chapter 3: the multiple linear regression model€¦ ·  · 2013-12-19ruud p., (2000) an...

174
Chapter 3: The Multiple Linear Regression Model Advanced Econometrics - HEC Lausanne Christophe Hurlin University of OrlØans November 23, 2013 Christophe Hurlin (University of OrlØans) Advanced Econometrics - HEC Lausanne November 23, 2013 1 / 174

Upload: vanliem

Post on 03-May-2018

219 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

Chapter 3: The Multiple Linear Regression ModelAdvanced Econometrics - HEC Lausanne

Christophe Hurlin

University of Orléans

November 23, 2013

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 1 / 174

Page 2: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

Section 1

Introduction

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 2 / 174

Page 3: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

1. Introduction

The objectives of this chapter are the following:

1 Dene the multiple linear regression model.

2 Introduce the ordinary least squares (OLS) estimator.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 3 / 174

Page 4: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

1. Introduction

The outline of this chapter is the following:

Section 2: The multiple linear regression model

Section 3: The ordinary least squares estimator

Section 4: Statistical properties of the OLS estimator

Subsection 4.1: Finite sample properties

Subsection 4:2: Asymptotic properties

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 4 / 174

Page 5: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

1. Introduction

References

Amemiya T. (1985), Advanced Econometrics. Harvard University Press.

Greene W. (2007), Econometric Analysis, sixth edition, Pearson - PrenticeHil (recommended)

Pelgrin, F. (2010), Lecture notes Advanced Econometrics, HEC Lausanne (aspecial thank)

Ruud P., (2000) An introduction to Classical Econometric Theory, OxfordUniversity Press.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 5 / 174

Page 6: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

1. Introduction

Notations: In this chapter, I will (try to...) follow some conventions ofnotation.

fY (y) probability density or mass function

FY (y) cumulative distribution function

Pr () probability

y vector

Y matrix

Be careful: in this chapter, I dont distinguish between a random vector(matrix) and a vector (matrix) of deterministic elements. For moreappropriate notations, see:

Abadir and Magnus (2002), Notation in econometrics: a proposal for astandard, Econometrics Journal.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 6 / 174

Page 7: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

Section 2

The Multiple Linear Regression Model

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 7 / 174

Page 8: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Objectives

1 Dene the concept of Multiple linear regression model.

2 Semi-parametric and Parametric multiple linear regression model.

3 The multiple linear Gaussian model.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 8 / 174

Page 9: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (Multiple linear regression model)The multiple linear regression model is used to study the relationshipbetween a dependent variable and one or more independent variables. Thegeneric form of the linear regression model is

y = x1β1 + x2β2 + ..+ xK βK + ε

where y is the dependent or explained variable and x1, .., xK are theindependent or explanatory variables.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 9 / 174

Page 10: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Notations

1 y is the dependent variable, the regressand or the explainedvariable.

2 xj is an explanatory variable, a regressor or a covariate.

3 ε is the error term or disturbance.

IMPORTANT: do not use the term "residual"..

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 10 / 174

Page 11: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Notations (contd)

The term ε is a random disturbance, so named because it disturbsanotherwise stable relationship. The disturbance arises for several reasons:

1 Primarily because we cannot hope to capture every inuence on aneconomic variable in a model, no matter how elaborate. The nete¤ect, which can be positive or negative, of these omitted factors iscaptured in the disturbance.

2 There are many other contributors to the disturbance in an empiricalmodel. Probably the most signicant is errors of measurement. It iseasy to theorize about the relationships among precisely denedvariables; it is quite another to obtain accurate measures of thesevariables.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 11 / 174

Page 12: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Notations (contd)

We assume that each observation in a sample fyi , xi1, xi2..xiK g fori = 1, ..,N is generated by an underlying process described by

yi = xi1β1 + xi2β2 + ..+ xiK βK + εi

Remark:

xik = value of the kth explanatory variable for the i th unit of the sample

xunit,variable

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 12 / 174

Page 13: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Notations (contd)

Let the N 1 column vector xk be the N observations on variable xk ,for k = 1, ..,K .

Let assemble these data in an N K data matrix, X.

Let y be the N 1 column vector of the N observations, y1,y2, .., yN .

Let ε be the N 1 column vector containing the N disturbances.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 13 / 174

Page 14: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Notations (contd)

yN1

=

0BBBBBB@

y1y2..yi..yN

1CCCCCCA xkN1

=

0BBBBBB@

x1kx2k..xik..xNk

1CCCCCCA εN1

=

0BBBBBB@

ε1ε2..εi..εN

1CCCCCCA βK1

=

0BB@β1β2..

βK

1CCA

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 14 / 174

Page 15: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Notations (contd)

XNK

= (x1 : x2 : .. : xK )

or equivalently

XNK

=

0BBBBBB@

x11 x12 .. x1k .. x1Kx21 x22 .. x2k .. x2K.. .. .. .. .. ..xi1 xi2 .. xik .. xiK.. .. .. .. ..xN1 xN2 .. xNk .. xNK

1CCCCCCA

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 15 / 174

Page 16: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

FactIn most of cases, the rst column of X is assumed to be a column of 1s sothat β1 is the constant term in the model.

x1N1

= 1N1

XNK

=

0BBBBBB@

1 x12 .. x1k .. x1K1 x22 .. x2k .. x2K.. .. .. .. .. ..1 xi2 .. xik .. xiK.. .. .. .. ..1 xN2 .. xNk .. xNK

1CCCCCCA

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 16 / 174

Page 17: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Remark

More generally, the matrix X may as well contain stochastic and nonstochastic elements such as:

Constant;

Time trend;

Dummy variables (for specic episodes in time);

Etc.

Therefore, X is generally a mixture of xed and random variables.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 17 / 174

Page 18: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (Simple linear regression model)The simple linear regression model is a model with only one stochasticregressor: K = 1 if there is no constant

yi = β1xi + εi

or K = 2 if there is a constant:

yi = β1 + β2xi2 + εi

for i = 1, ..,N, ory = β1 + β2x2 + ε

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 18 / 174

Page 19: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (Multiple linear regression model)The multiple linear regression model can be written

yN1

= XNK

βK1

+ εN1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 19 / 174

Page 20: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

One key di¤erence for the specication of the MLRM:

Parametric/semi-parametric specication

Parametric model: the distribution of the error terms is fullycharacterized, e.g. ε N (0,Ω)

Semi-Parametric specication: only a few moments of the error termsare specied, e.g. E (ε) = 0 and V (ε) = E

εε>

= Ω.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 20 / 174

Page 21: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

This di¤erence does not matter for the derivation of the ordinary leastsquare estimator

But this di¤erence matters for (among others):

1 The characterization of the statistical properties of the OLS estimator(e.g., e¢ ciency);

2 The choice of alternative estimators (e.g., the maximum likelihoodestimator);

3 Etc.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 21 / 174

Page 22: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (Semi-parametric multiple linear regression model)The semi-parametric multiple linear regression model is dened by

y = Xβ+ ε

where the error term ε satises

E (εjX) = 0N1

V (εjX) = σ2 INNN

and IN is the identity matrix of order N.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 22 / 174

Page 23: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Remarks

1 If the matrix X is non stochastic (xed), i.e. there are only xedregressors, then the conditions on the error term u read:

E (ε) = 0

V (ε) = σ2IN2 If the (conditional) variance covariance matrix of ε is not diagonal,i.e. if

V (εjX) = Ω

the model is called the Multiple Generalized Linear RegressionModel

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 23 / 174

Page 24: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Remarks (contd)

The two conditions on the error term ε

E (εjX) = 0N1

V (εjX) = σ2IN

are equivalent toE (yjX) = Xβ

V (yjX) = σ2IN

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 24 / 174

Page 25: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (The multiple linear Gaussian model)

The (parametric) multiple linear Gaussian model is dened by

y = Xβ+ ε

where the error term ε is normally distributed

ε N0, σ2IN

As a consequence, the vector y has a conditional normal distribution with

yjX NXβ, σ2IN

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 25 / 174

Page 26: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Remarks

1 The multiple linear Gaussian model is (by denition) a parametricmodel.

2 If the matrix X is non stochastic (xed), i.e. there are only xedregressors, then the vector y has marginal normal distribution:

y NXβ, σ2IN

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 26 / 174

Page 27: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

The classical linear regression model consists of a set of assumptions thatdescribes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identication

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 27 / 174

Page 28: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (Assumption 1: Linearity)

The model is linear with respect to the parameters β1, .., βK .

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 28 / 174

Page 29: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

Remarks

The model species a linear relationship between the dependentvariable and the regressors. For instance, the models

y = β0 + β1x + u

y = β0 + β1 cos (x) + v

y = β0 + β1 1x+ w

are all linear (with respect to β).

In contrast, the model y = β0 + β1xβ2 + ε is non linear

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 29 / 174

Page 30: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Remark

The model can be linear after some transformations. Starting fromy = Ax β exp (ε) , one has a log-linear specication:

ln (y) = ln (A) + β ln (x) + ε

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 30 / 174

Page 31: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (Log-linear model)The loglinear model is

ln (yi ) = β1 ln (xi1) + β2 ln (xi2) + ..+ βK ln (xiK ) + εi

This equation is also known as the constant elasticity form as in thisequation, the elasticity of y with respect to changes in x does not varywith xik :

βk =∂ ln (yi )∂ ln (xik )

=∂yi∂xik

xikyi

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 31 / 174

Page 32: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

The classical linear regression model consists of a set of assumptions thatdescribes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identication

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 32 / 174

Page 33: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (Assumption 2: Full column rank)X is an N K matrix with rank K .

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 33 / 174

Page 34: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Interpretation

1 There is no exact relationship among any of the independent variablesin the model.

2 The columns of X are linearly independent.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 34 / 174

Page 35: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

ExampleSuppose that a cross-section model satises:

yi = β0 + β1non labor incomei + β2salaryi+β3total incomei + εi

The identication condition does not hold since total income is exactlyequal to salary plus non labor income (exact linear dependency in themodel).

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 35 / 174

Page 36: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Remarks

1 Perfect multi-collinearity is generally not di¢ cult to spot and issignalled by most statistical software.

2 Imperfect multi-collinearity is a more serious issue (see further).

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 36 / 174

Page 37: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (Identication)The multiple linear regression model is identiable if and only if one thefollowing equivalent assertions holds:

(i) rank (X) = K

(ii) The matrix X>X is invertible

(iii) The columns of X form a basis of L (X)(iv) Xβ1 = Xβ2 =) β1 = β2 8 (β1, β2) 2 RK RK

(v) Xβ = 0 =) β = 0 8β 2 RK

(vi) ker (X) = f0g

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 37 / 174

Page 38: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

The classical linear regression model consists of a set of assumptions thatdescribes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identication

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 38 / 174

Page 39: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (Assumption 3: Strict exogeneity of the regressors)The regressors are exogenous in the sense that:

E (εjX) = 0N1

or equivalently for all the units i 2 f1, ..Ng

E ( εi jX) = 0

or equivalentlyE ( εi j xjk ) = 0

for any explanatory variable k 2 f1, ..Kg and any unit j 2 f1, ..Ng .

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 39 / 174

Page 40: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

CommentsComments

1 The expected value of the error term at observation i (in the sample)is not a function of the independent variables observed at anyobservation (including the i th observation). The independent variablesare not predictors of the error terms.

2 The strict exogeneity condition can be rewritten as:

E (y j X) = Xβ

3 If the regressors are xed, this condition can be rewritten as:

E (ε) = 0N1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 40 / 174

Page 41: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Implications

The (strict) exogeneity condition E (εjX) = 0N1 has two implications:1 The zero conditional mean of ε implies that the unconditional meanof u is also zero (the reverse is not true):

E (ε) = EX (E (εjX)) = EX (0) = 0

2 The zero conditional mean of ε implies that (the reverse is not true):

E (εixjk ) = 0 8i , j , k

orCov (εi ,X) = 0 8i

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 41 / 174

Page 42: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

The classical linear regression model consists of a set of assumptions thatdescribes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identication

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 42 / 174

Page 43: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (Assumption 4: Spherical disturbances)The error terms are such that:

V ( εi jX) = E

ε2iX = σ2 for all i 2 f1, ..Ng

andCov ( εi , εj jX) = E ( εi εj jX) = 0 for all i 6= j

The condition of constant variances is called homoscedasticity. Theuncorrelatedness across observations is called nonautocorrelation.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 43 / 174

Page 44: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Comments

1 Spherical disturbances = homoscedasticity + nonautocorrelation

2 If the errors are not spherical, we call them nonspherical disturbances.

3 The assumption of homoscedasticity is a strong one: this is theexception rather than the rule!

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 44 / 174

Page 45: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Comments

Let us consider the (conditional) variance covariance matrix of the errorterms:

V (εjX)| z NN

= E

εε>X| z

NN

=

0BBBBBB@

E

ε21X E ( ε1ε2jX) .. E ( ε1εj jX) .. E ( ε1εN jX)

E ( ε2ε1jX) E

ε22X .. E ( ε2εj jX) .. E ( ε2εN jX)

.. .. .. .. ..E ( εi ε1jX) .. E ( εi εj jX) .. E ( εi εN jX)

.. .. .. .. ..E ( εN ε1jX) .. E ( εN εj jX) .. E

ε2NX

1CCCCCCA

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 45 / 174

Page 46: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Comments

The two assumptions (homoscedasticity and nonautocorrelation) implythat:

V (εjX)| z NN

= E

εε>X| z

NN

= σ2 IN

=

0BBBBBB@

σ2 0 .. 0 .. 00 σ2 .. 0 .. 0.. .. .. .. .... .. .. .. 0.. .. .. .. ..0 .. 0 .. σ2

1CCCCCCA

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 46 / 174

Page 47: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

The classical linear regression model consists of a set of assumptions thatdescribes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identication

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 47 / 174

Page 48: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (Assumption 5: Data generation)

The data in (xi1 xi2 ...xiK ) may be any mixture of constants and randomvariables.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 48 / 174

Page 49: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Comments

1 Analysis will be done conditionally on the observed X, so whether theelements in X are xed constants or random draws from a stochasticprocess will not inuence the results.

2 In the case of stochastic regressors, the unconditional statisticalproperties of are obtained in two steps: (1) using the resultconditioned on X and (2) nding the unconditional result byaveraging (i.e., integrating over) the conditional distributions.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 49 / 174

Page 50: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Comments

Assumptions regarding (xi1 xi2 ...xiK yi ) for i = 1, ..,N is alsorequired. This is a statement about how the sample is drawn.

In the sequel, we assume that (xi1 xi2 ...xiK yi ) for i = 1, ..,N areindependently and identically distributed (i.i.d).

The observations are drawn by a simple random sampling from a largepopulation.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 50 / 174

Page 51: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

The classical linear regression model consists of a set of assumptions thatdescribes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identication

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 51 / 174

Page 52: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Denition (Assumption 6: Normal distribution)The disturbances are normally distributed.

εi jX N0, σ2

or equivalently

εjX N0N1, σ2IN

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 52 / 174

Page 53: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Comments

1 Once again, this is a convenience that we will dispense with aftersome analysis of its implications.

2 Normality is not necessary to obtain many of the results presentedbelow.

3 Assumption 6 implies assumptions 3 (exogeneity) and 4 (sphericaldisturbances).

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 53 / 174

Page 54: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Summary

The main assumptions of the multiple linear regression model

A1: linearity The model is linear with β

A2: identication X is an N K matrix with rank K

A3: exogeneity E (εjX) = 0N1A4: spherical error terms V (εjX) = σ2IN

A5: data generation X may be xed or random

A6: normal distribution εjX N0N1, σ2IN

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 54 / 174

Page 55: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

2. The Multiple Linear Regression Model

Key Concepts

1 Simple linear regression model

2 Multiple linear regression model

3 Semi-parametric multiple linear regression model

4 Multiple linear Gaussian model

5 Assumptions of the multiple linear regression model

6 Linearity (A1), Identication (A2), Exogeneity (A3), Spherical errorterms (A4), Data generation (A5) and Normal distribution (A6)

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 55 / 174

Page 56: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

Section 3

The ordinary least squares estimator

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 56 / 174

Page 57: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Introduction

1 The simple linear regression model assumes that the followingspecication is true in the population:

y = Xβ+ ε

where other unobserved factors determining y are captured by theerror term ε.

2 Consider a sample fxi1, xi2, .., xiK , yigNi=1 of i .i .d . random variables(be careful to the change of notations here) and only one realizationof this sample (your data set).

3 How to estimate the vector of parameters β?

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 57 / 174

Page 58: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Introduction (contd)

1 If we assume that assumptions A1-A6 hold, we have a multiple linearGaussian model (parametric model), and a solution is to use theMLE. The MLE estimator for β coincides to the ordinary leastsquares (OLS) estimator (cf. chapter 2).

2 If we assume that only assumptions A1-A5 hold, we have asemi-parametric multiple linear regression model, the MLE isunfeasible.

3 In this case, the only solution is to use the ordinary least squaresestimator (OLS).

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 58 / 174

Page 59: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Intuition

Let us consider the simple linear regression model and for simplicity denotexi = xi2:

yi = β1 + β2xi + εi

The general idea of the OLS consists in minimizing the distancebetween the points (xi , yi ) and the regression line

byi = bβ1 + bβ2xior the points (xi , byi ) for all i = 1, ..,N

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 59 / 174

Page 60: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 60 / 174

Page 61: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Intuition (contd)

Estimates of β1 and β2 are chosen by minimizing the sum of the squaredresiduals (SSR):

N

∑i=1

bε2iThis SSR can be written as:

N

∑i=1

bε2i = yi bβ1 bβ2xi2Therefore, bβ1 and bβ2 are the solutions of the minimization problembβ1, bβ2 = argmin

(β1,β2)

N

∑i=1(yi β1 β2xi )

2

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 61 / 174

Page 62: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Denition (OLS - simple linear regression model)

In the simple linear regression model yi = β1 + β2xi + εi , the OLSestimators bβ1 and bβ2 are the solutions of the minimization problembβ1, bβ2 = argmin

(β1,β2)

N

∑i=1(yi β1 β2xi )

2

The solutions are: bβ1 = yN bβ2xNbβ2 = ∑N

i=1 (xi xN ) (yi yN )∑Ni=1 (xi xN )

2

where yN = N1 ∑N

i=1 yi and xN = N1 ∑N

i=1 xi respectively denote thesample mean of the dependent variable y and the regressor x .

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 62 / 174

Page 63: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Remark

The OLS estimator is a linear estimator (cf. chapter 1) since it can beexpressed as a linear function of the observations yi :

bβ2 = N

∑i=1

ωiyi

with

ωi =(xi xN )

∑Ni=1 (xi xN )

2

in the case where yN = 0.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 63 / 174

Page 64: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Denition (Fitted value)The predicted or tted value for observation i is:

byi = bβ1 + bβ2xiwith a sample mean equal to the sample average of the observations

byN = 1N

N

∑i=1byi = yN = 1

N

N

∑i=1yi

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 64 / 174

Page 65: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Denition (Fitted residual)The residual for observation i is:

bεi = yi bβ1 bβ2xiwith a sample mean equal to zero by denition.

bεN = 1N

N

∑i=1

bεi = 0

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 65 / 174

Page 66: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Remarks

1 The t of the regression is good if the sum ∑Ni=1bε2i (or SSR) is

small, i.e., the unexplained part of the variance of y is small.

2 The coe¢ cient of determination or R2 is given by:

R2 =∑Ni=1 (byi yN )2

∑Ni=1 (yi yN )

2 = 1∑Ni=1bε2i

∑Ni=1 (yi yN )

2

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 66 / 174

Page 67: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Orthogonality conditions

Under assumption A3 (strict exogeneity), we have E ( εi j xi ) = 0. Thiscondition implies that:

E (εi ) = 0 E (εixi ) = 0

Using the sample analog of this moment conditions (cf. chapter 6,GMM), one has:

1N

N

∑i=1

yi bβ1 bβ2xi = 0

1N

N

∑i=1

yi bβ1 bβ2xi xi = 0

This is a system of two equations and two unknowns bβ1 and bβ2.Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 67 / 174

Page 68: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Denition (Orthogonality conditions)The ordinary least squares estimator can be dened from the two sampleanalogs of the following moment conditions:

E (εi ) = 0

E (εixi ) = 0

The corresponding system of equations is just-identied.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 68 / 174

Page 69: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

OLS and multiple linear regression model

Now consider the multiple linear regression model

y = Xβ+ ε

or

yi =K

∑k=1

βkxik + εi

Objective: nd an estimator (estimate) of β1, β2, .., βK and σ2 under theassumptions A1-A5.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 69 / 174

Page 70: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

OLS and multiple linear regression model

Di¤erent methods:

1 Minimize the sum of squared residuals (SSR)

2 Solve the same minimization problem with matrix notation.

3 Use moment conditions.

4 Geometrical interpretation

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 70 / 174

Page 71: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

1. Minimize the sum of squared residuals (SSR):

As in the simple linear regression,

bβ = argminβ

N

∑i=1

ε2i = argminβ

N

∑i=1

yi

K

∑k=1

βkxik

!2One can derive the rst order conditions with respect to βk for k = 1, ..,Kand solve a system of K equations with K unknowns.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 71 / 174

Page 72: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

2. Using matrix notations:

Denition (OLS and multiple linear regression model)

In the multiple linear regression model yi = x>i β+ εi , withxi = (xi1, .., xiK )

> , the OLS estimator bβ is the solution ofbβ = argmin

β

N

∑i=1

yi x>i β

2The OLS estimators of β is:

bβ = N

∑i=1xix>i

!1 N

∑i=1xiyi

!

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 72 / 174

Page 73: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

2. Using matrix notations:

Denition (Normal equations)Under suitable regularity conditions, in the multiple linear regression modelyi = x>i β+ εi , with xi = (xi1 : .. : xiK )

> , the normal equations are

N

∑i=1xiyi x>i bβ = 0K1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 73 / 174

Page 74: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

2. Using matrix notations:

Denition (OLS and multiple linear regression model)

In the multiple linear regression model y = Xβ+ ε, the OLS estimator bβis the solution of the minimization problem

bβ = argminβ

ε>ε = argminβ

(yXβ)> (yXβ)

The OLS estimators of β is:

bβ = X>X1 X>y

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 74 / 174

Page 75: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

2. Using matrix notations:

Denition

The ordinary least squares estimator bβ of β minimizes the following criteria

s (β) = k(yXβ)k2IN = (yXβ)> (yXβ)

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 75 / 174

Page 76: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

2. Using matrix notations:

The FOC (normal equations) are dened by:

∂s (β)∂β

bβ = 2 X>|zKN

yXbβ| z N1

= 0K1

The second-order conditions hold:

∂s (β)

∂β∂β>

bβ = 2 X>X| z KK

is denite positive

since by denition X>X is a positive denite matrix. We have a minimum.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 76 / 174

Page 77: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

2. Using matrix notations:

Denition (Normal equations)Under suitable regularity conditions, in the multiple linear regression modely = Xβ+ ε, the normal equations are given by:

X>|zKN

(yXβ)| z N1

= 0K1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 77 / 174

Page 78: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Denition (Unbiased variance estimator)

In the multiple linear regression model y = Xβ+ ε, the unbiasedestimator of σ2 is given by:

bσ2 = 1N K

N

∑i=1

bε2i SSRN K

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 78 / 174

Page 79: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

2. Using matrix notations:

The estimator bσ2 can also be written as:bσ2 = 1

N KN

∑i=1

yi x>i bβ2

bσ2 = (yXβ)> (yXβ)

N K

bσ2 = k(yXβ)k2INN K

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 79 / 174

Page 80: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

3. Using moment conditions:

Under assumption A3 (strict exogeneity), we have E (εjX) = 0. Thiscondition implies:

E (εixi ) = 0K1

with xi = (xi1 : .. : xiK )> . Using the sample analogs, one has:

1N

N

∑i=1xiyi x>i bβ = 0K1

We have K (normal) equations with K unknown parameters bβ1, .., bβK .The system is just identied.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 80 / 174

Page 81: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

4. Geometric interpretation:

1 The ordinary least squares estimation methods consists in determiningthe adjusted vector, by, which is the closest to y (in a certain space...)such that the squared norm between y and by is minimized.

2 Finding by is equivalent to nd an estimator of β.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 81 / 174

Page 82: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

4. Geometric interpretation:

Denition (Geometric interpretation)

The adjusted vector, by, is the (orthogonal) projection of y onto thecolumn space of X. The tted error terms, bε, is the projection of y ontothe orthogonal space engendered by the column space of X. The vectors byand bε are orthogonal.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 82 / 174

Page 83: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

4. Geometric interpretation:

Source: F. Pelgrin (2010), Lecture notes, Advanced Econometrics

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 83 / 174

Page 84: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

4. Geometric interpretation:

Denition (Projection matrices)

The vectors by and bε are dened to be:by = P ybε =M y

where P and M denote the two following projection matrices:

P = XX>X

1X>

M = IN P = IN XX>X

1X>

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 84 / 174

Page 85: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Other geometric interpretations:

Suppose that there is a constant term in the model.

1 The least squares residuals sum to zero:

N

∑i=1

bεi = 02 The regression hyperplane passes through the point of means of thedata (xN , yN ) .

3 The mean of the tted (adjusted) values of y equals the mean of theactual values of y : byN = yN

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 85 / 174

Page 86: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Denition (Coe¢ cient of determination)The coe¢ cient of determination of the multiple linear regression model(with a constant term) is the ratio of the total (empirical) varianceexplained by model to the total (empirical) variance of y:

R2 =∑Ni=1 (byi yN )2

∑Ni=1 (yi yN )

2 = 1∑Ni=1bε2i

∑Ni=1 (yi yN )

2

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 86 / 174

Page 87: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Remark

1 The coe¢ cient of determination measures the proportion of the totalvariance (or variability) in y that is accounted for by variation in theregressors (or the model).

2 Problem: the R2 automatically and spuriously increases when extraexplanatory variables are added to the model.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 87 / 174

Page 88: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Denition (Adjusted R-squared)The adjusted R-squared coe¢ cient is dened to be:

R2= 1 N 1

N p 11 R2

where p denotes the number of regressors (not counting the constantterm, i.e., p = K 1 if there is a constant or p = K otherwise).

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 88 / 174

Page 89: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Remark

One can show that

1 R2<R2

2 if N is large R2 'R2

3 The adjusted R-squared R2can be negative.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 89 / 174

Page 90: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

3. The ordinary least squares estimator

Key Concepts

1 OLS estimator and estimate

2 Fitted or predicted value

3 Residual or tted residual

4 Orthogonality conditions

5 Normal equations

6 Geometric interpretations of the OLS

7 Coe¢ cient of determination and adjusted R-squared

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 90 / 174

Page 91: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

Section 4

Statistical properties of the OLS estimator

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 91 / 174

Page 92: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4. Statistical properties of the OLS estimator

In order to study the statistical properties of the OLS estimator, we haveto distinguish (cf. chapter 1):

1 The nite sample properties

2 The large sample or asymptotic properties

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 92 / 174

Page 93: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4. Statistical properties of the OLS estimator

But, we have also to distinguish the properties given the assumptionsmade on the linear regression model

1 Semi-parametric linear regression model (the exact distribution ofε is unknown) versus parametric linear regression model (andespecially Gaussian linear regression model, assumption A6).

2 X is a matrix of random regressors versus X is a matrix of xedregressors.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 93 / 174

Page 94: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4. Statistical properties of the OLS estimator

Fact (Assumptions)In the rest of this section, we assume that assumptions A1-A5 hold.

A1: linearity The model is linear with β

A2: identication X is an N K matrix with rank K

A3: exogeneity E (εjX) = 0N1A4: spherical error terms V (εjX) = σ2IN

A5: data generation X may be xed or random

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 94 / 174

Page 95: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

Subsection 4.1.

Finite sample properties of the OLS estimator

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 95 / 174

Page 96: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Objectives

The objectives of this subsection are the following:

1 Compute the two rst moments of the (unknown) nite sampledistribution of the OLS estimators bβ and bσ2

2 Determine the nite sample distribution of the OLS estimators bβ andbσ under particular assumptions (A6).3 Determine if the OLS estimators are "good": e¢ cient estimatorversus BLUE.

4 Introduce the Gauss-Markov theorem.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 96 / 174

Page 97: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

First moments of the OLS estimators

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 97 / 174

Page 98: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Moments

In a rst step, we will derive the rst moments of the OLS estimators

1 Step 1: compute Ebβ and V

bβ2 Step 2: compute E

bσ2 and Vbσ2

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 98 / 174

Page 99: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Denition (Unbiased estimator)

In the multiple linear regression model y = Xβ0 + ε, under the assumptionA3 (strict exogeneity), the OLS estimator bβ is unbiased:

Ebβ = β0

where β0 denotes the true value of the vector of parameters. This resultholds whether or not the matrix X is considered as random.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 99 / 174

Page 100: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof

Case 1: xed regressors (cf. chapter 1)

bβ = X>X1 X>y = β0 +X>X

1 X>ε

So, if X is a matrix of xed regressors:

Ebβ = β0 +

X>X

1 X>E (ε)

Under assumption A3 (exogeneity), E (εjX) = E (ε) = 0. Then, we get:

Ebβ = β0

The OLS estimator is unbiased.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 100 / 174

Page 101: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof (contd)

Case 2: random regressors

bβ = X>X1 X>y = β0 +X>X

1 X>ε

If X is includes some random elements:

EbβX = β0 +

X>X

1 X>E (εjX)

Under assumption A3 (exogeneity), E (εjX) = 0. Then, we get:

EbβX = β0

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 101 / 174

Page 102: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof (contd)

Case 2: random regressors

The OLS estimator bβ is conditionally unbiased.EbβX = β0

Besides, we have:

Ebβ = EX

EbβX = EX (β0) = β0

where EX denotes the expectation with respect to the distribution of X.So, the OLS estimator bβ is unbiased.

Ebβ = β0

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 102 / 174

Page 103: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Denition (Variance of the OLS estimator, non-stochastic regressors)

In the multiple linear regression model y = Xβ+ ε, if the matrix X isnon-stochastic, the unconditional variance covariance matrix of the OLSestimator bβ is:

Vbβ = σ2

X>X

1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 103 / 174

Page 104: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof bβ = X>X1 X>y = β0 +X>X

1 X>ε

So, if X is a matrix of xed regressors:

Vbβ = E

bβ β0

> bβ β0

= E

X>X

1X>εε>X

X>X

1=

X>X

1X>E

εε>

XX>X

1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 104 / 174

Page 105: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof (contd)

Under assumption A4 (spherical disturbances), we have:

V (ε) = E

εε>= σ2IN

The variance covariance matrix of the OLS estimator is dened by:

Vbβ =

X>X

1X>E

εε>

XX>X

1=

X>X

1X>σ2INX

X>X

1= σ2

X>X

1 X>X

X>X

1= σ2

X>X

1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 105 / 174

Page 106: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Denition (Variance of the OLS estimator, stochastic regressors)

In the multiple linear regression model y = Xβ0 + ε, if the matrix X isstochastic, the conditional variance covariance matrix of the OLSestimator bβ is:

VbβX = σ2

X>X

1The unconditional variance covariance matrix is equal to:

Vbβ = σ2 EX

X>X

1where EX denotes the expectation with respect to the distribution of X.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 106 / 174

Page 107: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof bβ = X>X1 X>y = β0 +X>X

1 X>ε

So, if X is a stochastic matrix:

VbβX = E

bβ β0

> bβ β0

X= E

X>X

1X>εε>X

X>X

1X=

X>X

1X>E

εε>

XX X>X1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 107 / 174

Page 108: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof (contd)

Under assumption A4 (spherical disturbances), we have:

V (εjX) = E

εε>X = σ2IN

The conditional variance covariance matrix of the OLS estimator is denedby:

VbβX =

X>X

1X>E

εε>

XX X>X1=

X>X

1X>σ2INX

X>X

1= σ2

X>X

1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 108 / 174

Page 109: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof (contd)

We have:VbβX = σ2

X>X

1The (unconditional) variance covariance matrix of the OLS estimator isdened by:

Vbβ = EX

VbβX = σ2 EX

X>X

1where EX denotes the expectation with respect to the distribution of X.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 109 / 174

Page 110: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Summary

Case 1: X stochastic Case 2: X nonstochastic

Mean Ebβ = β0 E

bβ = β0

Variance Vbβ = σ2 EX

X>X

1Vbβ = σ2

X>X

1Cond. mean E

bβX = β0

Cond. var VbβX = σ2

X>X

1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 110 / 174

Page 111: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Question

How to estimate the variance covariance matrix of the OLS estimator?

VbβOLS = σ2

X>X

1if X is nonstochastic

VbβOLS = σ2 EX

X>X

1if X is stochastic

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 111 / 174

Page 112: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Question (contd)

Denition (Variance estimator)An unbiased estimator of the variance covariance matrix of the OLSestimator is given: bV bβOLS = bσ2 X>X1where bσ2 = (N K )1 bε>bε is an unbiased estimator of σ2. This resultholds whether X is stochastic or non stochastic.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 112 / 174

Page 113: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Summary

Case 1: X stochastic Case 2: X nonstochastic

Variance Vbβ = σ2 EX

X>X

1Vbβ = σ2

X>X

1Estimator bV bβOLS = bσ2 X>X1 bV bβOLS = bσ2 X>X1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 113 / 174

Page 114: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Denition (Estimator of the variance of disturbances)Under the assumption A1-A5, in the multiple linear regression modely = Xβ+ ε, the estimator bσ2 is unbiased:

Ebσ2 = σ2

where bσ2 = 1N K

N

∑i=1

bε2i = bε>bεN K

This result holds whether or not the matrix X is considered as random.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 114 / 174

Page 115: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof

We assume that X is stochastic. Let M denotes the projection matrix(residual maker) dened by:

M = IN XX>X

1X>

with bε(N ,1)

= M(N ,N )

y(N ,1)

The N N matrix M satises the following properties:

1 if X is regressed on X, a perfect t will result and the residuals will bezero, so M X = 0

2 The matrix M is symmetric M> =M and idempotent M M =M

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 115 / 174

Page 116: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof (contd)

The residuals are dened as to be:

bε =M y

Since y = Xβ+ ε, we have

bε =M (Xβ+ ε) =MXβ+Mε

Since MX = 0, we have bε =Mε

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 116 / 174

Page 117: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof (contd)The estimator bσ2 is based on the sum of squared residuals (SSR)

bσ2 = bε>bεN K =

ε>Mε

N K

The expected value of the SSR is

Ebε>bεX = E

ε>Mε

XThe scalar ε>Mε is a 1 1 scalar, so it is equal to its trace.

tr

E

ε>MεX = trE

εε>M

X = trEMεε>

Xsince tr (AB) = tr (AB) .

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 117 / 174

Page 118: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof (contd)

Since M = IN XX>X

1X> depends on X, we have:

Ebε>bεX = trE

Mεε>

X = trME

εε>X

Under assumptions A3 and A4, we have

E

εε>X = σ2IN

As a consequence

Ebε>bεX = tr σ2M IN

= σ2tr (M)

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 118 / 174

Page 119: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof (contd)

Ebε>bεX = σ2 tr (M)

= σ2 tr

IN X

X>X

1X>

= σ2 tr (IN ) σ2 tr

XX>X

1X>

= σ2 tr (IN ) σ2 tr

X>X

X>X

1= σ2 tr (IN ) σ2 tr (IK )= σ2 (N K )

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 119 / 174

Page 120: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof (contd)

By denition of bσ2, we have:Ebσ2X = E

bε>bεXN K =

σ2 (N K )N K = σ2

So, the estimator bσ2 is conditionally unbiased.Ebσ2 = EX

Ebσ2X = EX

σ2= σ2

The estimator bσ2 is unbiased:Ebσ2 = σ2

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 120 / 174

Page 121: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Remark

Given the same principle, we can compute the variance of the estimator bσ2.bσ2 = bε>bε

N K =ε>Mε

N K

As a consequence, we have:

Vbσ2X = 1

(N K )V

ε>MεX

Vbσ2 = EX

Vbσ2X

But, it takes... at least ten slides.....

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 121 / 174

Page 122: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Denition (Variance of the estimator bσ2)In the multiple linear regression model y = Xβ0 + ε, the variance of theestimator bσ2 is

Vbσ2 = 2σ4

N Kwhere σ2 denotes the true value of variance of the error terms. This resultholds whether or not the matrix X is considered as random.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 122 / 174

Page 123: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Summary

Case 1: X stochastic Case 2: X nonstochastic

Mean Ebσ2 = σ2 E

bσ2 = σ2

Variance Vbσ2 = 2σ4

NK Vbσ2 = 2σ4

NK

Cond. mean Ebσ2X = σ2

Cond. var Vbσ2X = 2σ4

NK

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 123 / 174

Page 124: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Finite sample distributions

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 124 / 174

Page 125: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Summary

1 Under assumptions A1-A5, we can derive the two rst moments ofthe (unknown) nite sample distribution of the OLS estimator bβ, i.e.Ebβ and V

bβ .2 Are we able to characterize the nite sample distribution (or exactsampling distribution) of bβ ?

3 For that, we need to put an assumption on the distribution of ε anduse a parametric specication.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 125 / 174

Page 126: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Finite sample distribution

Fact (Finite sample distribution, I)

(1) In a parametric multiple linear regression model with stochasticregressors, the conditional nite sample distribution of bβ is known. Theunconditional nite sample distribution is generally unknown:

bβX D bβ ??

where D is a multivariate distribution.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 126 / 174

Page 127: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Finite sample distribution

Fact (Finite sample distribution, II)

(2) In a parametric multiple linear regression model with nonstochasticregressors, the marginal (unconditional) nite sample distribution of bβ isknown: bβ D

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 127 / 174

Page 128: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Finite sample distribution

Fact (Finite sample distribution, III)

(3) In a semi-parametric multiple linear regression model, with xed orrandom regressors, the nite sample distribution of bβ is unknown

bβX ?? bβ ??

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 128 / 174

Page 129: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Example (Linear Gaussian regression model)

Under the assumption A6 (normality - linear Gaussian regression model),

ε N0,σ2IN

bβ = X>X1 X>y = β+

X>X

1 X>ε

If X is a stochastic matrix, the conditional distribution of bβ is

bβX N β,σ2

X>X

1If X is a nonstochastic matrix, the marginal distribution of bβ is

bβ N β,σ2

X>X

1Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 129 / 174

Page 130: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Theorem (Linear gaussian regression model)

Under the assumption A6 (normality), the estimators bβ and bσ2 have anite sample distribution given by:

bβ N β,σ2

X>X

1bσ2σ2(N K ) χ2 (N K )

Moreover, bβ and bσ2 are independent. This result holds whether or not thematrix X is considered as random. In this last case, the distribution of bβ isconditional to X with V

bβX = σ2X>X

1.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 130 / 174

Page 131: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

E¢ cient estimator or BLUE?

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 131 / 174

Page 132: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Question: OLS estimator = "good" estimator of β?

The question is to know if there this estimator is preferred to otherunbiased estimators?

VbβOLS 7 V

bβotherIn general, to answer to this question we use the FDCR orCramer-Rao bound and study the e¢ ciency of the estimator (cf.chapters 1 and 2).

Problem: the computation of the FDCR bound requires anassumption on the distribution of ε.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 132 / 174

Page 133: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Two cases:

1 In a parametric model, it is possible to show that the OLS estimatoris e¢ cient - its variance reaches the FDCR bound. The OLS is theBest Unbiased Estimator (BUE)

2 In a semi-parametric model:1 we dont known the conditional distribution of y ven X and thelikelihood of the sample.

2 The FDCR bound is unknown: so it is impossible to show thee¢ ciency of the OLS estimator.

3 In a semi-parametric model, we introduce another concept: the BestLinear Unbiased Estimator (BLUE)

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 133 / 174

Page 134: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Problem (E¢ ciency of the OLS estimator)

In a semi-parametric multiple linear regression model (with noassumption on the distribution of ε), it is impossible to compute theFDCR or Cramer Rao bound and to show that the e¢ ciency of the OLSestimator. The e¢ ciency of the OLS estimator can only be shown in aparametric multiple linear regression model.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 134 / 174

Page 135: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Theorem (E¢ ciency - Gaussian model)

In a Gaussian multiple linear regression model y = Xβ0 + ε, withε N

0,σ2IN

(assumption A6), the OLS estimator bβ is e¢ cient. Its

variance attains the FDCR or Cramer-Rao bound:

Vbβ = I1N (β0)

This result holds whether or not the matrix X is considered as random.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 135 / 174

Page 136: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof

Let us consider the case where X is nonstochastic. Under the assumptionA6, the distribution is known, since y N

Xβ,σ2IN

. The log-likelihood

of the sample fyi , xigNi=1, with xi = (xi1 : .. : xiK )> , is then equal to:

`N (β; y, x) = N2lnσ2 N2ln (2π) (yXβ)> (yXβ)

2σ2

If we denote θ =

β> : σ2>, we have (cf. chapter 2):

IN (θ0) = Eθ

∂2`N (θ; y, x)

∂θ∂θ>

=

1σ2X>X 021012 T

2σ4

!

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 136 / 174

Page 137: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Proof (contd)

IN (θ0) =

1σ2X>X 021012 T

2σ4

!The inverse of this block matrix is given by

I1N (θ0) =

0@ σ2X>X

1021

012 2σ4

T

1A =

I1N (β0) 021012 I1N

σ2 !

Then we have:

Vbβ = I1N (β0) = σ2

X>X

1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 137 / 174

Page 138: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Problem

1 In a semi-parametric model (with no assumption on the distributionof ε), it is impossible to compute the FDCR bound and to show thee¢ ciency of the OLS estimator.

2 The solution consists in introducing the concept of best linearunbiased estimator (BLUE): the Gauss-Markov theorem...

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 138 / 174

Page 139: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Theorem (Gauss-Markov theorem)In the linear regression model under assumptions A1-A5, the least squaresestimator bβ is the best linear unbiased estimator (BLUE) of β0 whetherX is stochastic or nonstochastic.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 139 / 174

Page 140: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Comment

The estimator bβk for k = 1, ..K is the BLUE of βk

Best = smallest variance

Linear (in y or yi ) : bβk = ∑Ni=1 ωkiyi

Unbiased: Ebβk = βk

Estimator: bβk = f (y1, .., yN )

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 140 / 174

Page 141: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Remark

The fact that the OLS is the BLUE means that there is no linearunbiased estimator with a smallest variance than bβBUT, nothing guarantees that a nonlinear unbiased estimator mayhave a smallest variance than bβ

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 141 / 174

Page 142: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Summary

Model Case 1: X stochastic Case 2: X nonstochastic

Semi-parametric bβ is the BLUE bβ is the BLUE(Gauss-Markov) (Gauss-Markov)

Parametric bβ is e¢ cient and BUE bβ is e¢ cient and BUE(FDCR bound) (FDCR bound)

BUE: Best Unbiased Estimator

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 142 / 174

Page 143: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Other remarks

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 143 / 174

Page 144: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Remarks

1 Including irrelevant variables (i.e., coe¢ cient = 0) does not a¤ectthe unbiasedness of the estimator.

2 Irrelevant variables decrease the precision of OLS estimator, but donot result in bias.

3 Omitting relevant regressors obviously does a¤ect the estimator,since the zero conditional mean assumption does not hold anymore.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 144 / 174

Page 145: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Remarks

1 Omitting relevant variables cause bias (under some conditions onthese variables).

1 The direction of the bias can be (sometimes) characterized.

2 The size of the bias is more complicated to derive.

2 More generally, correlation between a single regressor and the errorterm (endogeneity) usually results in all OLS estimators being biased

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 145 / 174

Page 146: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.1. Finite sample properties

Key Concepts

1 OLS unbiased estimator under assumption A3 (exogeneity)

2 Mean and variance of the OLS estimator under assumptions A3-A4(exogeneity - spherical disturbances)

3 Finite sample distribution

4 Estimator of the variance of the error terms

5 BLUE estimator and e¢ cient estimator (FDCR bound)

6 Gauss-Markov theorem

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 146 / 174

Page 147: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

Subsection 4.2.

Asymptotic properties of the OLS estimator

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 147 / 174

Page 148: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Objectives

The objectives of this subsection are the following

1 Study the consistency of the OLS estimator.

2 Derive the asymptotic distribution of the OLS estimator bβ.3 Estimate the asymptotic variance covariance matrix of bβ.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 148 / 174

Page 149: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Theorem (Consistency)

Let consider the multiple linear regression model yi = x>i β0 + εi , withxi = (xi1 : .. : xiK )

> . Under assumptions A1-A5, the OLS estimatorsbβ and bσ2 are (weakly) consistent:bβ p! β0

bσ2 p! σ2

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 149 / 174

Page 150: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic Properties

Proof (cf. chapter 1)

We have:

bβ = N

∑i=1xix>i

!1 N

∑i=1xiyi

!= β0 +

N

∑i=1xix>i

!1 N

∑i=1xi εi

!

By multiplying and dividing by N, we get:

bβ = β+

1N

N

∑i=1xix>i

!1 1N

N

∑i=1xi εi

!

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 150 / 174

Page 151: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic Properties

Proof (cf. chapter 1)

bβ = β+

1N

N

∑i=1xix>i

!1 1N

N

∑i=1xi εi

!

1 By using the (weak) law of large number (Kitchines theorem), wehave:

1N

N

∑i=1xix>i

p! Exix>i

1N

N

∑i=1xi εi

p! E (xi εi )

2 By using the Slutskys theorem:

bβ p! β+E1xix>i

E (xi εi )

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 151 / 174

Page 152: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic Properties

Proof (cf. chapter 1)

bβ p! β+E1xix>i

E (xiµi )

Under assumption A3 (exogeneity):

E ( εi j xi ) = 0)

E (εixi ) = 0K1E (εi ) = 0

We have bβ p! β

The OLS estimator bβ is (weakly) consistent. Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 152 / 174

Page 153: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Theorem (Asymptotic distribution)

Consider the multiple linear regression model yi = x>i β0 + εi , withxi = (xi1 : .. : xiK )

> . Under assumptions A1-A5, the OLS estimator bβ isasymptotically normally distributed:

pNbβ β0

d! N

0, σ2E1X

xix>i

or equivalently bβ asy

N

β0,σ2

NE1X

xix>i

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 153 / 174

Page 154: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Comments

1 Whatever the specication used (parametric or semi-parametric), it isalways possible to characterize the asymptotic distribution of theOLS estimator.

2 Under assumptions A1-A5, the OLS estimator bβ is asymptoticallynormally distributed, even if ε is not normally distributed.

3 This result (asymptotic normality) is valid whether X is stochastic ornonstochastic.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 154 / 174

Page 155: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic propertiesProof (cf. chapter 1)

This proof has be shown in the chapter 1 (Estimation theory)

1 Let us rewrite the OLS estimator as:

bβ = β0 +

N

∑i=1xix>i

!1 N

∑i=1xi εi

!

2 Normalize the vector bβ β0

pNbβ β0

=

1N

N

∑i=1xix>i

!1 pN1N

N

∑i=1xi εi

!= A1N bN

AN =1N

N

∑i=1xix>i bN =

pN1N

N

∑i=1xi εi

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 155 / 174

Page 156: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic propertiesProof (cf. chapter 1)

3. Using the WLLN (Kinchines theorem) and the CMP (continuousmapping theorem). Remark: if xi this part is useless.

1N

N

∑i=1xix>i

!1p! E1X

xix>i

4. Using the CLT:

BN =pN

1N

N

∑i=1xi εi E (xi εi )

!d! N (0,V (xi εi ))

Under assumption A3 E ( εi j xi ) = 0 =) E (xi εi ) = 0 and

V (xi εi ) = Exi εi εix>i

= EX

Exi εi εix>i

xi= EX

xiV ( εi j xi ) x>i

= σ2EX

xix>i

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 156 / 174

Page 157: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Proof (cf. chapter 1)

So we have pNbβ β0

= A1N bN

withA1N

p! A1

bNd! N (Eb,Vb)

A1 = E1X

xix>i

Eb = 0 Vb = σ2EX

xix>i

= σ2A

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 157 / 174

Page 158: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Proof (cf. chapter 1)

A1Np! A1

bNd! N (Eb,Vb)

A1 = E1xix>i

Eb = 0 Vb = σ2EX

xix>i

= σ2A

By using the Sluskys theorem (for a convergence in distribution), we have:

A1N bNd! N (Ec,Vc)

Ec = A1 Eb = A1 0 = 0Vc = A1 Vb A1 = A1 σ2AA1 = σ2A1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 158 / 174

Page 159: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Proof (cf. chapter 1)

pNbβ β0

= A1N bN

d! N0, σ2A1

with A1 = E1X

x>i xi

(be careful: it is the inverse of the expectation

and not the reverse).

Finally, we have:

pNbβ β0

d! N

0, σ2E1X

xix>i

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 159 / 174

Page 160: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic propertiesRemark

1 In some textbooks (Greene, 2007 for instance), the asymptoticvariance covariance matrix of the OLS estimator is expressed as afunction of the plim of N1X>X denoted by Q.

Q = p lim1NX>X

2 Both notations are equivalent since:

1NX>X =

1N

N

∑i=1xix>i

By using the WLLN (Kinchines theorem), we have:

1NX>X

p! Q = EX

xix>i

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 160 / 174

Page 161: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Theorem (Asymptotic distribution)

Consider the multiple linear regression model y = Xβ0 + ε. Underassumptions A1-A5, the OLS estimator bβ is asymptotically normallydistributed: p

Nbβ β0

d! N

0, σ2Q1

where

Q = p lim1NX>X = EX

x>i xi

or equivalently bβ asy

N

β0,σ2

NQ1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 161 / 174

Page 162: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Denition (Asymptotic variance covariance matrix)

The asymptotic variance covariance matrix of the OLS estimators bβ isequal to

Vasy

bβ = σ2

NE1X

xix>i

or equivalently

Vasy

bβ = σ2

NQ1

where Q = p limN1X>X.

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 162 / 174

Page 163: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Remark

Finite sample variance

Vbβ = σ2EX

X>X

1Asymptotic variance

Vasy

bβ = σ2

NE1X

xix>i

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 163 / 174

Page 164: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Remark

How to estimate the asymptotic variance covariance matrix of the OLSestimator?

Vasy

bβ = σ2

NE1X

xix>i

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 164 / 174

Page 165: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Denition (Estimator of the asymptotic variance matrix)A consistent estimator of the asymptotic variance covariance matrix isgiven by: bVasy

bβ = bσ2 X>X1where bσ2 is consistent estimator of σ2 :

bσ2 = bε>bεN K

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 165 / 174

Page 166: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Proof

Vasy

bβ = σ2

NE1X

xix>i

We known that: bσ2 p! σ2

X>XN

=1N

N

∑i=1xix>i

p! EX

xix>i

= Q

By using the CMP and the Slutsky theorem, we get:

bσ2 X>XN

!1p! σ2E1X

xix>i

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 166 / 174

Page 167: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic propertiesProof (contd)

Vasy

bβ = σ2

NE1X

xix>i

bσ2 X>X

N

!1p! σ2E1X

xix>i

As consequence

bσ2N

X>XN

!1p! σ2

NE1X

xix>i

bσ2 X>X1 p! Vasy

bβor equivalently bVasy

bβ p! Vasy

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 167 / 174

Page 168: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Remark

Under assumptions A1-A5, for a stochastic matrix X, we have

Finite sample Asymptotic

Variance Vbβ = σ2EX

X>X

1Vasy

bβ = σ2N1Q1

with Q = p lim 1NX

>X

Estimator bV bβ = bσ2 X>X1 bVasy

bβ = bσ2 X>X1

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 168 / 174

Page 169: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic properties

Example (CAPM)The empirical analogue of the CAPM is given by:

erit = αi + βiermt + εt

erit = rit rft| z excess return of security i at time t

ermt = (rmt rft )| z market excess return at time t

where εt is an i .i .d . error term with:

E (εt ) = 0 V (εt ) = σ2 E ( εt jermt ) = 0Data le: capm.xls for Microsoft, SP500 and Tbill (closing prices) from11/1/1993 to 04/03/2003

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 169 / 174

Page 170: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic sample properties

Example (CAPM, contd)

Question: write a Matlab code in order to nd (1) the estimates of α andβ for Microsoft, (2) the corresponding standard errors, (3) the SE of theregression, (4) the SSR, (5) the coe¢ cient of determination and (6) theadjusted R2. Compare your results to the following table (Eviews)

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 170 / 174

Page 171: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic sample properties

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 171 / 174

Page 172: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic sample properties

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 172 / 174

Page 173: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

4.2. Asymptotic sample properties

Key Concepts

1 The OLS estimator is weakly consist

2 The OLS estimator is asymptotically normally distributed

3 Asymptotic variance covariance matrix

4 Estimator of the asymptotic variance

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 173 / 174

Page 174: Chapter 3: The Multiple Linear Regression Model€¦ ·  · 2013-12-19Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press. Christophe Hurlin

End of Chapter 3

Christophe Hurlin (University of Orléans)

Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne November 23, 2013 174 / 174