication title and series number.

Fort Collins Service Center

Web site http://www.fs.fed.us/psw/

Telephone (970) 498-1392

FAX (970) 498-1122

E-mail [email protected]

Mailing address Publications Distribution Rocky Mountain Research Station 240 West Prospect Road Fort Collins, CO 80526-2098

Pacific Southwest Research Station800 Buchanan Street

Albany, CA 94710

Page 110: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations
Page 111: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

Appendix D Glossary 

Page 112: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

 Environmental Assessment Dinkey North Restoration Project  D‐1 

September 2010ICF J&S 00468.09

 

Appendix D Glossary  

Adaptive Management: a dynamic approach to forest management in which effects of treatments and decisions are continually monitored and used, along with research results, to modify management on a continuing basis to ensure that objectives are being met 

Additive: any solid or liquid substance contributing to the formulation of a pesticide  

Adult: a fully grow, usually sexually mature individual  

Age class: 1. one of the intervals into which the age range of trees is divided for classification or use 2. a distinct aggregation of trees originating from a singles natural event or regeneration activity or a grouping of trees used in inventory of management  

Airshed: a geographical are that shares the same air mass due to topography, meteorology, and climate  

Analysis area: a collection of land area, not necessarily contiguous, sufficiently similar in character that they can be treated as if they were identical  

APCD: Air Pollution Control District  

Aspect: a position facing a particular direction, usually expressed as a compass direction in degrees or cardinal directions  

Assessment: a procedure used by certifying organization to determine whether forestry operations meet certification standards,  

Assumption: a judgmental decision used in planning to supply missing values, relationships, or societal preferences in order to proceed with the planning process toward a final decision  

Attributes: a qualitative characteristics of an individual or group  

Bark beetle: a member of the family Scolytidae (Coleoptera), particularly species  in the genera dendroctonus, Ips, and Scolytus whose adults and larvae tunnel in the cambial region (either in the bark only or in the bark and xylem) of living, dying, and recently dead or felled trees; note, bark beetles do immense damage to forests all over the world  

Barrier: any obstruction to the spread of fire, typically an area or strip devoid of combustible material  

Basal area: 1. The cross‐sectional area of a single stem, including the bark, measured at breast height, 2. The cross‐sectional area of all stems of a species or all stems in a stand measured at breast height and expressed per unit of land area  

Baseline: management the starting point for analysis of environmental consequences; note, a baseline may be the conditions at a point in time or the average of a set of data collected over a specified period of years  

BDQ: Silviculture approach in which stocking is controlled by a basal area level (B), maximum diameter (D), and a q factor (Guldin 1991)  

Page 113: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐2 

September 2010ICF J&S 00468.09

 

BehavePlus: BehavePlus is a software application to predict wildland fire behavior for fire management purposes. It is designed for use by fire and land managers who are familiar with fuels, weather, topography, wildfire situations and the associated terminology.  

Best management practices: A practice or usually a combination of practices that are determined by a State or a designated planning agency to be the most effective and practicable means (including technological, economical, and institutional considerations)of controlling point and non‐point source pollutants at levels compatible with environmental quality goals.    

Biomass: harvesting the wood product obtained (usually) from in‐woods chipping of all or some portion of trees including limbs, tops, and unmerchantable stems, usually for energy production  

Breast height: a standard height from ground level, generally 4.5 ft for recording diameter, circumference or basal area of a tree   

Broadcast burn: a prescribed fire allowed to burn over a designated area within well defined boundaries to achieve some land management objective  

Brush: shrubby vegetation that does not produce commercial timber  

Buffer: a vegetation strip or management zone of varying size, shape, and character maintained along a stream, lake road, recreation site, or different vegetative zone to mitigate the impacts of actions on adjacent lands to enhance aesthetic values, or as a best management practice; synonym buffer strip, buffer zone, roadside strip, waterfront zone. Note, both constant‐and variable width buffers can be generated for a set of features based on each features attribute values; the resulting buffer zones form polygons that are areas either inside or outside the specified buffer distance from each feature  

Bulk density: the weight per unit of volume of a material; note 1. bulk density of plants is measured at a specified moisture tension; note 2. bulk density includes both solid material and pore space and in wood, generally serves as an indicator of the specific gravity  

Bunch: harvesting to gather trees or logs into small piles for subsequent extraction  

Burning index (BI): a relative number indicating the contribution that fire behavior makes to the amount of effort needed to contain a fire in a specified fuel type; note, doubling the BI indicates twice the effort will be required to contain a fire in that fuel type as was previously required providing all other parameters are constant  

California Wildlife Habitat Relationship (CWHR): a state‐of‐the‐art information system for California's wildlife  

Canopy cover: the proportion of ground or water covered by vertical projection of the outermost perimeter of the natural spread of foliage or plants, including small openings within the canopy; note, total canopy coverage may exceed 100 percent because layering of different vegetative strata  

Canopy: the foliar cover in the forest stand consisting of one or several layers  

CAR: Critical Aquatic Refuge  

Carbon monoxide (CO): A colorless, odorless, poisonous gas produced by incomplete fuel combustion. Carbon monoxide is a criteria pollutant and is measured in parts per million.  

CFS: Cubic feet per second; measurement used for stream flow  

Page 114: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐3 

September 2010ICF J&S 00468.09

 

Classified roads: Roads wholly or partially within or adjacent to National Forest System lands that are determined to be needed for motor vehicle access, such as State roads, County roads, privately owned roads, National Forest System roads, and roads authorized by the Forest Service that are intended for long term use.  

Clump: as isolated, generally dense, group of trees  

Codominant: tree species in a forest that are about equally numerous and exert the greatest influence see crown class  

Cohesive strategy: A Forest Service strategic document, formally titled Protecting People and Sustaining Resources in Fire‐adapted Ecosystems: A Cohesive Strategy (USDA 2000a), which outlines how fire managers throughout the National Forest System are to prioritize their fire hazard reduction efforts. This strategy concentrates on short fire return interval forests (Fire Regimes 1 and 2).  

Cohort: a group of trees developing after a single disturbance, commonly consisting of trees of similar age, although it can include a considerable range of tree ages of seedling or sprout origin and trees that predate the disturbance  

Collector roads: Classified roads serving smaller land areas than arterial roads; collector roads collect traffic from local roads and usually connect to forest arterial roads or State and County highways. They are operated for either constant or intermittent service depending on land use and resource management objectives.  

Commercial thinning: any type of thinning producing merchantable material at least equal to the value of the direct cost of harvesting  

Community: 1. ecology an assemblage of plants and animals living together and occupying a given area 2. societal an urban or rural group of human families, as in towns      

Competition: the extent to which each organism maximizes fitness by both appropriating contested resources from a pool not sufficient for all, and adapting to the environment altered by all participants  

Composition: the proportion of each tree species in a stand expressed as a percentage of the total number, basal area, or volume of all tree species in the stand  

Condition Class 1: Low risk from uncharacteristic wildfire effects; Fire regimes within this class are within the historical range of variability for fire frequency and intensity.  

Condition Class 2: Moderate risk from uncharacteristic wildfire effects; Fire regimes are beginning to be altered since one or more wildfires have been suppressed allowing for forests to become noticeably denser especially with young saplings.  

Condition Class 3: High risk from uncharacteristic wildfire effects; Fire regimes are significantly altered having missed many natural fires.  Forests that were once open and park like are now densely stocked.    

Conifer: a cone‐bearing tree  

Corridor: 1. management a linear strip of land identified for the present of the future location of transportation or utility right of way within its boundary 2. wildlife a defined tract of land 

Page 115: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐4 

September 2010ICF J&S 00468.09

 

connecting two or more areas of similar management or habitat type that is reserved from substantial disturbance and through which species can travel to reach habitat suitable for reproduction and other life‐sustaining needs  

Cover: 1. an area occupied by vegetation or foliage 2. vegetation that protects the soil and provides shading to ground vegetation and regeneration 3. anything that provides protection for aquatic or terrestrial animals from predators, ameliorates adverse weather conditions, or provides shelter for reproduction   

Criteria and Indicators: a measurement of an aspect of a criterion; a quantitative or qualitative variable that can be measured or described and that, when observed periodically, demonstrates trends  

Criterion: a category, condition, or process by which sustainable forest management may be assessed  

Crown class: a category of tree based on its crown position relative to those of adjacent trees  

codominant: a tree whose crown helps to form the general level of the main canopy of evenaged stands or, in uneven‐aged stands, the main canopy of the tree’s immediate neighbors, receiving full light form above and comparably little from the sides  

dominant: a tree whose crown extends above the general level of the main canopy of even‐aged stands or, in uneven‐aged stands, above the crowns of the tree’s immediate neighbors and receiving full light from above and partial light from the sides  

emergent: a tree whose crown is completely above the general level of the main canopy, receiving full light form above and from all sides  

intermediate: a tree whose crown extends into the lower portion of the main canopy of even‐aged stands or, in uneven‐aged stands into the lower portion of the canopy formed by the tree’s immediate neighbors, but shorter in height than the codominants and receiving little direct light from above and none from the sides  

overtopped (suppressed): a tree whose crown is completely overtopped by the crowns of one or more neighboring trees  

Crown closure: the point at which the vertical projections of crown perimeters within a canopy touch  

Crown density: the amount and compactness of foliage of the crowns of trees or shrubs  

Crown: the part of a tree or woody plant bearing live branches and foliage  

Cumulative effects: the combine effects resulting from sequential actions on a given area  

Cut­to­length: harvesting a system in which felled trees are processed into log lengths at the stump before they are carried to the road or landing  

CWHR: California Wildlife Habitat Relationship  

Database: a collection of data stored in a systematic manner such that the data can be readily retrieved, modified, and manipulated, usually computerized 

Dbh: see diameter breast height  

Page 116: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐5 

September 2010ICF J&S 00468.09

 

Decision maker: The Forest Service line officer with the authority and responsibility to make decisions regarding the KRP also referred to as the Forest Supervisor.  

Decommission: to remove those elements of a road or buildings that reroute hill slope drainage and present slope stability hazards   

DEIS: Draft environmental impact statement 

Den tree: a tree that contains a weather tight cavity for wildlife  

Density: 1. the weight (mass), number, or size per unit of volume 2. biology the size of a population in relation to some unit of space  

Development: the advancement of the management and use of natural resources to satisfy human needs and improve the quality of human life  

Deviation: the difference between any particular observation in a set of observations and the arithmetic mean of the set  

DFPZ: Defensible fuel profile zone 

Diameter  (at) breast height (DBH, dbh): the diameter of the stem of a tree measured at breast height (4.5 ft or 1.37 m) from the ground 

Diameter class: any of the intervals into which a range of diameters of tree stems or logs may be divided for classification or use  

Diameter limit: the diameter (minimum or maximum) to which trees or logs are measured, cut, felled, or used  

Diminution: The act or process of diminishing; a lessening or reduction 

Disease: a harmful deviation from normal functioning of physiological processes  

Dispersal: the spread, on any time scale, of plants or animals from any point of origin or from one place to another  

Disturbance: A natural or human event that causes a change in the existing condition of an ecological system 

Domestic water sources: Watersheds containing National Forest System lands that provide surface waters to facilities that treat and distribute water for domestic purposes. These purposes include normal household uses such as drinking, food preparation, bathing, washing clothes and dishes, watering lawns and gardens, and similar uses.  

Ecosystem: A spatially explicit, relatively homogeneous unit of the earth that include all of the interacting organisms and components of the abiotic environment within its boundaries  

EIS: Environmental impact statement 

Elevation: Vertical distance of measure displayed in feet above sea level 

Endangered species: any species of plant or animal defined through the Endangered Species Act of 1976 as being in danger of extinction throughout all or a significant portion of its range, and published in the Federal Register  

Page 117: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐6 

September 2010ICF J&S 00468.09

 

Endangered species: Any species of plant or animal defined through the Endangered Species Act of 1976 as being in danger of extinction throughout all or a significant portion of its range, and published in the Federal Register 

Endemic species: Plants or animals that occur naturally in a certain region and whose distribution is relatively limited to a particular locality. Endemism is the occurrence of endemic species in an area.  

Environmental Impact Statement: a detailed statement of a federal project’s environmental consequences, including adverse environmental effects that cannot be avoided, alternatives to the proposed action, the relationship between short term and long term productivity, and any irreversible or irretrievable commitment of resources.  

Ephemeral stream: a stream or portion of a stream that flows only in direct response to precipitation, receiving little or no water from springs and no long continued supply from snow or other sources and whose channel is at all times above the water table.   

Epidemic: 1. entomology pertaining to populations of plants, animals, and viruses that build up, often rapidly, to unusually generally injuriously high levels.  

Erosion: the wearing away of the lands surface by rain, running water, wind, ice, gravity, or other natural or anthropogenic agents including such processes such as creep or tillage; accelerated erosion: erosion much more rapid than normal, natural, or geologic erosion, primarily as a result of the influence of human activities or in some cases, of other animals or natural catastrophes that expose bare surfaces.   

FARSITE: Version 4 of the fire behavior and growth simulator used by Fire Behavior Analysts from the USDA FS, USDI NPS, USDI BLM, and USDI BIA, and taught at S493. It is designed for use by users familiar with fuels, weather, topography, wildfire situations and the associated terminology.  

Feasibility: the relative advantage of managing or improving a unit considering its capability and suitability for specific use under the existing and projected socioeconomic climate  

Fire behavior:  

Crown fire: A fire that spreads across the tops of trees or shrubs more or less independently of a surface fire.  

Extreme fire behavior: a level of fire characteristics that ordinarily preclude methods of direct control, usually moving at a high rate of speed. 

Spot fire: a fire ignited beyond the zone of direct ignition from the main fire, caused by windborne sparks or embers  

Underburn: a fire that consumes surface fuels but not trees and shrubs.  

Fire frequency: How often fires occur within a given time period in a specified area.    

Fire hazard: the ease of ignition and resistance to control of the fuel complex.   

Fire intensity: the rate of heat release for an entire fire at a specific point in time.    

Fire regime: the characteristic frequency, extent, intensity, and seasonality of fires within an ecosystem.  

Page 118: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐7 

September 2010ICF J&S 00468.09

 

Fire return interval: The average number of years between successive fires in designated areas.  

Fire severity: Denotes the scale at which vegetation and a site are altered or disrupted by fire, from low to high. It is a combination of the degree of fire effects on vegetation and on soil properties.  

Fire severity: the degree to which a site has been altered or disrupted by fire  

Fire suppression: all work and activities connected with fire‐extinguishing operations beginning with discovery and continuing until the fire is completely extinguished.  

Fireline: any strip of land cleared or treated to control a fire’s edge.  

FlamMap: A Fire Behavior Mapping and Analysis program that computes potential fire behavior characteristics (ROS, flame length, etc.) over an entire FARSITE landscape for constant weather and fuel moisture conditions.   

Flow: 1. the movement of a stream of water or other mobile substances from place to place 2. the movement of water, and the moving water itself; the volume of water passing a given  point per unit of time  

Forage: 1. browse and herbage that is available either naturally or produced seasonally or annually on a given area or range that can provide food for grazing animals or to be harvested for feeding  

Forest fire: an uncontrolled fire on lands covered wholly or in part by timber brush, grain, or other flammable vegetation.  

Forest health: The perceived condition of a forest derived from concerns about such factors as its age, structure, composition, function, and vigor, presence of unusual levels of insects or disease, and resilience to disturbance. Individual and cultural viewpoints, land management objectives, spatial and temporal scales, the relative health of the stands that make up the forest, and the appearance of the forest at a point which influences the perception and interpretation of forest health.  

Forest Management: the practical application of biological, physical, quantitative managerial, economic, social, and policy principles to the regeneration, management, utilization, and conservation of forests to meet specified goals and objectives while maintaining the productivity of the forest  

Forest plan: federal land management a document that guides all natural resource management and establishes management standards and guidelines for a national forest, and that embodies the provisions of the National Forest Management Act of 1976.  

Forest type: a category of forest usually defined by its vegetation, particularly its dominant vegetation as based on percentage cover of trees.    

Forest: an ecosystem characterized by a more or less dense and extensive tree cover, often consisting stands varying in characteristics such as species composition, structure, age class, and associated processes, and commonly including meadows, streams, fish and wildlife.   

Forestry: the profession embracing the science, art, and practice of creating, managing, using, and conserving forests and associated resources for human benefit and in a sustainable manner to meet desired goals, needs, and values.  

Fragmentation: The process by which a landscape is broken into small islands of forest within a mosaic of other forms of land use or ownership.  

Page 119: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐8 

September 2010ICF J&S 00468.09

 

Frequency distribution: a graphical, tabular, or mathematical representation of the manner in which the occurrences of a continuous or discrete, random variable are distributed over the range of its possible values.    

Frequency: 1. biometrics the number of occurrences of a given type of event of the number of members of a population falling into a specified class 2. ecology the number of individuals in a community  

Fuel management: The act or practice of controlling flammability and reducing resistance to control of wildland fuels through mechanical, chemical, biological, or manual means, or by fire in support of land management decisions..  

Fuel type: an identifiable association of wildland fuel elements of distinctive species, form, size, arrangement, or other characteristics that will cause a predictable rate of spread or resistance to control under specified weather conditions; kinds of fuels include the following:  

Activity fuel: the combustible material resulting from or altered by forestry practices such as timber harvest or thinning.  

Aerial fuel: the standing and supported live and dead combustibles not in direct contact with the ground and consisting mainly of shrub and tree crowns, stems, foliage, branches  

Fine fuel: fast‐drying dead combustible material, generally characterized by a comparatively high surface area‐to‐volume ratio and diameters of less than 0.25 in that is consumed rapidly by fire when dry.  

Ground fuel: combustible material below the surface fuel layer such as peat duff and roots.  

Heavy fuel: combustible material of large diameter, usually > 3 in that ignites and burns more slowly than fine fuels  

Ladder fuel: combustible material that provides continuity between vegetation between vegetation strata and allows fire to climb into the crowns of trees or shrubs with relative ease.  

Natural fuel: combustible material resulting from natural processes and not directly generated or altered by land management practices.  

Surface fuel: the loose surface litter on the soil surface, e.g., fallen leaves or needles, twigs, bark, cones, branches, grasses, shrub and tree reproduction, downed logs, stumps, seedlings, and forbs interspersed with or partially replacing litter.   

Fuelbreak: a generally wide strip of land on which native vegetation has been permanently modified so that a fire burning into it can be more readily controlled.    

Fugitive dust: Any solid particulate matter entrained in the ambient air which is caused by anthropogenic or natural activities which is emitted into the air without first passing through a stack or duct designed to control flow; including but not limited to, emissions caused by movement of soil, vehicles, equipment, and windblown dust. This excludes particulate matter emitted directly in the exhaust of motor vehicles, and from other fuel combustion devices.  

Geographic information system (GIS): an organized collection of computer hardware, software, geographic and descriptive data, personnel, knowledge, and procedures designed to efficiently capture, store, update, manipulate, analyze, report and display the forms of geographically referenced information and descriptive information.  

Page 120: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐9 

September 2010ICF J&S 00468.09

 

Ground skidding: pulling logs along the ground without using an arch or fairlead to raise the forward ends.  

Habitat capability: The ability of a land area or plant community to support a given species of wildlife.   

Habitat: a unit area of environment, the place, natural or otherwise, where an animal, plant, or population naturally or normally lives and develops  

Harvesting: the felling, skidding, on‐site processing, and loading of trees or logs onto trucks.  

Headwater: 1. the source of a stream 2. the upper tributaries of a drainage basin.  

Herb: a non‐woody, vascular such as a grass, a grass like plant, a fern, or a forb.  

Herbaceous: a class of vegetation dominated by no‐woody plants known as herbs.  

Herbicide: a pesticide used for killing or controlling the growth of plants.    

Horizon, soil: a layer of soil approximately parallel to the land surface and differing from adjacent genetically related layers in physical, chemical, and biological properties or characteristics such as color, structure, texture, consistency, kinds and number of organisms present, degree of acidity or alkalinity.  

Host: an organism on or within which another organism develops and obtains all or part of its food.  

Hydrolysis: the conversion, by reaction with water, of a complex substance into two or smaller molecules.  

Indigenous: native to a specified area or region, not introduced.  

Indirect effects: effects that are caused by an action and occur at a later time, or at another location, yet are reasonably foreseeable in the future.    

Infestation: 1. the attack of macroscopic organisms in considerable concentration; note, examples are infestations of tree crowns by budworm, timber by termites, soil or other substrates by nematodes or weeds 2. the intermixing of one organism with another without establishing a food relationship.  

Insect: a member of the class Insecta characterized by a body segmented into three distinct regions (head thorax abdomen), by a head with one pair of antennae, by a thorax with three segments each with a pair of legs, and usually one or two pairs of thoracic wings.  

Insecticide: a pesticide employed against insects.  

Interdisciplinary team: a group of specialists assembled as a cohesive team with frequent interactions to solve a problem or perform a task.  

Intolerant: a plant requiring sunlight and exposure for establishment and growth.  

Invasive Plants: see non‐native invasive plants definition.    

Issue: A matter of controversy or dispute over resource management activities that is well defined or topically discrete and addressed in the design of a planning alternative.    

KRAS: Kings River Administrative Study (prior to 2002)  

Page 121: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐10 

September 2010ICF J&S 00468.09

 

KREW: Kings River Experimental Watershed, research study area (lead by Carolyn Hunsaker of PSW Fresno)  

KRP uneven­aged silvicultural strategy: see Uneven‐aged Silvicultural Strategy  

KRP: Kings River Project (direction for the KRP is based on the Intra‐agency agreement between the USDA Forest Service Pacific Southwest Region and Pacific Southwest Research Station for the jointly funded Kings River Project (signed by the PSW Regional Forester and PSW Research Station Director, August 6, 2002).  

Ladder fuel: see fuel type  

Landing: a cleared area in the forest to which logs are yarded or skidded for loading onto trucks for transport 

Landscape: a spatial mosaic of several ecosystems, landforms, and plant communities across a defined area irrespective of ownership or other artificial boundaries and repeated in similar form throughout 

Leaf area index: the sum of all the upper or allsided leaf surface areas projected downward per unit of area of ground beneath the canopy.   

Legacy tree: a tree, usually mature or old growth, that is retained on a site after harvesting or natural disturbance to provide biological legacy.     

Logging: the felling, skidding, on‐site processing, and loading of trees or logs onto trucks.  

LOP: Limited operating period  

Lop: to cut limbs from trees, whether standing, felled, or fallen.  

Lop­and scatter: a hand method of removing the upward extending branches from tops of felled trees to keep slash low to the ground, to increase rate of decomposition, lower fire hazard, or as a pretreatment prior to burning.  

LRMP: Land and resource Management Plan  

Management: kinds of management include the following:  

Area: an area for which a single management plan is developed and applied  

Goal: a broad general statement usually not quantifiable that expresses a desired state or process to be achieved.  

Indicator: a plant or animal species, community, or special habitat selected during planning and monitored during implementation because the effects of management on its condition and trend will suggest the condition and trend of the resource as a whole.  

Intensity: a management practice or combination of management practices and associated costs designed to obtain a specific level of goods and services.   

Objective: a concise, time‐specific statement of measurable planned results that correspond to pre‐established goals in achieving a desired outcome.  

Plan: a predetermined course of action and direction to achieve a set of results, usually specified as goals, objectives, and policies.    

Page 122: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐11 

September 2010ICF J&S 00468.09

 

Policy: a definite course or method of action to guide present and future decisions or to specify in detail the ways and means to achieve goals and objectives.    

Practice: a specific activity, measure, course of action, or treatment undertaken on a forest ownership.    

Prescription: a set of management practices and intensities scheduled for application on a specific area to satisfy multiple uses or other goals  

Units: groups of stands creating logical units for management implementation   

Matrix: General forest area between reforestation groups and considered part of the regulated stand; the least fragmented, most continuous pattern element of a landscape; the vegetation type that is most continuous over a landscape.  

Mbf: a thousand board feet.  

Mechanical methods: Utilization of machinery such as bulldozers and rubber tire skidders for tractor logging; or helicopter logging, skyline cable logging, mechanical harvesters, and shredders/masticators.   

Merchantable: having the size, quality, and condition suitable for marketing under a given economic condition.  

MIS (management indicator species): A wildlife species whose population will indicate the health of the ecosystem in which it lives and, consequently, the effects of forest management activities to that ecosystem; MIS species are selected by land management agencies.   

Mitigation: action taken to alleviate potential adverse effects of natural or human‐caused disturbances  

Model: (modeling) an abstract representation of objects and events from the real world for the purpose of simulating a process, predicting an outcome, or characterizing a phenomenon  

Mortality: trees dying from natural causes, usually by size class in relation to sequential inventories or subsequent to incidents such as storms, wildfire, or insect and disease epidemics  

Mosaic: A pattern of vegetation in which two or more kinds of communities are interspersed in patches, such as clumps of shrubs with grassland between.  

Native species: an indigenous species that is normally found as part of a particular ecosystem  

Natural range: the geographic and elevational limits within which an organism occurs naturally  

NEPA: National Environmental Policy Act; Congress passed NEPA in 1969 to encourage productive and enjoyable harmony between people and their environment. One of the major tenets of NEPA is its emphasis on public disclosure of possible environmental effects of any major action on public lands. Section 102 of NEPA requires a statement of possible environmental effects to be released to the public and other agencies for review and comment.  

NEXUS: An Excel(tm) spreadsheet linking surface and crown fire prediction models, NEXUS is useful for evaluating alternative treatments for reducing crown fire risk and assessing the potential for crown fire activity.   

NHPA: National Historic Preservation Act  

Page 123: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐12 

September 2010ICF J&S 00468.09

 

Nitrogen fixation: the conversion of elemental nitrogen from the atmosphere to organic combinations or to forms readily utilizable in biological processes  

Nitrogen Oxide[s] (NOx): A class of compounds that are respiratory irritants and that react with volatile organic compounds (VOCs) to form ozone (O3). The primary combustion product of nitrogen is nitrogen dioxide (NO2). However, several other nitrogen compounds are usually emitted at the same time (nitric oxide [NO], nitrous oxide [NO], etc.), and these may or may not be distinguishable in available test data.  

Nonnative invasive species: Plant species that are introduced into an area in which they did not evolve, and in which they usually have few or no natural enemies to limit their reproduction and spread. These species can cause environmental harm by significantly changing ecosystem composition, structure, or processes, and can cause economic harm or harm to human health.  

Non­target species: a plant or animal against which a suppression measure or pesticide is not directed  

Notice of intent: the first formal step in the environmental impact statement process, consisting of a notice with the following information:  a description of the proposed action and alternatives; a description of the agency’s proposed scoping process, including scoping meetings; and the name an address of the persons to contact within the lead agency.  

Noxious plant (weed): a plant specified by law as being especially undesirable, troublesome, and difficult to control  

Objective: see management objective  

Old growth (forest): the (usually) late successional stage of forest development  

Output: planning, any result, product, or service that a process or activity produces  

Overstory: that portion of the trees, in a forest of more than one story, forming the upper or uppermost canopy layer  

Paradigm: an acquired way of thinking about something that shapes thought and action in ways that are both conscious and unconscious  

Patch: a small part of a stand or forest  

Pathogen: a parasitic organism directly capable of causing disease  

Perennial stream: a stream that has running water on a year‐round basis under normal climatic conditions  

Pesticide: a chemical preparation used to control individuals or populations of injurious organisms  

PM10: Particulate matter of mass median aerodynamic diameter (MMAD) less than or equal to 10 micrometers; a measure of small matter suspended in the atmosphere that can penetrate deeply into the lung where they can cause respiratory problems  

PM2.5: Particulate matter of mass median aerodynamic diameter (MMAD) less than or equal to 2.5 micrometers. A measure of fine particles of particulate matter that come from fuel combustion, agricultural burning, woodstoves, etc; Often called respirable particles, as they are more efficient at penetrating lungs and easily causing damage.  

Page 124: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐13 

September 2010ICF J&S 00468.09

 

PNV: Potential Natural Vegetation  

Pre­commercial thinning: The removal of trees not for immediate financial return but to reduce stocking, to concentrate growth on the more desirable trees  

Prescribed fire: to deliberately burn wildland fuels in either their natural or modified state and under specified environmental conditions, which allows the fire to be confined to a predetermined area and produces the fireline intensity and rate of spread required to attain planned resource management objectives.  

Prescribed managed fire: a fire ignited by management to meet specific objectives  

Prescription: 1.fire‐A written statement defining the objectives to be attained as well as the conditions of temperature, humidity, wind direction and speed, fuel moisture, and soil moisture under which a fire will be allowed to burn, generally expressed as acceptable ranges of the prescription elements and the limits of the geographic area to be covered 2. silviculture a planned series of treatments designed to change current stand structure to one that meets management goals.    

Primary Research Studies: these research studies are currently in progress and/or will most likely throughout the life of the KRP (KREW; Uneven‐aged silvicultural system Study; California Spotted Owl Module; and Air Quality (Spatial distribution ozone, nitric acid, ammonia and N deposition))  

Proposal: synonym for proposed action  

Proposed Action: The proposal under consideration  

PSW: Pacific Southwest Region (usually refers to the research station in Fresno)  

Purpose: a desired or intended result or effect, the object towards which one strives, a goal  

Rate of spread: the relative speed with which a fire increases in size  

Record of decision (ROD): a public document separate from but associated with an environmental impact statement that identifies all alternatives, provides the agency’s final decision, the rationale behind the decision, and the agency’s commitments to monitoring and mitigation  

Reforestation: the reestablishment of forest cover either naturally or artificially  

Regeneration Method: a cutting procedure by which a new age class is created.    

Uneven­aged methods: regenerate and retain and maintain a multi‐aged structure by removing some trees in all size classes either singly, or in small groups  

Regeneration Groups (Group Selection): Trees are removed and new age classes are established in small groups.  Note, areas in the general forest where groups’ three acres size and smaller are reforested using natural or planted seedlings and managed as plantations and considered part of the regulated stand.  

Regeneration: 1. seedlings or saplings existing in a stand 2. the act of renewing tree cover by establishing young trees naturally or artificially  

Release: a treatment designed to free young trees from undesirable, usually overtopping, competing vegetation  

Page 125: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐14 

September 2010ICF J&S 00468.09

 

Residual: a tree or snag remaining after an intermediate or partial cutting of a stand; the difference between an observed data point and that generated by a mathematical model  

Resilience: the ecological capacity of a plant community or ecosystem to maintain or regain normal function and development following disturbance  

Resistance: 1.ecology the ability of a community to avoid alteration of its present state by a disturbance 2. entomology the ability of plants to avoid, suppress, prevent, overcome, or tolert insect or pathogen attack  

Resources: the natural resources of an area  

Restoration: ecology the process of returning ecosystems or habitats to their original structure and species composition   

Restoration: the process of returning ecosystems or habitats to their original structure and species composition  

Riparian zone: a terrestrial area, other than a coastal area, of variable width adjacent to and influenced by a perennial or intermittent body of water  

Riparian: related to, living, or located in conjunction with a wetland, on the bank of a river or stream but also at the edge of a lake or tidewater  

Risk: the relative probability of any of several alternative outcomes as determined or estimated by a decision maker when the outcome of an event or series of events is not known  

Road construction: Activities that result in the addition of road miles to the forest transportation system.  

Road maintenance: The ongoing upkeep of a road necessary to retain or restore the road to the approved road management objective.  

Road obliteration: A form of road decommissioning that re‐contours and restores natural slopes.  

Road reconstruction: Activities that result in road realignment or road improvement, as defined below:  

Road improvement: Activities that result in an increase of an existing road’s traffic service level, expand its capacity, or change its original design function.  

Road realignment: Activities that result in a new location for an existing road or portions of an existing road, including treatment of the old roadway.  

ROD: Record of Decision (the decision document signed by the Decision Maker), this should be used in conjunction with a reference such as the 2001 Amendment to Forest Plans in the Sierra Nevada  

Sample: a part of a population consisting of one or more sampling unit’s selected and examined as a representative of the whole  

Secondary Research Studies: the status of these research studies are in a state of flux and may or may not be funded or occur throughout the life of the KRP (Forest Birds; Fisher; and Goshawk/Great Grey Owl)  

Page 126: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐15 

September 2010ICF J&S 00468.09

 

Sediment (sedimentation): Solid materials, both mineral and organic, in suspension or transported by water, gravity, ice, or air; may be moved and deposited away from their original position and eventually will settle to the bottom.  

SEIS: refers to the Supplemental Environmental Impact Statement for the Sierra Nevada Forest Plan Amendment (2004)  

Sensitive species: Those species that (a) have appeared in the Federal Register as proposed for classification and are under consideration for official listing as endangered or threatened, (b) are on an official state list of endangered or threatened species, or (c) are recognized by a management agency as needing special management to prevent their being placed on federal or state lists  

Shade Intolerant: having the capacity to compete for survival under direct sunlight conditions  

Shade tolerant: having the capacity to compete for survival under shaded conditions  

Silvicultural system: a planned series of treatments for tending, harvesting, and reestablishing a stand  

Silviculture: the art and science of controlling the establishment, growth, composition, health and quality of forests and woodlands to meet the diverse needs and values of landowners and society on a sustainable basis  

Simulation: an operations research technique that represents physical, natural, social and economic systems by models in order to study the factors affecting the system and to aid decision making  

Site preparation: hand or mechanized manipulation of a site, designed to enhance the success of regeneration  

Site: the area in which a plant or a stand grows, considered in terms of its environment, particularly as this determines the type and quality of the vegetation the area can carry  

Skid road (skid trail): A road access cut through the woods for skidding.  

Skidder: A self‐propelled machine (cable, clam‐bunk, or grapple) used for dragging trees or logs.  

Slash: the residue left on the ground after logging or accumulating as a result of storm, fire, girdling, or delimbing  

Snag: a standing, generally unmerchantable dead tree from which the leaves and most of the branches have fallen  

SNF: Sierra National Forest  

SNFPA, SNFP: Sierra Nevada Forest Plan Amendment  

Soil compaction: the process by which the soil grains are rearranged, resulting in a decrease in void space and causing closer contact with one another, thereby increasing bulk density  

Species: the main category of taxonomic classification into which genera are subdivided, comprising a group of similar interbreeding, individuals sharing a common morphology, physiology, and reproductive process  

Stand Density Index (SDI): relative measure of tree density based on the Self‐Thinning Rule, also known as the –3/2 rule  

Page 127: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐16 

September 2010ICF J&S 00468.09

 

Stand density: 1. a quantitative measure of stocking expressed either absolutely in terms of number of trees, basal area, or volume per unit area or relative to some standard condition 2. a measure of the degree of crowding of trees within stocked areas commonly expressed by various growing space ratios  

Stand structure: 1. ecology the physical and temporal distribution of plants in a stand 2. silviculture the horizontal and vertical distribution of components of a forest stand including the height, diameter, crown layers, and stems of trees, shrubs, herbaceous understory, snags, and down woody material  

Stand: 1. ecology  a contiguous group of similar plants 2. silviculture a contiguous group of trees sufficiently uniform in age‐class distribution, composition, and structure, and growing on a site of sufficiently uniform quality, to be a distinguishable unit  

State Implementation Plan (SIP): Plans devised by states to carry out their responsibilities under the Clean Air Act.  SIPs must be approved by the Environmental Protection Agency and include public review.  

Stocking: an indication of growing‐space occupancy relative to a preestablished standard  

Structure: The sizes, shapes, and/or ages of the plants and animals in an area.  

Succession: the gradual supplanting of one community of plants by another  

Sulfur Dioxide (SO2): A gas consisting of one sulfur and two oxygen atoms; of interest because sulfur dioxide converts to an aerosol that is very efficient at scattering light. Also, it can convert into acid droplets consisting primarily of sulfuric acid.  

Surfactant: an ingredient in a pesticide formulation that modifies the relationship between the surfaces of a liquid and another liquid or surface  

Thinning: a cultural treatment made to reduce stand density of trees primarily to improve growth, enhance forest health, or to recover potential mortality  

Threatened species: a plant or animal species likely to become endangered thoughout all or a significant portion of its range within the foreseeable future  

Timber: forest crops and stands containing timber  

Tractor: a powered vehicle mounted on crawler tracks or wheels used for skidding or hauling  

Tree: a woody perennial plant, typically large and with a well defined stem or stems carrying a more or less definite crown  

Understory burn (Underburn): A management ignited fire that is used to consume surface fuels and forest residue but not overstory trees (in the case of forests or woodlands) and shrubs (in the case of shrublands). Used here to described a low to moderate intensity surface fire in treated and untreated forested stands  

Understory: all forest vegetation growing under an overstory  

Uneven­aged silvicultural strategy: Kings River Project has a unique silvicultural system designed upon a particular methodology which includes: Uneven‐aged silvicultural management; 

Page 128: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐17 

September 2010ICF J&S 00468.09

 

regeneration in groups; and prescribed fire to maintain fuel distribution combined to create the pre1850 forest conditions.   

Uneven­aged stand: a stand with trees of three or more distinct age classes, either intimately mixed or in small groups  

Uniform: of a forest, crop, or stand constituted of trees whose crowns form and ordered, even canopy; the trees are not necessarily even‐aged  

USDA: United States Department of Agriculture  

USFS: United States Forest Service  

USFWS: U.S.D.I. Fish and Wildlife Service, Sacramento Field Office  

Vegetation polygons: criteria for each polygon are based on potential natural vegetation, aspect, slope, and site quality  

Viability: The ability of a population of a plant or animal species to persist for some specified time into the future. Viable populations are populations that are regarded as having the estimated numbers and distribution of reproductive individuals to ensure that its continued existence is well distributed in a given area.  

Volatile Organic Compounds (VOC): Any compound of carbon, excluding carbon monoxide, carbon dioxide, metallic carbides or carbonates, and ammonium carbonate that participates in atmospheric photochemical reactions.  

Watershed: a region or land area drained by a single stream, river, or drainage network  

Weather: the short‐term state of the atmosphere, mainly with respect to human activities  

Weed: 1. a valueless troublesome, or noxious plant often exotic, growing wild, especially on growing profusely 2. a plant growing where it is not wanted  

Wildfire: any non‐structure fire, other than prescribed fire, occurring on wildland  

Wildland: Land other than that dedicated for other uses such as agriculture, urban, mining, or parks. 

Wildland­urban interface (WUI): The line, area, or zone where structures and other human development meet or intermingle with undeveloped wildland or vegetative fuels. Because of their location, these structures are extremely vulnerable to fire should an ignition occur in the surrounding area.  

Wildlife: all non‐domesticated animal life  

WIN: Watershed improvement needs sites (e.g. rehabilitation of skid trails).  A part of the watershed restoration process that includes high and moderate WIN sites in watersheds where cumulative watershed effects are a concern.  

Woodland: a forest area; a plant community in which, in contrast to a typical forest, the trees are often small, characteristically short‐boled relative to their crown depth, and forming an open canopy with the intervening area being occupied by lower vegetation, commonly grass  

Page 129: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service Appendix D 

Glossary 

 Environmental Assessment Dinkey North Restoration Project  D‐18 

September 2010ICF J&S 00468.09

 

Yard: harvesting 1. a place where logs are accumulated 2. to convey logs or trees to a landing, particularly by cable, balloon, or helicopter logging systems  

Yarder: A machine for cable logging consisting of a system of power‐operated winches and a tower used to haul logs from a stump to a landing. 

Page 130: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

Appendix E Roads Associated with Project Implementation 

Page 131: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

ROAD DATA SUMMARY SHEET

ROAD F EXISTING PROJECT PROPOSED WORK REMARKSU M W M W D C N C R M D

N S N N T S I S C T S I S E R C E O E A U A U E A C C U D P L C U D P S I L W N C I S B M G M R T E O R T E I T O S O N T A B M E C L F H E S L F H E G S T N T T E E L E A D U E A D N U R S E R N A V C A R V C A V V R T

T S E E N E E E N E E E RS L D L D H H1 2 3 2 4 4 3 5 5 5 6

9S09 1 Rock Creek C 3 P S-10 3 P S-10 T L 3.50 Potholes to fill9S09NA 1 Dome Spur A L 2 N 12-5 G 3 N 12-5 T L G 1.10 W9S92 1 Mill L 2 N 12-5 3 N 12-5 T L 1.10 1.10 W9S92C 1 Mill Spur C L 1 N 12-5 G 3 N 12-5 T L G 0.50 0.50 W9S93 1 Line L 1 N 12-5 3 N 12-5 T L 0.10 W9S99 1 Exchequer Heights L 3 P S-10 3 P S-10 T L 0.40 9S99B 1 Exchequer Heights Spur B L 3 P S-10 3 P S-10 T L 0.2010S07 1 Trails End L 3 P S-10 G 3 P S-10 T L G 1.80 10S07KA 1 Dinkey CG Spur A L 2 N 12-5 G 3 N 12-5 T L G 0.40 W10S17M 1 Forked Meadow Rd. L 2 N 12-5 3 N 12-5 T L 0.70 0.70 W10S24 1 Ross Crossing C 3 A S-10 G 3 A S-10 T L G 0.50 W10S51 1 Glen Meadow W.C. L 4 P S-10 G 4 P S-10 T L G 0.10 10S51 2 Glen Meadow W.C. L 4 P S-10 G 4 P S-10 T L G 0.30 10S69 1 Dinkey Trimmer A 3 A S-10 G 3 A S-10 T L G 0.50 W10S74 1 Dinkey Meadow L 3 A 12-5 E 3 A 12-5 T L E 0.40 W10S401 1 Old Mill Site L 1 N 12-5 E 3 N 12-5 T L E 0.50 0.50 W

2.80 12.10

9S09N 1 Dome 1.40 Decommissioned; Temp. Road (?)9S09NAX 1 Dome Spur AX 0.20 Decommissioned; Temp. Road (?)9S92A 1 Sly 0.30 Decommissioned; Temp. Road (?)9S92B 1 Mill Spur B 0.40 Decommissioned; Temp. Road (?)9S93 2 Line 0.60 Decommissioned; Temp. Road (?)9S93B 1 Hunt 0.20 Decommissioned; Temp. Road (?)10S21 1 Carburetor 0.30 Decommissioned; Temp. Road (?)10S21A 1 Fuel Pump 0.20 Decommissioned; Temp. Road (?)10S21AB 1 Air Filter 0.20 Decommissioned; Temp. Road (?)10S53 1 Lumber Pile 0.30 Decommissioned; Temp. Road (?)10S53B 1 Waterfall 0.30 Decommissioned; Temp. Road (?)10S53BA 1 Slash Pile 0.10 Decommissioned; Temp. Road (?)

4.50

1) A Arterial 2) N Native 3) B Barrier 4) L Lowboy 5) Show to 6) W WaterC Collector A Aggregate G Gate T Log Truck the nearest L LigninL Local E Spot Rock E Gate Elsewhere Y Yarder 0.01 mile O Oil

P Pavement S Sign S Sedan S SaltsN Snow >6" E Engine

Page 132: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

Appendix F Treatment Descriptions 

Page 133: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

1

APPENDIX F

DESCRIPTION OF TREE REMOVAL, FUELS REDUCTION, SITE PREPARATION,

REFORESTATION, RELEASE, AND OTHER PROPOSED TREATMENTS TREATMENT TYPES The R5-FEIS, Vol. 3, Appendix A (p. A-1 through A-21) includes descriptions of vegetation management, planting, and seeding practices (USDA 1988). Appendix B of that document (p. B-1 through B-5) discusses the role of plant competition and its effects on reforestation. Conifer establishment will not be successful on the affected soils without vegetation management. Available water for planted seedlings will be a critical limiting factor without site preparation and follow-up noxious weed control. Mechanical treatments may temporarily set back many species; however, follow-up control with herbicides or manual release will be necessary to control sprouting species and new plants established from seed in the soil. Herbicides will be necessary for areas dominated by bear clover, Ceanothus species, and green leaf manzanita. The R5-FEIS (USDA 1988) discusses site preparation techniques, and herbicides considered for use in reforestation activities (Vol. II, p. 2-3 through 2-12; Vol. III, Appendix A, p. A-1 through A-21). Many of the site preparation techniques discussed in that document have been proposed for use on this project. Harvest Systems and Commercial Harvest – Used for tree removal of commercial size material larger than 10 inches in diameter. Trees are severed at the stump using chainsaws or mechanical harvesters. These trees are removed from stands using either ground based skidding systems (tractors, rubber tired skidders or forwarders). Logging systems were identified for each stand based on slopes and road access. Logging systems are identified for all acres whether commercial size trees exist or not. Logging systems were not identified for areas that did not have trees, such as rock outcrops or brush fields. Logging systems were not identified for areas where design criteria excluded logging equipment such as spotted owl nest sites. Prescriptions that call for the removal of commercial size trees are identified for removal using ground logging systems Tractor Logging – Harvest of commercial size trees using ground based vehicles with rubber tires or tracks. These vehicles are often called skidders and are equipped with grapples or cables to transport severed trees or logs to a landing. Tractor logging occurs in areas with road systems and slopes that are consistently less than thirty five percent slope. Some short areas over thirty-five percent are treated. Tractor logging systems create different intensities of soil compaction and displacement. Tractor skidder systems create the most compaction and displacement, while cut-to-length systems create the least. Whole tree yarding systems fall in between tractor skidder and cut-to-length. However, these systems also vary in availability. Tractor

Page 134: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

2

skidder systems have been traditionally used for decades and are found across the Sierra National Forest. Only one cut to length system is currently in operation across the southern Sierra Nevada. It operates on both private and public lands. Whole tree yarding equipment is found more frequently with at least four different operators having operated in the southern Sierra Nevada in the last 5 years. Whole tree yarding equipment is the second option in stands prescribed for tractor skidding and with cumulative watershed concerns. Tractor skidding equipment is the last option in stands prescribed for tractor skidding and with cumulative watershed concerns. It is important to note that the analysis of effects is based on tractor skidder systems.

1. Tractor Skidder – Trees are severed with chainsaws and transported (skidded) to log landings (log collection areas) using tractors with rubbers tires or tracts. Logs are partially or completely processed at the stump by chainsaws. Trees are processed into logs using chainsaws to remove limbs and tops and bucked into logs. Logs are then skidded to the landing using tractors. This system has no operational limit on the size of tree that can be removed. This system can be used in stands across the project.

2. Whole Tree Yarding – Trees are severed at the stump using mechanized harvesters that hold and cut trees. Trees are laid in bunches. Trees (limbs, tops, and boles) are transported to log landings using tract or rubber tired tractors (skidders). Trees are processed at the landing were a de-limber removes branches, tree tops and bucks the trees into logs. Landings are typically larger than the tractor skidder system to accommodate the large volume of limbs and tops. Soil compaction is typically less than the tractor skidder system. Since trees can be manipulated after severing from the stump, bunches can be staged/bunched to reducing the number of trips by skidders. In addition, trees ride along the tops reducing soil displacement. This yarding system is limited to trees less than 24 inches. This system is used in areas were tractor skidding is prescribed and tree removal is dominated by trees less than 24 inches.

3. Cut-to-Length – Trees are severed at the stump using mechanized harvesters and processed into logs at the stump. Limps and tops are cut and trees bucked into logs using mechanized harvesters. Limbs and tops remain in the forest to be treated with fuels treatments. Logs are transported from the stump to landings using forwarders that carry logs fully suspended in bunks. Soil compaction is typically less than the two other ground based skidding systems because forwarders carry logs across limbs and tops on the forest floor deposited from tree processing. This yarding system is limited to trees less than 22 inches. Forwarders are typically limited to slopes less than 25 percent or areas without broken or uneven terrain. This system is typically in short supply for projects because of the one local operator with this equipment. The CTL system is proposed as the first option for use in watersheds with CWE concerns such as those found in bear_fen6 and providen1.

Page 135: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

3

Commercial Harvest – Removal of trees larger than ten inches from the forest to a sawmill. Areas identified as commercial are those areas that have trees larger than ten inches. Non Commercial Harvest – Areas without trees larger than ten inches in diameter (such as rock outcrops, brush field or sapling size plantations) or areas with operational limitations (steep slopes, archeological sites, home sites). Harvest Prescriptions – identify treatment parameters and methods of tree removal that are part of the purpose and need. These harvest prescriptions define the conditions for tree removal of treatments. Each harvest prescription defines the tree sizes and structural limitations for tree removal. California Spotted Owl Emphasis, Thin < 6” – Thin from below up to a diameter of six inches. Tree removal is limited to hand methods. Underburning is allowed. This prescription occurs within 500 feet of current nest site locations identified by the Kings River Spotted Owl Demographic study.

California Spotted Owl Emphasis, Thin < 16” – Thin from below up to a diameter of 16”. Maintain canopy cover in stands over 60 percent cover. California Spotted Owl Emphasis, Thin < 10” – Thin from below up to a diameter of ten inches. This prescription is for plantations and natural stands with in spotted owl PACs. Young saplings and pole size trees dominate these portions of stands. Restoration and Pacific Fisher Emphasis – Tree removal occurs in all diameters generally less than 30” achieve ecological restoration objectives. Trees are removed to reduce fuel severity and intensity, maintain pacific fisher rest sites, create heterogeneity consistent with frequent fire regime. Trees are removed to maintain nearly equal numbers of trees in each size class consistent with reconstructed stands in Teakettle experimental Forest (North and others 2008). Regeneration is achieved in existing openings. Regeneration is a created in 10 percent of stands capable of supporting conifers based on regeneration decision priorities. Treatments closely resemble an individual tree selection system. Restoration Emphasis, Plantation – Plantations within stands identified for treatment to accelerate development of large trees and meet ecological restoration. This involves thinning plantation and natural trees to provide improved growing conditions. Public and Fire Fighter Safety Emphasis and Restoration – Treatments remove trees to reduce fire severity in the defense core. Trees are removed to create reduce to potential for crown fire and protect homes and businesses inside the defense core land allocation. Trees are removed 80 % tree basal area 0 to 10 inches, 40% 10 to 20 inches and 20 % of trees 20 to 30 inches.

Page 136: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

4

Public and Fire Fighter Safety Thin from below 16”– Proposed would include maintaining the greater of 200 square feet or 80% of existing basal area per acre. This objective would maintain canopy cover above 50% or approximately 200 square feet of basal area where it currently exists. In areas below 50% canopy cover, the treatment would reduce current basal area by up to 20%. Tree removals would occur in trees less than 16 inches dbh that are ladder fuels. Thinning from below would occur. In a thin from below treatment, trees in the most subordinate position would be cut first until the objective is achieved. Fuel Reduction Treatments – are used to lower the volume of flammable brush and slash across all emphasis areas. Fuel burning occurs in conjunction with tree removal and with out tree removal. Fuel burning treatments reintroduce fire as a process into the landscape in the proposed action. Actual protection levels will depend on vegetative response and invasion following the fuel or any subsequent site preparation treatments. Proposed fuels reduction will involve using prescribed fire in specific areas throughout the project area, thinning of some overstocked plantations, emphasis area treatments, and thinning from below.

1. Hand Pile – Thinning slash or material felled by chainsaw is piled by hand labor for burning.

2. Tractor Pile – Bulldozers are equipped with a brush rake and pile woody debris for burning. Tractor piling is limited to slopes under 35 percent.

3. Lop and Scatter – Consists of removing trees with chain saws or lopping shears and cutting up the debris into small pieces that are scattered in a manner that does not promote hot or sustained fire through the area.

4. Mastication/Shredding – A mastication cutting head is typically mounted on articulating arm on a track-laying low-ground pressure vehicle. The equipment is able to treat vegetation on slopes up to 35-45 percent while having little ground impact. The debris is left on the ground where it rapidly decomposes and provides erosion protection while it is decomposing, or it is burned after it has had time to dry out.

5. Underburning – A prescribed burn under an existing canopy of trees (hardwood or softwood) designed to reduce live and dead vegetation. This type of burning is also completed in the fall or spring when fuel moistures are low enough to carry fire and still be within prescription parameters. Underburning differs from broadcast burning as it has cooler temperatures to protect overstory vegetation. Burning can only be initiated on "Burn Days" designated by the State Air Quality Control Board.

6. Pile Burning – Piles created by hand labor or tractors are burned. Usually kraft paper is used to protect an ignition point so piles can be burned in nearly any kind of weather. Pile burning is known to be of a higher intensity than broadcast burning and therefore produces less particulate matter. Burning can only be initiated on "Burn Days" designated by the State Air Quality Control Board.

Page 137: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

5

7. Fire Line – Construction of areas that create a break in fuels used to control fire. Areas are scraped to mineral soil removing all organic material. The width of fire line varies from 2 feet around hand piles to 6 feet around tractor piles. Fire lines are used to contain fuel-burning treatments (underburns, pile burns, jackpot burns, and broadcast burns) when natural barriers to fire are lacking.

Site Preparation Treatments in plantations and regeneration openings are used to reduce competing vegetation prior to planting of conifer seedlings. Effectiveness of site preparation treatments should consider whether or not a competing plant would sprout from its root system or not. Removing the above ground vegetation of sprouting plants is only a short-term treatment. Site preparation is conducted in combination with fuels treatments

1. Mechanical Methods – Use heavy equipment and/or manual labor to clear an area of obstructing material. Resprouting vegetation often grows back in a few years when these methods are used.

a. Tractor Piling – Involves using heavy equipment to scrape slash and other debris into piles for burning.

b. Mastication/Shredding – A mastication cutting head is typically mounted on articulating arm or a track-laying low-ground pressure vehicle. The equipment is able to treat vegetation on slopes up to 35-45 percent while having little ground impact. The debris is left on the ground where it rapidly decomposes and provides erosion protection while it is decomposing, or it is burned after it has had time to dry out.

2. Chemical Methods – Employ the use of glyphosate to control competitive vegetation. Resprouting of competitive vegetation from roots is usually minimal after proper herbicide application.

a. Glyphosate Herbicide – Liquid herbicide (Accord®) at 3-6 percent and a wetting agent (R11®) at 1 percent is applied from backpack sprayers along with a food grade color dye to the vegetation. The colored dye allows applicators to see what they have treated so duplicated applications are not made to the same vegetation. This type of hand application is considered a directed spray, in that a three to six percent solution of herbicide is used and applied only to the target species that would compete with the conifer seedlings to be planted. This type of application can be used to treat grass species in the early spring, or brush species like bear clover, manzanita, and ceanothus in the early to mid summer. Extensive resprouting is usually eliminated with this type of treatment.

Page 138: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

6

3. Manual Methods – Hand grubbing or scalping to mineral soil with hoes or similar tools prior to planting or in a radius around the planted seedling.

a. Hand Pile – Thinning slash or material felled by chainsaw is piled by hand labor for burning

b. Thin and Removing Damaged Small Trees – Involves the felling of unwanted trees, either with a chain saw or a machine feller, for burning in place or in preparation for piling.

Planting Treatments – Hand planting of bare-root or container stock ponderosa pine, Jeffrey pine, sugar pine, and white fir at various composition levels.

1. Planting – Species composition is determined by the species removed and endemic to the forest type. The goal for planting species composition is to return to the mix consistent with frequent fire regimes. An exception to the species mix goal is allowed for sugar pine, which is at high risk for white pine blister rust. Due to its susceptibility to this disease, all planting of sugar pine should not represent more than a nominal amount of the total planting, unless rust resistant planting stock is available from the Tree Improvement Program.

Planting usually is highly uniform and results in approximately 300-400 seedlings per acre due to unplantable sites resulting from rock outcrops, tree stumps, brush covered areas and other obstructions. More trees are planted that are actually needed to stock a stand due to genetic variation in the seed available. Future selection of trees in pre-commercial thinning would retain those trees that are best adapted to the site. Those trees that are less adapted would be expressing this trait with reduced overall growth or actual mortality.

2. Replanting or Inter-Planting – Prescribed after release treatments to improve the stocking levels of stands where mortality has occurred. An opportunity exists to improve species composition, increase the number of age classes, and improve stocking levels by planting trees within openings of seedlings or even in between existing seedlings. Acreage listed for interplant treatments is total stand acres (gross) not the net acreage receiving the individual tree planting.

3. Regeneration Opening Planting – Planting in existing openings created for regeneration of intolerant species during site preparation in stands identified for uneven-aged management. Ten percent of each stand capable of supporting confers is placed in groups consistent with the design criteria for the proposed action. Existing canopy openings created from insect attack, past fire or damage are targeted for groups

Release Treatments for Reforestation Openings and Plantations – Occur after tree planting and is for the control of vegetation that is competing with planted or naturally generating trees, including noxious weeds that are present or have re-invaded the site

Page 139: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

7

after site preparation treatments. To be effective, release treatments need to remove vegetation effectively for a five-foot radius round each tree.

1. Mastication/Shredding – Similar to shredding for site preparation, a cutter head is used to masticate competing vegetation while avoiding the planted seedlings. This type of treatment is limited by equipment width and seedlings must be tall enough for an operator to see them above the competing vegetation. Resprouting will occur after this treatment.

2. Hand Cutting of Brush – Used in existing plantations to cut large brush plants. Cutting is accomplished using chainsaws or loppers. Severed brush is cut into small section to lay in proximity of the soil or piled.

3. Hand/Manual Release – Hand grubbing or scalping a radius around the planted seedling with hand tools to mineral soil. Resprouting can occur if the burl or rhizome is left behind.

a. One application is used in areas where brush seedlings and grass are controled with one treatment. Area dominated by white leaf manzanita or white throrn seedlings are typical of this treatment.

b. Two applications are used were young sprouting brush or seedlings require multiple entries to reduce cover below 20 percent. Also used in areas were initial treatment controls brush and subsequent treatments are needed to control grasses and forbs..

4. Glyphosate Herbicide – Liquid herbicide (Accord®) at 2-6 percent and a wetting agent (R-11®) at 1 percent is applied from backpack sprayers along with a food grade color dye to the vegetation to be treated. The colored dye allows applicators to see what they have treated so duplicated applications are not made to the same vegetation. This type of hand application is considered a directed spray, in that a two to six percent solution of herbicide is used and applied only to the target species that would compete with the conifer seedlings to be planted. This type of application can be used to treat grass species in the early spring, or brush species like bear clover, manzanita, and ceanothus in the early to mid summer. Extensive resprouting is usually eliminated with this type of treatment.

a. One application is typically used with species (whitethorn) that sprout but whose roots are controlled with one application of glyphosate. Subsequent manual release treatments are used to control brush seedlings. Brush is often shredded or tractor piled to reduce the size of plants and make subsequent chemical treatments more effective. Hand/Manual release is often used in combination.

b. Two applications are typically used for species that sprout prolifically from roots or rhizomes and were grass invades following initial treatment. Bear clover, deer brush and green leaf manzanita are prolific sprouters.

Page 140: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

8

Post Harvest Thinning, Remove Damaged Trees, and Remove Brush – The removal of some of the conifers and brush in areas that are overstocked, such that the trees are competing with themselves, brush is encumbering tree growth, and trees damage during logging. The healthiest and best growing trees are left untouched and the poor growing or suppressed trees are removed. Brush is removed concurrently while thinning trees consistent with decision priorities and ecological restoration. This promotes faster growth and better health in the remaining trees. Thinning also reduces fire intensity and slows fire spread by reducing the available fuel to sustain fire and breaking up the continuity of the canopy. Mechanical and Manual thinning methods are both proposed. Mechanical thinning consists of shredding or mechanical tree removal, while manual thinning employs hand cutting with lop and scatter techniques.

1. Mastication/Shredding – Employs a cutting head, typically mounted on an articulating arm attached to a tracked vehicle, to masticate woody vegetation and slash. The debris is left on the ground where it rapidly decomposes and provides erosion control while it is decomposing, or it is gathered into piles and burned after it has had time to dry out.

2. Mechanical Thinning – Uses a tracked machine with a cutting head. Trees or brush are bunched for removal to a landing for disposal or left in the forest for latter piling or burning.

3. Hand Thinning – Consists of removing trees with chain saws or lopping shears and piling or scattering the debris in open areas for later burning.

Noxious Weed Control – Proposes the use of herbicide application and manual methods to eradicate the infestations present and also for any new infestations resulting from implementation of other activities within this project. This will be accomplished by both broadcast spray (area-wide) and directed (plant specific) spray.

1. Ground Glyphosate Herbicide – Liquid herbicide (Accord®) at 3-6 percent and a wetting agent (R-11®) at 1 percent is applied from backpack sprayers along with a food grade color dye to the vegetation to be treated. The colored dye allows applicators to see what they have treated so duplicated applications are not made to the same vegetation. This type of hand application is considered a directed spray, in that a three to six percent solution of herbicide is used and applied only to the target species. This type of application can be used to treat grass species such as cheat grass in the early spring, or later sprouting species such as tocolote in the early to mid-summer.

2. Hand Pulling – Is used to eradicate noxious weeds with shallow rooting systems

(bull thistle) and small isolated infestations. Hand pulling and chemical application will be used in combination to eradicate noxious weed populations.

Page 141: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

9

Other Necessary Procedures Combined with the Proposed Action

1. Seed Collection. Forest Service seed collection procedures are detailed in the Tree Improvement Master Plan for the California Region (Kitzmiller 1976). The Base Level program will apply to the majority of the project area.

The Base Level Program is a low intensity effort aimed at maintaining the genetic base and quality of all forested land while striving for gains in volume growth of up to 10% to meet immediate reforestation needs. Seed collection to ensure genetic diversity is built into Forest Service seed collection procedures and can be referenced to the "Tree Improvement Master Plan," and "Managing Genetic Diversity in a Tree Improvement Program" (Kitzmiller 1990).

2. In conjunction with the baseline program, the Rust Resistant Sugar Pine program is selecting sugar pine trees for resistance to Blister Rust. This disease can eliminate non-resistant sugar pine seedlings and saplings from planting sites where blister rust occurs. The Region's Rust Resistance program allows for testing of trees and retains those trees that are proven to be resistant for cone collection. Sowing of seed and outplanting would be similar to procedures used in the baseline program, except for the selection process and testing for rust resistance.

Road Treatments

1. Road Maintenance – Roads listed in as needing ‘maintenance’, indicate that the road is passable in its current condition but is needed for access to the project. Some maintenance may be needed prior to project completion, including repair of damage from wet weather planting traffic.

2. Road Reconstruction – Roads listed as needing ‘reconstruction’; indicate that the road is impassible without work to restore access. Activities would include rock and log removal, grading, and brush clearing. Plugged culverts may also be cleared. This type of reconstruction does not change the road standard or intended access and does not trigger the need for road analysis.

3. Temporary Roads – These roads are constructed to access log landings. They are typically short road segments that are used to haul logs and move equipment between Forest system roads and treatment areas. The roads provide a temporary transportation link between the treatment area and the Forest road system. Following treatment activities, temporary roads are rehabilitated and blocked consistent with logging and harvest BMPs to maintain water quality.

Page 142: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

Appendix G Existing Conditions, Treatments, and 

Schedule for Each Stand 

 

Page 143: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐1 September 2010

 

Appendix G Proposed Action and the Fire Severity Alternative 

Tables: Existing Conditions, Treatments, and Schedule 

Proposed Action Management units are composed of stands. Descriptions below detail the structure of each stand in Dinkey North. The topographic zone column refers to the percentage of the total stand which is in each of the five topographic zone categories. The existing basal area column refers to the range of basal areas presently modeled to be in each topographic zone category. The next two columns, residual basal area and minimum allowable basal area refer to post treatment conditions. If the prescription for a stand is owl emphasis or public and fire fighter safety emphasis, then the residual basal area is described in those two columns. If the prescription is restoration emphasis, then the desired basal area column refers to the desired range in basal area in treated topographic zones areas. The minimum allowable basal area column indicates the basal area which treatment will not cause any given group of trees to go below.  The column zone plant aggregation indicates the plant aggregation number described in the present condition column that best describes conditions in that topographic zone. 

In the present conditions column, stands are described by areas of homogenous plant aggregations and also by different objectives or mitigations. The percent following a plant aggregation number identifies the dominance of a plant aggregation in a stand. Plant aggregations are described by layers of vegetation starting from the tallest vegetation layer to the shortest layer closest to the ground. A percentage following a species identifies the relative dominance of a species in a layer. Abbreviations are used in stand descriptions and are defined below.  

Table G‐1. List of Relevant Abbreviation in Appendix G and Their Names or Meanings  

Abbreviation  Common Name or Phrase  Genus  Species Agg  plant aggregation     TPA  trees per acre     DBH  diameter breast height     Ft/acre  ft2/acre     ARNE  pinemat manzanita  Arctostaphylos  nevadensis ARPA  greenleaf manzanita  Arctostaphylos  patula ARVI  sticky whiteleaf manzanita  Arctostaphylos  viscida CACH  giant chinquapin  Castanopsis  chrysophylla CECO  whitethorn ceanothus  Ceanothus  cordulatus CECU  buckbrush  Ceanothus  cuneatus CEIN  deerbrush  Ceanothus  integerrimus CHFO  bear clover  Chamaebatia  foliolosa LUP4  lupine  Lupinus RIRO  Sierran gooseberry  Ribes  roezlii 

Page 144: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐2 September 2010

 

Abbreviation  Common Name or Phrase  Genus  Species ABCO  white fir  Abies  concolor ABMA  California red fir  Abies  magnifica CADE  incense‐cedar  Calocedrus  decurrens PICO1  lodgepole pine  Pinus  Contorta PIJE  Jeffrey pine  Pinus  Jeffreyi PILA  sugar pine  Pinus  lambertiana PIMO  western white pine  Pinus  monticola PIPO  ponderosa pine  Pinus  ponderosa PISA  California foothill pine  Pinus  sabiniana QUCH  canyon live oak  Quercus  chrysolepis QUKE  California black oak  Quercus  Kelloggii QUWI  interior live oak  Quercus  wislizeni RHDI  poison oak  Rhus  diversiloba 

 

The Table G‐1 and the previous explanation applies to both Table G‐2 (relating to the proposed action) and Table G‐5 (relating to the fire severity alternative). 

  

Page 145: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐3 September 2010

 

Table G‐2. Present Conditions and Residual Basal Areas by Stand and Topographic Zone for the Proposed Action 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Minimum Allowable Post‐Treatment Basal Area (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

125  81.0 

Ridge Zone: 31%  42‐183  94‐124  60   

Agg 1(25 %) mixed conifer agg composed of layer 1 PILA and PIJE >30" Approximately. 2 TPA. Layer 2 is composed of 6" to 24" trees dominated by ABCO and PILA found in dense clumps. Layer 3 is composed of ABCO, QUKE and PILA 1" to 6" DBH.  Layer 4 is composed of 3ft tall green leaf manzanita. And bear clover 30 to 80 percent cover. Total brush cover > 65%  Agg2 (35%) mixed conifer stand found on low site and rocky soils dominated by small trees and brush.  Layer 1 is composed of scattered Approximately. 1 TPA PIJE and PILA >30" DBH.  Layer 2 is composed of scattered (2 TPA) 22" to 30" PIJE and PILA.  Layer 3 is composed of QUKE, ABCO, and PIJE 2" to 16" DBH approx. 150 trees per acre.  Layer 4 is dense green leaf manzanita. > 70 percent cover.  Agg3 (40%) rock and rock out crop dominate by bare rock and green leaf manzanita. Scattered PIJE 6" DBH 

North Zone: 34%  42‐192  116‐168  100   

Neutral Slope: 10%  42‐192  101‐138  60   

South Zone: 25%  42‐192  108‐153  60   

 129       

 76.4       

Ridge Zones: 41%  136‐229  179‐244  170   

Agg 1(60 %) mixed con dominated by ABCO and CADE.  Layer 1 is composed of scattered large (>40") CADE, PILA and PIJE. Layer 2 is composed of ABCO and CADE in dense clumps 16" to 32", BA ranges from 120 to 260 ft/acre. Layer 3 is composed CADE, PILA and ABCO 2" to 6" found scattered across the aggregate. Layer 4 is composed of 50% cover in ARPA, CECO and prunus. Agg 2 (15 %) 15 year old sugar pine progeny plantation.  Plantation is composed of superior sugar pine 130 trees per 

North Zone: 45%  136‐245  168‐226  160   

Page 146: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐4 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Minimum Allowable Post‐Treatment Basal Area (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

129  76.4 

Neutral Zone: 5%  147‐245  148‐189  140   

acre. Trees range from 3 to 12 feet tall. Directed spray of glyphosate has maintained less than 10 cover in brush.  Harsh site prep appears to have piled top soil.  Agg 3 (15 %) is composed of low site (thin soil) with rock out crops.  Agg is dominated by PIJE and CADE (2‐5 TPA) 6" to 20"with understory of ARPA and CECO.  Agg 4 (9 %) open PIJE and CADE on low to moderate site with understory of scatter pole size CADE and PIJE and ARPA.  Agg 5 (<1%) same as agg 1 but with noxious weeds 

South Zone: 9%  147‐245  148‐189  140   

   150       150 

   117.1       117.1 

Canyon Zone: 14%  21‐192 

No treatment; burn only 

 Agg 1(20%) mixed con dominated by ABCO and CADE.  Layer 1 is composed of scattered large (>40") CADE, PILA and ABCO. Layer 2 is composed of ABCO and CADE in dense clumps 16" to 32", BA ranges from 60 to 200 ft/acre. Layer 3 is composed CADE, PILA and ABCO 2" to 6" found scattered across the aggregate. Layer 4 is composed of 50% cover in ARPA, CECO.  Agg2 (20%) is composed of low site thin soil and rock or scattered small pockets or soil with clumps of trees.  Layer 1 is composed of widely scattered (1 TPA) PILA and ABCO > 34".  Layer 2 is widely scattered clumps of ABCO and PILA with understory of ARPA and CECO.  Agg3 (60%)is composed of low site and rock dominated by ARPA and CECO 

Ridge Zone: 10%  34‐121   

North Slope: 13%  34‐192   

Neutral Slope: 18%  21‐192   

South Slope: 45%  21‐192   

154  44.4  Canyon Zone: 44%  161‐221   

   Stand contains day use areas (parking, trails, and tables) along Dinkey Creek. 

Page 147: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐5 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Minimum Allowable Post‐Treatment Basal Area (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

Ridge Zone: 4%  196   

 Public and Firefighter Emphasis, removed 80% of trees   0‐10 DBH, 40% of trees 10‐20 DBH, 20% of trees 20‐30 DBH, and no trees above 30 DBH  

 Agg 1 (80%) is composed of mixed conifer dominated by ABCO and CADE.  Layer 1 is composed of very large (40" to 70") CADE, PILA and PIPO at 1 to 2 trees per acre. This layer is 200+ years old.  Layer 2 is composed of dense ABCO and CADE (160 to 400 ft/acre).  This layer is composed of trees 95 to 116 years old.  Layer 3 is composed of suppressed CADE at 10 to 20 per acre with less than 5 percent cover of brush.  Agg 2 (20 %) is rock and thin soils with rock out crops dominated by green leaf manzanita...  Layer 1 is composed of scattered PIPO and CADE (1 to 2 TPA).  Layer 2 is composed of ARPA 20 to 80 percent cover. 

North Slope: 48%  196‐220   

Neutral Slope: 2%  196‐220   

South Slope: 2%  196‐220   

 170         170 

 68.3         68.3 

Ridge Zones : 7%  192‐221  130‐153  125   

Agg 1 (70%) is dominated by ABCO 12" to 32".  Layer 1 is composed of widely scattered PILA and ABCO > 40" @ .5 TPA or less.  Layer 2 dominates stand and is composed of dense ABCO and CADE clumps (60 to 85 years old. Clump density ranges from 200 to 400 ft/acre. In between clumps are clumps of brush. Layer 3 ARPA, CECO, and CEIN at 40% cover.  Agg 2 (15%) 17 year old plantations.  Agg is dominated by planted PIJE and PILA (200 TPA) with scattered brush.  Recent release and thin. Stand (434008). Previously had 600 TPA and 60% cover of brush.  Agg 3 (10 %) 17 year old plantations.  Agg is dominated by planted PIJE and PILA (375 TPA) with scattered brush.  Brush is composed of ARPA and CECO @ > 60% cover.  Agg 4 (5%) is composed of meadow.  Agg 5 (5 %) is composed of openings dominated by brush 

North Zone: 82%  53‐341  168‐226  165   

Neutral Slope: 10%  53‐341  148‐189  140   

South Slope : 1%  132‐341  161‐189  160   

Page 148: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐6 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Minimum Allowable Post‐Treatment Basal Area (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

and scattered Layer 1ABCO and CADE (2 to 4 trees per acre). Layer 2 is dense ARPA > 70% cover. 

   188      188 

   67.5      67.5  

Canyon Zone: 8%  84‐220  169‐196  140   

This stand contains Glen Meadow work center.   Agg 1(25%) is composed of mixed conifer stand.  Layer 1 is composed of large (40" to 60" DBH) scattered (Approximately 1 TPA) ABCO, PIJE and PILA.  Much of this layer is dying from insects and WPBR.  Layer 2 is composed of 20" to 34" ABCO and CADE @ 6 TPA.  Layer 3 is composed of dense clumps of 9" to 20" ABCO, PILA and CADE approximately 40 to 60 years old. This layer dominates the plant agg. Layer 4 is composed scattered clumps of ARPA and CECO Approximately 20% cover. One root rot pocket found near barbecue pit on ABCO.  Agg2 (75%) is composed of rock and low site with open PIJE and CADE. 

North Slope: 69%  83‐220  150‐196  140   

Neutral Slope: 7%  83‐168  140‐152  100   

South Slope: 16%  84‐168  140‐161  100   

189  66.5  

Canyon Zone: 29%  168‐183  169‐196  140   

Agg 1(15%) is composed of mixed conifer stand.  Layer 1 is composed of large (40" to 60" DBH) scattered (Approximately 1 TPA) ABCO, PIJE and PILA.  Much of this layer is dying from insects and WPBR.  Layer 2 is composed of 20" to 34" ABCO and CADE.  Layer 3 is composed of dense clumps of 9" to 20" ABCO, PILA and CADE approximately 40 to 60 years old.  Layer 4 is composed scattered clumps of ARPA and CECO Approximately 20% cover.  Agg2 (80%) is composed of rock and low site with open PIJE and CADE.  Agg3 (5%) is a wet meadow with scattered ABCO and PIJE 

North Slope: 21%  168‐183  150‐196  140   

Neutral Slope: 3%  168‐183  131‐161  120   

South Slope: 47%  168‐183  131‐161  120   

Page 149: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐7 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Minimum Allowable Post‐Treatment Basal Area (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

  190     190  

  86.5     86.5  

Canyon Zone: 28%  83‐227 

 Public and Firefighter Emphasis, removed 80% of trees   0‐10 DBH, 40% of trees 10‐20 DBH, 20% of trees 20‐30 DBH, and no trees above 30 DBH    

 Stand contains Dinkey camp ground and rec. cabins  Agg1 (80 %) layer 1 is composed of large 40" to 80” PIPO, PILA and CADE.  Layer 2 is composed of ABCO (50%), PIPO (15%) and CADE (35%) 16" to 38" DBH. Layer is approximately 90 to 120 years old.  ABCO dominates this layer.  Pine in this layer is being progressively killed by western pine beetle.  Layer 3 is composed of 6" to 14” CADE, PILA, and ABCO. Layer 4 is scattered clumps of CECO @ 10% cover.  Agg 2 (20 %) is rock and thin soils with rock out crops dominated by green leaf manzanita...  Layer 1 is composed of scattered PIPO (70%) and CADE (30%) (1 to 2 TPA).  Layer 2 is composed of ARPA 0 to 20 percent cover. 

North Slope: 47%  83‐341   

Neutral Slope: 10%  83‐221   

South Slope: 15%  90‐341   

    197         197 

    76.0         76.0 

Canyon Zone: 7%  107‐221  190‐258  180   

Agg1 (70 %) is composed of scattered layer 1 larger 32" to 50" CADE and PILA @ .25 TPA.  Layer 2 is dominates stand and is composed of CADE (40%) and ABCO (35%).  PICO is found near meadow. PIPO is scattered across the Agg.  Trees range in diameter from 14" to 32".  Tree heights range from 40 to 90 ft. Layer 3 is composed CADE (60%), PILA (20%), and ABCO (15%). PICO (5%) is found in the understory near meadow. Layer 4 is composed of 20% cover of ARPA (50%), CECO (40%) and CHFO (10%).  Agg2 (20 %) is composed of rock and rock out crops with scattered PIJE (10%), PILA (40%) and CADE (50%).  Layer 2 is composed of slow growing CADE (70 %) and PILA (30%) 10" to 20" and 70 ft tall. Layer 3 is composed of ARPA (90%) and CECO (10%) and scattered pole size CADE.  Agg3 (10%) is a wet meadow with PICO, ABCO and PIJE 

Ridge Zone: 6%  148‐200  137‐180  130   

North Slope : 23%  148‐221  203‐238  190   

Neutral Slope: 15%  148‐221  170‐200  160   

South Slope : 49%  107‐221  158‐200  150   

Page 150: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐8 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Minimum Allowable Post‐Treatment Basal Area (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

scattered throughout. Wet area extends under timber. Otherwise similar to agg 1. 

217  15.0 

North Slope: 90%  96‐103 

Plantation in existence; thin to maximize tree growth. 

 

Agg 1 (90%) Stand is dominated by 16 year old PIJE (80%) plantation with scattered Layer 1 PILA ((5%) and ABCO (15%) 10" to 30"DBH at 1.5 TPA.  Planted PIJE range in size from 3" to 8”.  Plots indicate 237 trees per acre. ARPA (40%) and CECO (60%) account for 40% cover and average 3 ft tall. Agg 2 (10%) rock and low site thin soils with scattered PIJE and ABCO. 

Neutral slope: 10%  96‐103   

   225          225   

   136.3          136.3 

Canyon Zone: 8%  168‐221  196‐230  160   

Agg 1 (70%) is composed of mixed conifer.  Layer 1 is composed of older (30" to 60") PILA (60%), ABCO (5%), PIJE (15%) and CADE (20%) scattered in clumps across the stand @ 3 TPA.  Layer 2 dominates stand and is composed of ABCO (60%) and PIJE (20%) and CADE (10%) and PILA (10%). DBH ranges from 10" to 30" DBH with Approximately average tree DBH 18”.  Basal area/acre is composed of 160.  Layer 3 is composed of 6" to 11" trees found in clumps scattered across the agg. Approximately. 50 TPA. Layer 4 is composed of 15% cover of ARPA (50%), CECO (45%) and Ribes PILA. (5%). Brush is 2 ft tall.  Agg 2 (5%) is composed of large rock out crops and thin soil. Agg is dominated by ARPA and scattered CADE and PIJE.  Agg 3 (20%) is composed of well drained sandy soils dominated by Layer 1 PIJE (60%) and CADE (40%) 28" to 44" @ with scattered understory of PIJE and ABCO and 

Ridge Zone: 1%  207  122  80   

North Slope: 66%  84‐221  150‐196  120   

Neutral Slope: 10%  84‐221  140‐179  120   

Page 151: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐9 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Minimum Allowable Post‐Treatment Basal Area (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

South Slope: 15%  91‐220  140‐179  100   

brush.  This agg is found adjacent to rock out crops. Agg 4 (5%) is similar to agg 1 but associated with meadow areas.  These areas have PICO in layer 2. 

   227          227 

   70.0          70.0 

Canyon Zone: 23%  199‐221 

Owl Emphasis Zone, Basal area must be at or above 200 ft2 

 

Agg 1 (15%) is composed of mixed conifer.  Layer 1 is composed of older (30" to 60") PILA (60%), ABCO (5%), PIJE (15%) and CADE (20%) scattered in clumps across the stand @ 3 TPA.  Layer 2 dominates stand and is composed of ABCO (60%) and PIJE (20%) and CADE (10%) and PILA (10%). DBH ranges from 10" to 30" DBH with Approximately average tree DBH 18”.  Basal area/acre is composed of 160.  Layer 3 is composed of 6" to 11" trees found in clumps scattered across the agg. Approximately. 50 TPA. Layer 4 is composed of 15% cover of ARPA (50%), CECO (45%) and Ribes PILA. (5%). Brush is 2 ft tall.  Agg 2 (70%) is composed of dense layer 1 ABCO (90%) 10" to 32", CADE (5%) and PILA (5%) are found scattered widely across the stand.  Density averages 180 ft/acre, but ranges form 85 to 280 ft/acre.  Height averages 95 ft tall.  Layer 2 is composed of understory CADE (50%) and ABCO (50%) 2" to 8" DBH @ 100 TPA.  Layer 3 is composed of brush cover of 15% composed of CECO, ARPA and CHFO.  Agg 3 (5%)  Rock and Rock out corps  Agg 4 (10%) is the same as agg 2 but found inside the spotted owl nest buffer. 

Ridge Zone: 19%  221   

North Zone: 1%  221 

Owl Emphasis Zone, Basal area must be at or above 200 ft2 

 

Neutral Zone: 8%  221   

South Zone:  48%  199‐221   

  

  

Canyon Zone: 5%  211‐233  179‐244  160   

Agg 1 (80%) Layer 1 is composed of 26" to 40" older ABCO (85%) and PILA (15%). These trees are 90 to 120 ft tall.  

Page 152: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐10 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Minimum Allowable Post‐Treatment Basal Area (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

  237      237 

  96.2      96.2 

Ridge Zone: 13%  168‐315  128‐153  100   

Layer 2 ABCO (90%) 10" to 32", CADE (5%) and PILA (5%) are found scattered widely across the stand.  Density averages 180 ft/acre, but ranges form 85 to 280 ft/acre.  Height averages 95 ft tall.  Layer 2 is composed of understory CADE (50%) and ABCO (50%) 2" to 8" DBH @ 100 TPA.  Layer 3 is composed of brush cover of 15% composed of CECO, ARPA and CHFO.  Agg 2 (5%) is the same as agg 1 but found inside the Spotted owl nest buffer.  Agg 3 (15%) is found on rocky thin soil dominated by ARPA (90%) and CASE (10%) with an overstory of scattered PIJE (20%) and CADE (80%). 

North Slope: 32%  122‐315  158‐207  120   

Neutral Slope: 41%  122‐315  148‐189  120   

South Zone: 9%  122‐315  148‐189  120   

245  123.6 

Canyon Zone: 7%  196‐220 

 Public and Firefighter Emphasis, removed 80% of trees   0‐10 DBH, 40% of trees 10‐20 DBH, 20% of trees 20‐30 DBH, and no trees above 30 DBH  

  Agg 1 (90%) Layer 1 is composed of 32" to 50" older ABCO (85%) and PILA (15%). These trees are 90 to 120 ft tall.  Layer 2 ABCO (80%) 20" to 32", CADE (10%) and PIJE (10%) are trees that were established prior to logging in late 1930's and are now 80 to 120 years old.   Layer 3 is dense clumps of CADE (60%) and ABCO (30%) established after 1930's logging and are now 8"to 26” DBH.  300 TPA. Layer 4 is composed of understory CADE (45%) and ABCO (45%) and QUKE (10%) 2" to 6" DBH @ 200 TPA.  Layer 3 is composed of brush cover of 20% composed of CECO, ARPA and CHFO.  Agg 2 (10%) is composed of rock, rock outcrops and barren areas.  Barren areas are large landings or dumps from the mill site. 

Ridge Zone: 2%  196   

North  Slope: 30%  196‐341   

Neutral Zone: 36%  196‐284   

South Zone: 24%  196‐284   

 259  

 46.4  

Canyon Zone: 31%  160‐341 

 Public and Firefighter Emphasis, removed 80% 

 The stand is located adjacent to Dinkey creek.  It contains several buildings and developed recreation sites including the Dinkey store. 

Page 153: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐11 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Minimum Allowable Post‐Treatment Basal Area (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

         259 

         46.4  

North Slope: 33%  160‐341 

of trees   0‐10 DBH, 40% of trees 10‐20 DBH, 20% of trees 20‐30 DBH, and no trees above 30 DBH Public and Firefighter Emphasis, removed 80% of trees   0‐10 DBH, 40% of trees 10‐20 DBH, 20% of trees 20‐30 DBH, and no trees above 30 DBH  

  The stand is composed of three aggregates: 1) dense ABCO stand near group camp site and store 2) dense pockets of large ABCO and PIJE around Dinkey Ranger Station and 3) rock out crops with scattered PIJE.  Agg 1 is dominated by 90 to 120 year old ABCO and scattered PIJE and PICO.  The stand is even‐aged with smaller size classes with in 10 to 30 years of the dominant trees. Tree growth has slowed in last 20 years.  Lay 1 is composed of scattered 230 year old PIJE and ABCO (4 TPA @ 32" to 46") Lay2 is composed of ABCO and scattered PIJE and PICO. Layer 2 is found in clumps 200 to 400 ft/acre. DBH ranges from 12" to 30”. Layer 3 is composed of suppressed and intermediates 1" to 10".  I saw very few viable seedlings or saplings.  Agg2 is composed of pockets of older trees found around the ranger station.  The stand is dominated by large PIJE (40%) and ABCO (60%) with scattered understory trees of PIJE and ABCO.  Layer 1 is composed of 194+ year old PIJE and ABCO.  Layer 2 is suppressed and intermediates at 120 to 200 years old.  Understory brush is composed of scattered ARPA and CECO. Agg 3 is composed of large rock out crops with widely scatter PIJE and ABCO (less than 40 ft/acre).  ARPA dominates these rock outcrops.  I took an additional 6 in plots in agg 1 in 2004 (attached). This stand contains the Dinkey store and Dinkey Ranger Station measured ages 94yrsx94ft, 116 yrs and 111 yrs 

Neutral Slope: 10%  160‐341   

South Slope: 31%  160‐341   

 275 

 83.7 

Canyon Zone: 6%  210‐221  Owl Emphasis Zone, 

Basal area must be at or   Agg 1 (80%) this agg is dominated by ABCO(75%) and CADE(25%), layer 1is composed of 28" to 40" ABCO(40%), 

Page 154: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐12 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Minimum Allowable Post‐Treatment Basal Area (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

Ridge Zone: 15%  105‐329 

above 200 ft2 

CADE(50%) and PILA(10%), these are older trees found in clumps (140 to 200+ years ) larger trees tend to be CADE. Layer 1 has Approximately. 5 TPA and 30 ft/acre.  Layer 2 dominates agg with ABCO (40%), CADE (40%), PILA (10%) and PIJE (10%) @ 180ft/acre and 83 TPA. Layer 3 is composed of understory ABCO (95%) and CADE (5%) 2" to 8" DBH @ 120 TPA. Layer 4 is composed of 35% cover of ARPA (25%) and CECO (75%), 2 ft tall.  Agg 2 (20%) is composed of thin soils and rock. Layer 1 is composed of 20"to 36"   PIJE (50%), CADE (40%) and ABCO (10%) @ 40 ft/acre.  Layer 2 is composed of 80% cover of ARPA (20%), CECO (70%), and CHFO (10%). 

North Slope: 63%  97‐329   

Neutral Slope: 6%  105‐329   

South Slope: 10%  196‐329   

    288       288 

    88.5       88.5 

Canyon Zones: 16%  199‐221  229‐270  160   

Agg 1 (75%) characterized by dense ABCO (50%) and CADE (50%) 50 to 120 years old @ 280 ft/acre.  Layer 1 is ABCO and CADE 22" to 36”, 80 ft/acre and 20 TPA.  These trees range from 90 to 120 years old.  Layer 2 is composed of 12" to 22" DBH CADE (60%), ABCO (35%) and PIPO (5%) 160 ft/acre and 100 TPA.  50 to 80 yrs. Layer 3 is composed of 6” to 12" ABCO and CADE, 40 ft/acre and 100 TPA. Layer 4 is composed of scatter clumps of CECO (45%) ARPA (45%) and ribes PILA. (10%) at 40% cover.  Agg2 (19%) areas dominated by CECO and Scattered ABCO and CADE.  Layer 1 ABCO 12” to 40” @ 7 TPA.  Layer 2 is composed of CECO (80%) and ARPA (20%) @ 70% cover.  Agg 3 (5%) is wet meadow  Agg 4 (<1%) same as agg1 but with noxious weed bull thistle 

North Slope: 8%  199  175‐195  140   

Neutral Slope: 31%  137‐329  155‐189  120   

South Zone: 46%  137‐329  155‐189  120   

Page 155: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐13 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Minimum Allowable Post‐Treatment Basal Area (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

      296          296 

      101.8          101.8 

Canyon Zones: 7%  196‐265 

Public and Firefighter Emphasis, removed 80% of trees   0‐10 DBH, 40% of trees 10‐20 DBH, 20% of trees 20‐30 DBH, and no trees above 30 DBH  

 

This stand contains the old Dinkey mill site, improvements for museum, and new administrative site. It also contains Clydes pack station.  Agg 1(40%) is composed of urbanized and former mill site with structures and roads.  Agg 2 (50%) area logged in 1937. Current stand contains trees left after logging and those seeded in after harvest.  Stands were previously in private land. Layer 1 is composed of ABCO and CADE .1 TPA larger 40”. Layer 2 is composed of CADE (30%), PIPO (15%), PILA (5%) and ABCO (50%) 85 to 65 years old @ 180 ft/acre.  14" to 36" DBH. Layer 3 is composed CECO, Prunus near meadow and ribes and scattered CADE and ABCO saplings.  Agg3 (5%) is meadow area.  Agg 4 (3%) is same as 2 but contains pack station.  Agg 5 (2%) is areas with noxious weeds Hoary Crest, cheat grass, and Mullen. Cheat grass is located in mill site.  Hoary Crest and Mullen are located along Dinkey/Shaver road. 

Ridge Zone:5%  259‐268   

North Slope: 59%  164‐221   

Neutral Slope: 13%  164‐268 

Public and Firefighter Emphasis, removed 80% of trees   0‐10 DBH, 40% of trees 10‐20 DBH, 20% of trees 20‐30 DBH, and no trees above 30 DBH  

 

South Slope:  17%  164‐265   

388  

75.4  

Canyons: <1%  275  Public and Firefighter 

Emphasis, removed 80% of trees   0‐10 DBH, 40% of trees 10‐20 DBH, 20% of trees 20‐30 DBH, and no trees above 30 DBH  

 Stand is dominated by 11" to 32" PIJE, CADE and ABCO. Two recreation residences are found in this stand. The stand borders Dinkey Meadow and private land.  Agg 1 (90%) Layer 1 is clumps of 36" to 50" PILA and PIJE, about .2 TPA.  Layer 2 is composed of dense PIJE (30%), CADE (15%), and ABCO (40%). PICO is scattered in pockets near Dinkey meadow and other small meadows. 11" to 32", 100 TPA, 180 ft/acre. Layer 2 is composed of pockets of PIJE, 

Ridge Zone: 2%  199   

North Slope: 45%  82‐275   

Page 156: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐14 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Minimum Allowable Post‐Treatment Basal Area (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

Neutral Slope: 42%  82‐275   

PICO or ABCO. Layer 3 is dense clumps of PICO 2" to 6", and scattered clumps of PIJE. Layer 4 ARPA, CECO, ribes, 10% cover,   Agg 2 (5%) openings dominated by brush, CECO and ARPA is found in north, while CHFO is found in south.  Agg 3(5%) openings dominated by barren soil. Cause by live stock. 

South Slope: 11%  82‐275   

 1037 

 97.4 

Canyon Zone: 11%  100‐216  219‐258  160   

Agg 1 (90%) Layer 1 are scattered PILA (60%), CADE (30%) and ABCO (10%) large 38" to 50” and generally older than 200 yrs old.  5 TPA, 20 ft/acre Layer 2 is composed of 60 to 120 year old ABCO (85%), PILA (5%) and CADE (10%), 14" to 34",  130 ft/acre, Layer 3 CADE (80%) and ABCO(20%) saplings and poles 4" to 12" DBH and 200 TPA, 20 ft/acre, 40 to 60 years old. Layer 4 is composed of CECO, CEIN, ARPA, CHFO and ribes 20% cover.  Agg 2 (5%) meadow area with scattered PICO  mostly clumped  Agg 3 (5%) areas of rock and brush  lenspotted hoary crest noxious found in corral weed corral and Dinkey road 

North Slope: 54%  82‐221  169‐219  140   

Neutral Slope:22%  82‐221  170‐200  140   

South Slope: 13%  163‐216  170‐200  140   

      

Page 157: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐15 September 2010

 

Table G‐3. Outline of the Treatment Schedule for the Proposed Action 

Plan ID  2010  2011  2012  2013  2014  2015  2016  2017  2020 

125 Restoration treatment, tractor log 

  Tractor pile slash and brush site  Burn piles 

Plant regeneration openings; first chemical release 

 Second chemical release 

 

Underburn 

129 

Owl Emphasis Ladder Fuels Treatment, tractor log 

  Tractor pile slash and brush  Burn piles       

 

 

150                  Underburn 

154 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Hand pile in campground areas 

Burn piles   

Plant regeneration openings; First Hand Release 

Second Hand Release   

 

 

170 

Owl Emphasis Ladder Fuels Treatment 

  Tractor pile slash (or masticate)   Burn piles       

 Underburn 

188 Restoration treatment, tractor log 

Tractor pile slash and brush site prep regeneration openings 

Burn piles   

Plant regeneration openings; first chemical release 

First hand release 

Second Hand Release 

  Underburn 

189 Restoration treatment, tractor log 

Tractor pile slash and brush site prep regeneration openings 

Burn piles Hand pull noxious weed 

  Hand pull noxious weeds 

   

Underburn 

Page 158: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐16 September 2010

 

Plan ID  2010  2011  2012  2013  2014  2015  2016  2017  2020 

190 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Hand pile in campground area  Burn piles       

   

 

197 

Owl Emphasis Ladder Fuels Treatment; hand cut only inside nest buffer 

Hand pull noxious weeds 

Tractor pile slash (or masticate) Hand pile slash inside nest buffer 

Hand pull noxious weeds burn piles 

   

   

Underburn 

217 

Hand thin trees and brush in plantation 

  Tractor pile slash and brush  Burn piles     

   Underburn 

225 Restoration treatment, tractor log 

Tractor pile slash and brush site prep regeneration openings 

Burn piles 

Plant regeneration areas; first chemical release 

First hand release 

Second hand release 

   

Underburn 

227 

Owl Emphasis treatment; Lop and scatter slash; hand cut only inside nest buffer 

 

Tractor pile slash (or masticate) Hand pile slash inside nest buffer 

Burn piles     

   

Underburn 

Page 159: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐17 September 2010

 

Plan ID  2010  2011  2012  2013  2014  2015  2016  2017  2020 

237 Restoration treatment, tractor log 

Hand thin from below to 6” in nest buffer; tractor pile slash and brush site prep regeneration openings 

Hand pile slash inside nest buffer 

Burn piles; plant regeneration openings; first chemical release 

 Second chemical release 

   

Underburn 

245 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Thin trees < 10” 

Tractor pile slash and brush, site prep regeneration openings; Hand pile slash in class 1 SMZ 

Burn piles; plant regeneration openings; first chemical release 

 Second chemical release 

   

 

259 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Hand pile in campground area and special use permit areas 

Burn piles       

   

 

275 

Owl Emphasis treatment; Lop and scatter slash 

 

Tractor pile slash (or masticate) Hand pile slash inside nest buffer 

Burn piles     

   

Underburn 

288 

Restoration treatment, tractor log; hand pull noxious weeds 

Thin trees < 10” 

Tractor pile slash and brush, site prep regeneration openings; Hand pile slash in meadow buffers 

Burn piles; hand pull noxious weed 

Hand pull noxious weeds 

Hand pull noxious weed 

   

 

Page 160: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐18 September 2010

 

Plan ID  2010  2011  2012  2013  2014  2015  2016  2017  2020 

296 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Thin trees < 10” 

Tractor pile slash and brush, site prep regeneration openings; hand pile slash in meadow buffers and within 50 ft of structures 

Burn piles; plant regeneration openings; first hand release and hand pull noxious weed 

Second hand release 

Hand pull noxious weed 

   

Underburn 

388 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Thin small trees <10” 

Tractor pile slash and brush prep regeneration openings; Hand pile slash in meadow buffer and within 50ft of structures 

Burn piles     

   

 

1037 Restoration treatment, tractor log; 

Thin trees < 10” 

Tractor pile slash and brush, site prep regeneration openings; hand pile slash in meadow buffers 

Burn piles; plant regeneration openings; first hand release 

Second hand release   

   

Underburn 

          

Page 161: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐19 September 2010

 

Table G‐4. The Current Stand Conditions as well as the Expected Stand Conditions after Treatment for the Proposed Action PLAN

 ID 

Acres 

Before Treatment Basal Area 

After Treatment Basal Area 

% Basal Area Removed 

Before Treatment QMD >6" 

After Treatment QMD >6" 

TPA before Treatment 

TPA After Treatment 

Trees Per Acre Removed Between 0‐10" 

DBH 

Trees Per Acre Removed Between 10‐

20" D

BH 

Trees Per Acre Removed Between 20‐

30" D

BH 

Board Feet Rem

oved Per Acre 

Before Acres of 4D, 4M, 5M, 5D 

After A

cres of 4D, 4M, 5M, 5D 

Before Percent of M

aximum

 SDI (in %) 

After Percent of M

aximum

 SDI (in %) 

125  81  95  84  12%  14.7  15.8  399  272  123.0  3.3  0.6  437  25.3  18.7  43.7  38.1 129  76.4  199  180  10%  20.6  21.3  600  392  201.2  4.5  2.7  1362  73.2  59.8  63.6  54.1 150  117.1  73  73  0%  22.7  22.7  176  176  0.0  0.0  0.0  0  8.4  8.4  24.2  24.2 154  44.4  187  170  9%  21.4  22.0  426  195  223.9  4.7  2.2  947  32.4  19.3  56.3  47.1 170  68.3  194  193  1%  18.2  18.2  558  558  0.0  0.0  0.0  0  60.5  60.5  62.6  59.7 188  67.5  73  73  0%  14.6  14.6  163  163  0.0  0.0  0.0  0  18.7  18.7  28  28 189  66.5  122  122  0%  23.7  23.7  78  78  0.0  0.0  0.0  0  33.7  33.7  33.2  33.2 190  86.5  186  154  17%  20.0  22.3  460  158  289.4  8.8  4.0  1812  71.6  27.3  57.5  43.3 197  76.0  184  182  1%  20.3  20.3  474  466  7.1  0.0  0.0  0  65.7  65.7  56.2  52.5 217  15.0  101  98  3%  33.0  33.0  539  418  121.8  0.0  0.0  0  0.0  0.0  42.8  38.1 225  136.3  170  147  14%  20.5  21.2  385  146  229.1  6.5  3.1  1440  108.3  108.3  52.3  42.1 227  70.0  208  164  21%  19.6  21.5  560  176  363.8  14.6  5.6  2842  66.6  66.6  64.3  45.2 237  96.2  198  165  17%  19.2  20.6  573  129  427.5  11.5  5.0  2323  85.9  85.9  62.5  44.5 245  123.6  209  174  17%  20.3  21.6  533  163  353.6  11.5  5.5  2508  116.7  115.3  60  46.2 259  46.4  192  179  7%  19.0  19.3  242  201  35.1  4.1  1.9  882  28.9  26.4  54.1  50.6 275  83.7  196  166  15%  21.7  22.9  655  291  349.0  10.4  4.0  2146  66.1  66.1  58.4  46.1 288  88.5  208  168  19%  19.3  20.5  573  180  375.4  12.2  5.7  2987  82.7  82.7  63  47 

Page 162: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐20 September 2010

 

PLAN

 ID 

Acres 

Before Treatment Basal Area 

After Treatment Basal Area 

% Basal Area Removed 

Before Treatment QMD >6" 

After Treatment QMD >6" 

TPA before Treatment 

TPA After Treatment 

Trees Per Acre Removed Between 0‐10" 

DBH 

Trees Per Acre Removed Between 10‐

20" D

BH 

Trees Per Acre Removed Between 20‐

30" D

BH 

Board Feet Rem

oved Per Acre 

Before Acres of 4D, 4M, 5M, 5D 

After A

cres of 4D, 4M, 5M, 5D 

Before Percent of M

aximum

 SDI (in %) 

After Percent of M

aximum

 SDI (in %) 

296  101.8  198  173  13%  22.2  22.7  375  224  141.4  4.4  5.5  1931  67.1  65.2  50.7  42.9 388  75.4  173  136  22%  18.7  20.0  634  171  445.1  13.8  4.7  2699  58.5  58.5  55.8  38.5 1037  97.4  176  163  7%  21.7  22.6  1014  432  576.1  4.2  2.0  1151  73.8  73.8  58.5  46.2              

Page 163: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐21 September 2010

 

Fire Severity Treatment 

Table G‐5. Present Conditions and Residual Basal Areas by Stand (Note: Topographic zones for the proposed action are displayed for consistency.  Topographic zones are not used to define treatments in the fire severity alternative.) 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

125  81.0 

Ridge Zone: 31%  42‐183 

The greater of 200 ft2 or 80% of existing basal area  

60  Agg 1(25 %) mixed conifer agg composed of layer 1 PILA and PIJE >30" Approximately. 2 TPA. Layer 2 is composed of 6" to 24" trees dominated by ABCO and PILA found in dense clumps. Layer 3 is composed of ABCO, QUKE and PILA 1" to 6" DBH.  Layer 4 is composed of 3ft tall green leaf manzanita. And bear clover 30 to 80 percent cover. Total brush cover > 65%  Agg2 (35%) mixed conifer stand found on low site and rocky soils dominated by small trees and brush.  Layer 1 is composed of scattered Approximately. 1 TPA PIJE and PILA >30" DBH.  Layer 2 is composed of scattered (2 TPA) 22" to 30" PIJE and PILA.  Layer 3 is composed of QUKE, ABCO, and PIJE 2" to 16" DBH approx. 150 trees per acre.  Layer 4 is dense green leaf manzanita. > 70 percent cover.  Agg3 (40%) rock and rock out crop dominate by bare rock and green leaf manzanita. Scattered PIJE 6" DBH 

North Zone: 34%  42‐192  100 

Neutral Slope: 10%  42‐192  60 

South Zone: 25%  42‐192  60 

 129  

 76.4  

Ridge Zones: 41%  136‐229    

170 Agg 1(60 %) mixed con dominated by ABCO and CADE.  Layer 1 is composed of scattered large (>40") CADE, PILA and PIJE. Layer 2 is composed of ABCO and CADE in dense clumps 16" to 32", BA ranges from 120 to 260 ft/acre. Layer 

Page 164: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐22 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

      129 

      76.4 

North Zone: 45%  136‐245  Maintain 50% canopy cover   

160 

3 is composed CADE, PILA and ABCO 2" to 6" found scattered across the aggregate. Layer 4 is composed of 50% cover in ARPA, CECO and prunus. Agg 2 (15 %) 15 year old sugar pine progeny plantation.  Plantation is composed of superior sugar pine 130 trees per acre. Trees range from 3 to 12 feet tall. Directed spray of glyphosate has maintained less than 10 cover in brush.  Harsh site prep appears to have piled top soil.  Agg 3 (15 %) is composed of low site (thin soil) with rock out crops.  Agg is dominated by PIJE and CADE (2‐5 TPA) 6" to 20"with understory of ARPA and CECO.  Agg 4 (9 %) open PIJE and CADE on low to moderate site with understory of scatter pole size CADE and PIJE and ARPA.  Agg 5 (<1%) same as agg 1 but with noxious weeds 

Neutral Zone: 5%  147‐245  140 

South Zone: 9%  147‐245  140 

  

  

Canyon Zone: 14%  21‐192   

    Agg 1(20%) mixed con dominated by ABCO and CADE.  Layer 1 is composed of scattered large (>40") CADE, PILA 

Page 165: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐23 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

 150       150  

 117.1       117.1 

Ridge Zone: 10%  34‐121 

No treatment; burn only     

 

and ABCO. Layer 2 is composed of ABCO and CADE in dense clumps 16" to 32", BA ranges from 60 to 200 ft/acre. Layer 3 is composed CADE, PILA and ABCO 2" to 6" found scattered across the aggregate. Layer 4 is composed of 50% cover in ARPA, CECO.  Agg2 (20%) is composed of low site thin soil and rock or scattered small pockets or soil with clumps of trees.  Layer 1 is composed of widely scattered (1 TPA) PILA and ABCO > 34".  Layer 2 is widely scattered clumps of ABCO and PILA with understory of ARPA and CECO.  Agg3 (60%)is composed of low site and rock dominated by ARPA and CECO 

North Slope: 13%  34‐192   

Neutral Slope: 18%  21‐192   

South Slope: 45%  21‐192   

 154 

 44.4 

Canyon Zone: 44%  161‐221  The greater of 200 

ft2 or 80% of existing basal area  

 Stand contains day use areas (parking, trails, and tables) along Dinkey Creek. Agg 1 (80%) is composed of mixed conifer dominated by ABCO and CADE.  Layer 1 is composed of very large (40" to 70") CADE, PILA and PIPO at 1 to 2 trees per acre. This layer is 200+ years old.  Layer 2 is composed of dense ABCO and 

Ridge Zone: 4%  196   

Page 166: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐24 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

North Slope: 48%  196‐220   CADE (160 to 400 ft/acre).  This layer is composed of trees 95 to 116 years old.  Layer 3 is composed of suppressed CADE at 10 to 20 per acre with less than 5 percent cover of brush.  Agg 2 (20 %) is rock and thin soils with rock out crops dominated by green leaf manzanita...  Layer 1 is composed of scattered PIPO and CADE (1 to 2 TPA).  Layer 2 is composed of ARPA 20 to 80 percent cover. 

Neutral Slope: 2%  196‐220   

South Slope: 2%  196‐220   

 170          170  

 68.3          68.3 

Ridge Zones: 7%  192‐221 

        Maintain 50% canopy cover   

125 

Agg 1 (70%) is dominated by ABCO 12" to 32".  Layer 1 is composed of widely scattered PILA and ABCO > 40" @ .5 TPA or less.  Layer 2 dominates stand and is composed of dense ABCO and CADE clumps (60 to 85 years old. Clump density ranges from 200 to 400 ft/acre. In between clumps are clumps of brush. Layer 3 ARPA, CECO, and CEIN at 40% cover.  Agg 2 (15%) 17 year old plantations.  Agg is dominated by planted PIJE and PILA (200 TPA) with scattered brush.  Recent release and thin. Stand (434008). Previously had 600 TPA and 60% cover of brush.  Agg 3 (10 %) 17 year old plantations.  Agg is dominated by planted PIJE and PILA (375 TPA) with scattered brush.  Brush is composed of ARPA and CECO @ > 60% cover.  Agg 4 (5%) is composed of meadow.  Agg 5 (5 %) is composed of openings dominated by brush and scattered Layer 1ABCO and CADE (2 to 4 trees per acre). Layer 2 is dense ARPA > 70% cover. 

North Zone: 82%  53‐341  165 

Neutral Slope: 10%  53‐341  140 

South Slope : 1%  132‐341  160 

Page 167: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐25 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

    188     188  

    67.5     67.5  

Canyon Zone: 8%  84‐220 

The greater of 200 ft2 or 80% of existing basal area   

140 This stand contains Glen Meadow work center.   Agg 1(25%) is composed of mixed conifer stand.  Layer 1 is composed of large (40" to 60" DBH) scattered (Approximately 1 TPA) ABCO, PIJE and PILA.  Much of this layer is dying from insects and WPBR.  Layer 2 is composed of 20" to 34" ABCO and CADE @ 6 TPA.  Layer 3 is composed of dense clumps of 9" to 20" ABCO, PILA and CADE approximately 40 to 60 years old. This layer dominates the plant agg. Layer 4 is composed scattered clumps of ARPA and CECO Approximately 20% cover. One root rot pocket found near barbecue pit on ABCO.  Agg2 (75%) is composed of rock and low site with open PIJE and CADE. 

North Slope: 69%  83‐220  140 

Neutral Slope: 7%  83‐168  100 

South Slope: 16%  84‐168  100 

189  66.5 

Canyon Zone: 29%  168‐183 

The greater of 200 ft2 or 80% of existing basal area  

140 Agg 1(15%) is composed of mixed conifer stand.  Layer 1 is composed of large (40" to 60" DBH) scattered (Approximately 1 TPA) ABCO, PIJE and PILA.  Much of this layer is dying from insects and WPBR.  Layer 2 is composed of 20" to 34" ABCO and CADE.  Layer 3 is composed of dense clumps of 9" to 20" ABCO, PILA and CADE approximately 40 to 60 years old.  Layer 4 is composed scattered clumps of ARPA and CECO Approximately 20% cover.  Agg2 (80%) is composed of rock and low site with open PIJE and CADE.  Agg3 (5%) is a wet meadow with scattered ABCO and PIJE 

North Slope: 21%  168‐183  140 

Neutral Slope: 3%  168‐183  120 

South Slope: 47%  168‐183  120 

   190  

   86.5  

Canyon Zone: 28%  83‐227  The greater of 200 

ft2 or 80% of existing basal area   

 Stand contains Dinkey camp ground and rec. cabins  Agg1 (80 %) layer 1 is composed of large 40" to 80” PIPO, PILA and CADE.  Layer 2 is composed of ABCO (50%), PIPO (15%) and CADE (35%) 16" to 38" DBH. Layer is approximately 90 to 120 years old.  ABCO dominates this 

North Slope: 47%  83‐341   

Page 168: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐26 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

    190   

    86.5 

Neutral Slope: 10%  83‐221   

layer.  Pine in this layer is being progressively killed by western pine beetle.  Layer 3 is composed of 6" to 14” CADE, PILA, and ABCO. Layer 4 is scattered clumps of CECO @ 10% cover.  Agg 2 (20 %) is rock and thin soils with rock out crops dominated by green leaf manzanita...  Layer 1 is composed of scattered PIPO (70%) and CADE (30%) (1 to 2 TPA).  Layer 2 is composed of ARPA 0 to 20 percent cover. 

South Slope: 15%  90‐341   

197  76.0 

Canyon Zone: 7%  107‐221 

Maintain 50% canopy cover   

180 Agg1 (70 %) is composed of scattered layer 1 larger 32" to 50" CADE and PILA @ .25 TPA.  Layer 2 is dominates stand and is composed of CADE (40%) and ABCO (35%).  PICO is found near meadow. PIPO is scattered across the Agg.  Trees range in diameter from 14" to 32".  Tree heights range from 40 to 90 ft. Layer 3 is composed CADE (60%), PILA (20%), and ABCO (15%). PICO (5%) is found in the understory near meadow. Layer 4 is composed of 20% cover of ARPA (50%), CECO (40%) and CHFO (10%).  Agg2 (20 %) is composed of rock and rock out crops with scattered PIJE (10%), PILA (40%) and CADE (50%).  Layer 2 is composed of slow growing CADE (70 %) and PILA (30%) 10" to 20" and 70 ft tall. Layer 3 is composed of ARPA (90%) and CECO (10%) and scattered pole size CADE.  Agg3 (10%) is a wet meadow with PICO, ABCO and PIJE scattered throughout. Wet area extends under timber. Otherwise similar to agg 1. 

Ridge Zone: 6%  148‐200  130 

North Slope : 23%  148‐221  190 

Neutral Slope: 15%  148‐221  160 

South Slope : 49%  107‐221  150 

217  15.0 North Slope: 90%  96‐103 

The greater of 200 ft2 or 80% of existing basal area  

 

Agg 1 (90%) Stand is dominated by 16 year old PIJE (80%) plantation with scattered Layer 1 PILA ((5%) and ABCO (15%) 10" to 30"DBH at 1.5 TPA.  Planted PIJE range in size from 3" to 8”.  Plots indicate 237 trees per acre. ARPA (40%) and CECO (60%) account for 40% cover and average 3 ft tall.Neutral slope:  96‐103 

Page 169: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐27 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

10%   Agg 2 (10%) rock and low site thin soils with scattered PIJE and ABCO. 

       225          225 

       136.3          136.3 

Canyon Zone:8%  168‐221 

   The greater of 200 ft2 or 80% of existing basal area        

160 Agg 1 (70%) is composed of mixed conifer.  Layer 1 is composed of older (30" to 60") PILA (60%), ABCO (5%), PIJE (15%) and CADE (20%) scattered in clumps across the stand @ 3 TPA.  Layer 2 dominates stand and is composed of ABCO (60%) and PIJE (20%) and CADE (10%) and PILA (10%). DBH ranges from 10" to 30" DBH with Approximately average tree DBH 18”.  Basal area/acre is composed of 160.  Layer 3 is composed of 6" to 11" trees found in clumps scattered across the agg. Approximately. 50 TPA. Layer 4 is composed of 15% cover of ARPA (50%), CECO (45%) and Ribes PILA. (5%). Brush is 2 ft tall.  Agg 2 (5%) is composed of large rock out crops and thin soil. Agg is dominated by ARPA and scattered CADE and PIJE.  Agg 3 (20%) is composed of well drained sandy soils dominated by Layer 1 PIJE (60%) and CADE (40%) 28" to 44" @ with scattered understory of PIJE and ABCO and brush.  This agg is found adjacent to rock out crops.  Agg 4 (5%) is similar to agg 1 but associated with meadow areas.  These areas have PICO in layer 2. 

Ridge Zone: 1%  207  80 

North Slope: 66%  84‐221  120 

Neutral Slope: 10%  84‐221  120 

South Slope: 15%  91‐220  100 

   

   

Canyon Zone: 23%  199‐221 

   

 Agg 1 (15%) is composed of mixed conifer.  Layer 1 is composed of older (30" to 60") PILA (60%), ABCO (5%), PIJE (15%) and CADE (20%) scattered in clumps across the stand @ 3 TPA.  Layer 2 dominates stand and is composed of 

Page 170: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐28 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

    227          227 

    70.0          70.0 

Ridge Zone: 19%  221   Maintain 50% Canopy cover  basal area      Maintain 50% Canopy cover  basal area  

 

ABCO (60%) and PIJE (20%) and CADE (10%) and PILA (10%). DBH ranges from 10" to 30" DBH with Approximately average tree DBH 18”.  Basal area/acre is composed of 160.  Layer 3 is composed of 6" to 11" trees found in clumps scattered across the agg. Approximately. 50 TPA. Layer 4 is composed of 15% cover of ARPA (50%), CECO (45%) and Ribes PILA. (5%). Brush is 2 ft tall.  Agg 2 (70%) is composed of dense layer 1 ABCO (90%) 10" to 32", CADE (5%) and PILA (5%) are found scattered widely across the stand.  Density averages 180 ft/acre, but ranges form 85 to 280 ft/acre.  Height averages 95 ft tall.  Layer 2 is composed of understory CADE (50%) and ABCO (50%) 2" to 8" DBH @ 100 TPA.  Layer 3 is composed of brush cover of 15% composed of CECO, ARPA and CHFO.  Agg 3 (5%)  Rock and Rock out corps  Agg 4 (10%) is the same as agg 2 but found inside the spotted owl nest buffer. 

North Zone: 1%  221   

Neutral Zone: 8%  221   

South Zone:  48%  199‐221   

237  96.2 

Canyon Zone: 5%  211‐233 

 The greater of 200 ft2 or 80% of existing basal area  

160 Agg 1 (80%) Layer 1 is composed of 26" to 40" older ABCO (85%) and PILA (15%). These trees are 90 to 120 ft tall.  Layer 2 ABCO (90%) 10" to 32", CADE (5%) and PILA (5%) are found scattered widely across the stand.  Density averages 180 ft/acre, but ranges form 85 to 280 ft/acre.  Height averages 95 ft tall.  Layer 2 is composed of understory CADE (50%) and ABCO (50%) 2" to 8" DBH @ 100 TPA.  Layer 3 is composed of brush cover of 15% composed of CECO, ARPA and CHFO.  Agg 2 (5%) is the same as agg 1 but found inside the Spotted owl nest buffer. 

Ridge Zone: 13%  168‐315  100 

North Slope: 32%  122‐315  120 

Neutral Slope: 41%  122‐315  120 

Page 171: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐29 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

South Zone: 9%  122‐315  120 

 Agg 3 (15%) is found on rocky thin soil dominated by ARPA (90%) and CASE (10%) with an overstory of scattered PIJE (20%) and CADE (80%). 

 245      245 

 123.6      123.6 

Canyon Zone: 7%  196‐220 

 The greater of 200 ft2 or 80% of existing basal area  

  Agg 1 (90%) Layer 1 is composed of 32" to 50" older ABCO (85%) and PILA (15%). These trees are 90 to 120 ft tall.  Layer 2 ABCO (80%) 20" to 32", CADE (10%) and PIJE (10%) are trees that were established prior to logging in late 1930's and are now 80 to 120 years old.   Layer 3 is dense clumps of CADE (60%) and ABCO (30%) established after 1930's logging and are now 8"to 26” DBH.  300 TPA. Layer 4 is composed of understory CADE (45%) and ABCO (45%) and QUKE (10%) 2" to 6" DBH @ 200 TPA.  Layer 3 is composed of brush cover of 20% composed of CECO, ARPA and CHFO.  Agg 2 (10%) is composed of rock, rock outcrops and barren areas.  Barren areas are large landings or dumps from the mill site. 

Ridge Zone: 2%  196   

North  Slope: 30%  196‐341   

Neutral Zone: 36%  196‐284   

South Zone: 24%  196‐284   

    259         

    46.4         

Canyon Zone: 31%  160‐341 

 The greater of 200 ft2 or 80% of existing basal area.         The greater of 200 ft2 or 80% of 

 The stand is located adjacent to Dinkey creek.  It contains several buildings and developed recreation sites including the Dinkey store.  The stand is composed of three aggregates: 1) dense ABCO stand near group camp site and store 2) dense pockets of large ABCO and PIJE around Dinkey Ranger Station and 3) rock out crops with scattered PIJE.  Agg 1 is dominated by 90 to 120 year old ABCO and scattered PIJE and PICO.  The stand is even‐aged with smaller size classes with in 10 to 30 years of the dominant trees. Tree growth has slowed in last 20 years.  Lay 1 is composed of scattered 230 year old PIJE and ABCO (4 TPA @ 32" to 46") Lay2 is composed of ABCO and scattered PIJE and PICO. Layer 2 is found in clumps 200 

North Slope: 33%  160‐341   

Neutral Slope: 10%  160‐341   

South Slope: 31%  160‐341   

Page 172: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐30 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

     259 

     46.4 

existing basal area  

to 400 ft/acre. DBH ranges from 12" to 30”. Layer 3 is composed of suppressed and intermediates 1" to 10".  I saw very few viable seedlings or saplings.  Agg2 is composed of pockets of older trees found around the ranger station.  The stand is dominated by large PIJE (40%) and ABCO (60%) with scattered understory trees of PIJE and ABCO.  Layer 1 is composed of 194+ year old PIJE and ABCO.  Layer 2 is suppressed and intermediates at 120 to 200 years old.  Understory brush is composed of scattered ARPA and CECO. Agg 3 is composed of large rock out crops with widely scatter PIJE and ABCO (less than 40 ft/acre).  ARPA dominates these rock outcrops.  I took an additional 6 in plots in agg 1 in 2004 (attached). This stand contains the Dinkey store and Dinkey Ranger Station measured ages 94yrsx94ft, 116 yrs and 111 yrs 

  275       275 

  83.7       83.7 

Canyon Zone: 6%  210‐221 

     Maintain 50% Canopy cover   

 Agg 1 (80%) this agg is dominated by ABCO(75%) and CADE(25%), layer 1is composed of 28" to 40" ABCO(40%), CADE(50%) and PILA(10%), these are older trees found in clumps (140 to 200+ years ) larger trees tend to be CADE. Layer 1 has Approximately. 5 TPA and 30 ft/acre.  Layer 2 dominates agg with ABCO (40%), CADE (40%), PILA (10%) and PIJE (10%) @ 180ft/acre and 83 TPA. Layer 3 is composed of understory ABCO (95%) and CADE (5%) 2" to 8" DBH @ 120 TPA. Layer 4 is composed of 35% cover of ARPA (25%) and CECO (75%), 2 ft tall.  Agg 2 (20%) is composed of thin soils and rock. Layer 1 is composed of 20"to 36"   PIJE (50%), CADE (40%) and ABCO (10%) @ 40 ft/acre.  Layer 2 is composed of 80% cover of ARPA (20%), CECO (70%), and CHFO (10%). 

Ridge Zone: 15%  105‐329   

North Slope: 63%  97‐329   

Neutral Slope: 6%  105‐329   

South Slope: 10%  196‐329   

Page 173: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐31 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

288  88.5 

Canyon Zones: 16%  199‐221 

The greater of 200 ft2 or 80% of existing basal area  

160 Agg 1 (75%) characterized by dense ABCO (50%) and CADE (50%) 50 to 120 years old @ 280 ft/acre.  Layer 1 is ABCO and CADE 22" to 36”, 80 ft/acre and 20 TPA.  These trees range from 90 to 120 years old.  Layer 2 is composed of 12" to 22" DBH CADE (60%), ABCO (35%) and PIPO (5%) 160 ft/acre and 100 TPA.  50 to 80 yrs. Layer 3 is composed of 6” to 12" ABCO and CADE, 40 ft/acre and 100 TPA. Layer 4 is composed of scatter clumps of CECO (45%) ARPA (45%) and ribes PILA. (10%) at 40% cover.  Agg2 (19%) areas dominated by CECO and Scattered ABCO and CADE.  Layer 1 ABCO 12” to 40” @ 7 TPA.  Layer 2 is composed of CECO (80%) and ARPA (20%) @ 70% cover.  Agg 3 (5%) is wet meadow  Agg 4 (<1%) same as agg1 but with noxious weed bull thistle

North Slope: 8%  199  140 

Neutral Slope: 31%  137‐329  120 

South Zone: 46%  137‐329  120 

 296 

 101.8 

Canyon Zones: 7%  196‐265 

The greater of 200 ft2 or 80% of existing basal area  

 This stand contains the old Dinkey mill site, improvements for museum, and new administrative site. It also contains Clydes pack station.  Agg 1(40%) is composed of urbanized and former mill site with structures and roads.  Agg 2 (50%) area logged in 1937. Current stand contains trees left after logging and those seeded in after harvest.  Stands were previously in private land. Layer 1 is composed of ABCO and CADE .1 TPA larger 40”. Layer 2 is composed of CADE (30%), PIPO (15%), PILA (5%) and ABCO (50%) 85 to 65 years old @ 180 ft/acre.  14" to 36" DBH. Layer 3 is 

Ridge Zone:5%  259‐268   

North Slope: 59%  164‐221   

Page 174: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐32 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

Neutral Slope: 13%  164‐268   

composed CECO, Prunus near meadow and ribes and scattered CADE and ABCO saplings.  Agg3 (5%) is meadow area.  Agg 4 (3%) is same as 2 but contains pack station.  Agg 5 (2%) is areas with noxious weeds Hoary Crest, cheat grass, and Mullen. Cheat grass is located in mill site.  Hoary Crest and Mullen are located along Dinkey/Shaver road. 

South Slope:  17%  164‐265   

 388       388 

 75.4       75.4 

Canyons: <1%  275 

      The greater of 200 ft2 or 80% of existing basal area  

 Stand is dominated by 11" to 32" PIJE, CADE and ABCO. Two recreation residences are found in this stand. The stand borders Dinkey Meadow and private land.  Agg 1 (90%) Layer 1 is clumps of 36" to 50" PILA and PIJE, about .2 TPA.  Layer 2 is composed of dense PIJE (30%), CADE (15%), and ABCO (40%). PICO is scattered in pockets near Dinkey meadow and other small meadows. 11" to 32", 100 TPA, 180 ft/acre. Layer 2 is composed of pockets of PIJE, PICO or ABCO. Layer 3 is dense clumps of PICO 2" to 6", and scattered clumps of PIJE. Layer 4 ARPA, CECO, ribes, 10% cover,   Agg 2 (5%) openings dominated by brush, CECO and ARPA is found in north, while CHFO is found in south.  Agg 3(5%) openings dominated by barren soil. Cause by live stock. 

Ridge Zone: 2%  199   

North Slope: 45%  82‐275   

Neutral Slope: 42%  82‐275   

South Slope: 11%  82‐275   

  

  

Canyon Zone: 11%  100‐216 

The greater of 200 ft2 or 80% of existing basal area 

160 Agg 1 (90%) Layer 1 are scattered PILA (60%), CADE (30%) and ABCO (10%) large 38" to 50” and generally older than 200 yrs old.  5 TPA, 20 ft/acre Layer 2 is composed of 60 to 

Page 175: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐33 September 2010

 

Plan ID  Acres 

Topographic Zone (% of Total Stand) 

Existing Basal Area Range (ft2) 

Residual Basal Area Range (ft2) 

Plant Aggregation in Topo Zone  Present Conditions 

  1037      1037 

  97.4      97.4 

North Slope: 54%  82‐221 The greater of 200 ft2 or 80% of existing basal area 

140 120 year old ABCO (85%), PILA (5%) and CADE (10%), 14" to 34",  130 ft/acre, Layer 3 CADE (80%) and ABCO(20%) saplings and poles 4" to 12" DBH and 200 TPA, 20 ft/acre, 40 to 60 years old. Layer 4 is composed of CECO, CEIN, ARPA, CHFO and ribes 20% cover.  Agg 2 (5%) meadow area with scattered PICO  mostly clumped  Agg 3 (5%) areas of rock and brush  lenspotted hoary crest noxious found in corral weed corral and Dinkey road 

Neutral Slope:22%  82‐221  140 

South Slope: 13%  163‐216  140 

 

 

    

Page 176: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐34 September 2010

 

Table G‐6. The Schedule of Treatment for the Fire Severity Alternative 

Plan ID  2010  2011  2012  2013  2014  2015  2016  2017  2020 

125 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

  Tractor pile slash and brush site  Burn Piles       

 

Underburn 

129 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

  Tractor pile slash and brush  Burn Piles       

 

 

150                  Underburn 

154 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Hand pile in campground areas 

Burn piles         

 

 

170 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

  Tractor pile slash (or masticate)   Burn Piles       

 

Underburn 

188 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Tractor pile slash and brush   Burn piles            Under

burn 

Page 177: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐35 September 2010

 

Plan ID  2010  2011  2012  2013  2014  2015  2016  2017  2020 

189 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Tractor pile slash and brush   Burn piles 

Hand pull noxious weed 

  Hand pull noxious weeds 

   

Underburn 

190 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Hand pile in campground area 

Burn piles       

   

 

197 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Hand pull noxious weeds 

Tractor pile slash (or masticate) Hand pile slash inside nest buffer 

Hand pull noxious weeds burn piles 

   

   

Underburn 

217 

Hand thin trees and brush in plantation 

  Tractor pile slash and brush  Burn piles     

   Underburn 

225 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Tractor pile slash and brush   Burn piles       

   

Underburn 

227 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

 

Tractor pile slash (or masticate) Hand pile slash inside nest buffer 

Burn piles     

   

Underburn 

Page 178: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐36 September 2010

 

Plan ID  2010  2011  2012  2013  2014  2015  2016  2017  2020 

237 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Hand thin from below to 6” in nest buffer; tractor pile slash and brush  

Hand pile slash inside nest buffer  Burn piles      

   

Underburn 

245 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Thin trees < 10” 

Tractor pile slash and brush, Hand pile slash in class 1 SMZ 

Burn piles      

   

 

259 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Hand pile in campground area and special use permit areas 

Burn piles       

   

 

275 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

 

Tractor pile slash (or masticate) Hand pile slash inside nest buffer 

Burn piles     

   

Underburn 

288 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Thin trees < 10” 

Tractor pile slash and brush, site prep regeneration openings; Hand pile slash in meadow buffers 

Burn piles; hand pull noxious weed 

Hand pull noxious weeds 

Hand pull noxious weed 

   

 

Page 179: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐37 September 2010

 

Plan ID  2010  2011  2012  2013  2014  2015  2016  2017  2020 

296 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Thin trees < 10” 

Tractor pile slash and brush; hand pile slash in meadow buffers and within 50 ft of structures 

Burn piles     

   

Underburn 

388 

Public and Fire Fighter Safety Emphasis treatment, tractor log 

Thin small trees <10” 

Tractor pile slash and brush prep regeneration openings; Hand pile slash in meadow buffer and within 50ft of structures 

Burn Piles     

   

 

1037 

Public and Fire Fighter Safety Emphasis treatment, tractor log; 

Thin trees < 10” 

Tractor pile slash and brush, hand pile slash in meadow buffers 

Burn piles     

   

Underburn 

          

Page 180: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐38 September 2010

 

Table –G‐7. The Current Stand Conditions as well as the Expected Stand Conditions after Treatment for the Fire Severity Treatment PLAN

 ID 

Acres 

Before Treatment Basal Area 

After Treatment Basal Area 

% Basal Area Removed 

Before Treatment QMD >6" 

After Treatment QMD >6" 

TPA before Treatment 

TPA After Treatment 

Trees Per Acre Removed Between 0‐10" D

BH 

Trees Per Acre Removed Between 10‐20" DBH

 

Trees Per Acre Removed Between 20‐30" DBH

 

Board Feet Rem

oved Per Acre 

Before Acres of 4D, 4M, 5M, 5D 

After A

cres of 4D, 4M, 5M, 5D 

Before Percent of M

aximum

 SDI (in %) 

After Percent of M

aximum

 SDI (in %) 

125  81.0  95  92  4%  14.7  15.1  399  339  58.9  1.4  0  75  25.3  25.3  43.7  42.3 129  76.4  199  196  2%  20.6  21.0  600  509  89.8  1.8  0  107  73.2  73.2  63.6  60.7 150  117.1  73  73  0%  22.7  22.7  176  176  0.0  0.0  0  0  8.4  8.4  24.2  24.2 154  44.4  187  185  1%  21.4  21.5  426  343  82.6  0.0  0  >1  32.4  32.4  56.3  53.7 170  68.3  194  193  1%  18.2  18.2  558  558  0.0  0.0  0  0  60.5  60.5  62.6  59.7 188  67.5  73  73  0%  14.6  14.6  163  163  0.0  0.0  0  0  18.7  18.7  28.0  28.0 189  66.5  122  122  0%  23.7  23.7  78  78  0.0  0.0  0  0  33.7  33.7  33.2  33.2 190  86.5  186  184  1%  20.0  20.3  460  394  66.8  0.0  0  1  71.6  71.6  57.5  55.4 197  76.0  184  182  1%  20.3  20.3  474  474  0.0  0.0  0  0  65.7  65.7  56.2  56.2 217  15.0  101  99  2%  33.0  33.0  539  458  81.2  0.0  0  0  0.0  0.0  42.8  39.7 225  136.3  170  168  1%  20.5  20.7  385  330  54.4  0.0  0  >1  108.3  108.3  52.3  50.6 227  70.0  208  188  9%  19.6  21.7  560  262  286.6  11.4  0  857  66.6  66.6  64.3  49.8 237  96.2  198  190  4%  19.2  19.9  573  463  107.5  2.3  0  108  85.9  85.9  62.5  57.8 245  123.6  209  206  1%  20.3  20.6  533  445  87.4  1.0  0  61  116.7  116.7  60.0  57.8 

Page 181: Chapter 4 Consultation and Coordinationa123.g.akamai.net/7/123/11558/abc123/forestservic...Chapter 4 Consultation and Coordination The following individuals, agencies, and organizations

USDA Forest Service  Appendix G 

 Proposed Action and the Fire Severity Alternative  Tables: Existing Conditions, Treatments, and Schedule  Dinkey North Restoration Project 

G‐39 September 2010

 

PLAN

 ID 

Acres 

Before Treatment Basal Area 

After Treatment Basal Area 

% Basal Area Removed 

Before Treatment QMD >6" 

After Treatment QMD >6" 

TPA before Treatment 

TPA After Treatment 

Trees Per Acre Removed Between 0‐10" D

BH 

Trees Per Acre Removed Between 10‐20" DBH

 

Trees Per Acre Removed Between 20‐30" DBH

 

Board Feet Rem

oved Per Acre 

Before Acres of 4D, 4M, 5M, 5D 

After A

cres of 4D, 4M, 5M, 5D 

Before Percent of M

aximum

 SDI (in %) 

After Percent of M

aximum

 SDI (in %) 

259  46.4  192  190  1%  19.0  19.1  242  225  17.2  0.4  0  25  28.9  28.9  54.1  53.3 275  83.7  196  177  10%  21.7  23.2  655  294  348.6  11.9  0  1532  66.1  66.1  58.4  47.7 288  88.5  208  206  1%  19.3  19.6  573  484  88.1  0.6  0  29  82.7  82.7  63.0  60.4 296  101.8  198  194  2%  22.2  22.6  375  235  136.7  4.1  0  222  67.1  67.1  50.7  47.4 388  75.4  173  171  1%  18.7  18.9  634  488  146.7  0.0  0  0  58.5  58.5  55.8  53.0 1037  97.4  176  171  3%  21.7  22.3  1014  812  201.4  0.7  0  41  73.8  73.8  58.5  53.5