chapter 3 survival distributions and life tables exam m notes f05

Upload: lauren-moore

Post on 10-Feb-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    1/26

    Chapter 3: Survival Distributions and Life Tables

    Distribution function of X :

    F X (x) = Pr( X x)

    Survival function s(x):

    s(x) = 1 F X (x)

    Probability of death between age x andage y:

    Pr( x < X z) = F X (z) F X (x)= s(x) s(z)

    Probability of death between age x and

    age y given survival to age x:

    Pr( x < X z |X > x ) = F X (z) F X (x)

    1 F X (x)

    = s(x) s(z)

    s(x)

    Notations:

    t q x = Pr[ T (x) t]= prob. ( x) dies within t years= distribution function of T (x)

    t px = Pr[ T (x) > t ]= prob. ( x) attains age x + t= 1 tq x

    t |u q x = Pr[ t < T (x) t + u]= t+ u q x tq x= t px t+ u px= t px uq x + t

    Relations with survival functions:

    t px = s(x + t)

    s(x)

    t q x = 1 s(x + t)

    s(x)

    Curtate future lifetime ( K (x) greatestinteger in T (x)):

    Pr[K (x) = k] = Pr[ k T (x) < k + 1]= k px k+1 px

    = k px q x + k= k| q x

    Force of mortality (x):

    (x) = f X (x)

    1 F X (x)=

    s (x)s(x)

    Relations between survival functions andforce of mortality:

    s(x) = exp x

    0

    (y)dy

    n px = exp x + n

    x(y)dy

    Derivatives:

    ddt t

    q x = t px (x + t) = f T (x ) (t)

    ddt t

    px = t px (x + t)

    ddt

    T x = lxddt

    Lx = dx

    ddt

    ex = (x)ex 1

    Mean and variance of T and K :

    E [T (x)] complete expectation of life

    ex =

    0

    t px dt

    E [K (x)] curtate expectation of life

    ex

    =

    k=1 k p

    x

    V ar[T (x)] = 2

    0

    t t px dt e2x

    V ar[K (x)] =

    k=1

    (2k 1) k px e2x

    Total lifetime after age x: T x

    T x =

    0 lx + t dtExam M - Life Contingencies - LGD c 1

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    2/26

    Total lifetime between age x and x + 1 : Lx

    Lx = T x T x +1

    =1

    0lx + t dt =

    1

    0lx t px dt

    Total lifetime from age x to x + n: n Lx

    n Lx = T x T x + n =n 1

    k=0

    Lx + k

    =n

    0

    lx + t dt

    Average lifetime after x: ex

    ex = T x

    lx

    Average lifetime from x to x + 1 : ex : 1

    ex : 1 = Lxlx

    Median future lifetime of (x): m (x)

    P r [T (x) > m (x)] = s(x + m(x))

    s(x) =

    12

    Central death rate: m x

    mx = lx lx +1

    Lx

    n mx = lx lx + n

    n LxFraction of year lived between age x andage x + 1 by dx : a(x)

    a(x) =

    1

    0 t t px (x + t) dt1 0 t px (x + t) dt

    = Lx lx +1lx lx +1

    Recursion formulas:

    E [K ] = ex = px (1 + ex +1 )E [T ] = ex = px (1 + ex +1 ) + q x a(x)

    ex = ex : n + n px ex + nex = ex : n + n px ex + n

    E [K (m + n)] = ex : m + n= ex : m + m px ex + m : n

    E [T (m + n)] = ex : m + n= ex : m + m px ex + m : n

    Exam M - Life Contingencies - LGD c 2

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    3/26

    Chapter 4: Life Insurance

    Whole life insurance: Ax

    E [Z ] = Ax =

    0 vt t px x (t)dt

    V ar[Z ] = 2Ax ( Ax )2

    n-year term insurance: A1x : n

    E [Z ] = A1x : n =n

    0

    vt t px x (t)dt

    V ar[Z ] = 2

    A1x : n ( A

    1x : n )

    2

    m-year deferred whole life: m | Ax

    E [Z ] = m | Ax =

    m

    vt t px x (t)dt

    m | Ax = Ax A1x : m

    n-year pure endowment: A 1x : n

    E [Z ] = A 1x : n = vn n px n E x

    V ar[Z ] = 2A 1x : n ( A 1

    x : n )2 = v2n n px n q x

    n-year endowment insurance: Ax : n

    E [Z ] = Ax : n =n

    0vt t px x (t)dt + vn n px

    V ar[Z ] = 2Ax : n ( Ax : n )2

    Ax : n = A1x : n + A 1

    x : n

    m-yr deferred n-yr term: m |n Ax

    m |n Ax = m E x A 1x + m : n= A1x : m + n A

    1x : m

    = m | Ax m + n | Ax

    Discrete whole life: Ax

    E [Z ] = Ax =

    k=0

    vk+1 k px q x + k

    =

    k=0

    vk+1 k| q x

    V ar[Z ] = 2Ax (Ax )2

    Discrete n-year term: A1x : n

    E [Z ] = A1x : n =n 1

    k=0

    vk+1 k px q x + k

    V ar[Z ] = 2A1x : n (A1x : n )

    2

    Discrete n-year endowment: Ax : n

    E [Z ] = Ax : n =n 1

    k=0

    vk+1 k px q x + k + vn n px

    V ar[Z ] = 2Ax : n ( Ax : n )2

    Ax : n = A1x : n + A 1

    x : n

    Recursion and other relations:

    Ax =

    A

    1

    x : n + n | Ax2Ax = 2A1x : n + n |2Ax

    n | Ax = n E x Ax + nAx = A1x : n + n E x Ax + nAx = vq x + vpx Ax +1

    2Ax = v2q x + v2 px 2AxA1x : n = vq x + vpx A

    1x +1: n 1

    m |n Ax = vpx (m 1)|n Ax +1Ax : 1 = v

    Ax : 2 = vq x + v2 px

    Exam M - Life Contingencies - LGD c 3

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    4/26

    Varying benet insurances:

    (I A)x =

    0

    t + 1 vt t px x (t)dt

    (I A)1x : n =n

    0

    t + 1 vt t px x (t)dt

    (IA)x =

    0

    t vt t px x (t)dt

    (IA)1x : n =n

    0

    t vt t px x (t)dt

    (D A)1x : n =

    n

    0 (n t )vt

    t px x (t)dt

    (DA )1x : n =n

    0

    (n t)vt t px x (t)dt

    (IA)x = Ax + vpx (IA)x +1= vq x + vpx [(IA)x +1 + Ax +1 ]

    (DA )1x : n = nvq x + vpx (DA ) 1

    x +1: n 1

    (IA)1x : n + ( DA )1x : n = n A

    1x : n

    (I A)1x : n + ( D A)1x : n = ( n + 1) A

    1x : n

    (IA)1x : n + ( DA )1x : n = ( n + 1) A

    1x : n

    Accumulated cost of insurance:

    n kx =A1x : nn E x

    Share of the survivor:

    accumulation factor = 1n E x

    = (1 + i)nn px

    Interest theory reminder

    a n = 1 vn

    i

    a n = 1 vn

    =

    i

    a n

    a = 1

    , a =

    1i

    , a = 1d

    (Ia ) n = a n nv n

    i

    (Da ) n = n a n

    (Ia ) = 1

    2(n + 1) a n = ( Ia ) n + ( Da ) n

    s 1 = i

    d = iv

    (Ia ) = 1

    id =

    1 + ii2

    Doubling the constant force of interest

    1 + i (1 + i)2

    v v2

    i 2i + i2

    d 2d d2

    i

    2i + i2

    2

    Limit of interest rate i = 0 :

    Axi=0 1

    A1x : ni=0 n q x

    n | Axi=0 n px

    Ax : ni=0 1

    m |n Axi=0

    m |n q x(IA)x

    i=0 1 + ex(IA)x

    i=0 ex

    Exam M - Life Contingencies - LGD c 4

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    5/26

    Chapter 5: Life Annuities

    Whole life annuity: ax

    ax = E [a T ] =

    0 at t px (x + t)dt

    =

    0

    vt t px dt =

    0

    t E x dt

    V ar[a T ] =2Ax ( Ax )2

    2

    n-year temporary annuity: ax : n

    ax : n =

    n

    0 vt

    t px dt =

    n

    0t E x dt

    V ar[Y ] =2Ax : n ( Ax : n )2

    2

    n-year deferred annuity: n | ax

    n | ax =

    n

    vt t px dt =

    n

    t E x dt

    n | ax = vn n px ax + n = n E x ax + n

    V ar[Y ] = 2

    v2n n px (ax + n 2ax + n ) (n | ax )2

    n-yr certain and life annuity: ax : n

    ax : n = ax + a n ax : n= a n + n | ax = a n + n E x ax + n

    Most important identity1 = ax + Ax

    ax = 1 Ax

    Ax : n = 1 ax : n

    2Ax : n = 1 (2 ) 2ax : n

    ax = 1 Ax

    d

    ax : n = 1 Ax : n

    d

    1 = dax : n + Ax : n

    Recursion relations

    ax = ax : 1 + vpx ax +1ax = ax : n + n | axax = 1 + vpx ax +1

    2ax = 1 + v2 px 2ax +1ax : n = 1 + vpx ax +1: n 1a (m )x : n = a

    (m )x n E x a

    (m )x + n

    ax = vpx + vpx ax +1ax : n = vpx + vpx ax +1: n 1

    (I a)x = 1 + vpx [(I a)x +1 + ax +1 ]= ax + vpx (I a)x +1

    Whole life annuity due: ax

    ax = E [a K +1 ] =

    k=0

    vk k px

    V ar[a K +1 ] =2Ax (Ax )2

    d2

    n-yr temporary annuity due: ax : n

    ax : n = E [Y ] =n 1

    k=0

    vk k px

    V ar[Y ] =2Ax : n (Ax : n )2

    d2

    n-yr deferred annuity due: n | ax

    n | ax = E [Y ] =

    k= n

    vk k px

    = ax ax : n= n E x ax + n

    n-yr certain and life due: ax : n

    ax : n = ax + a n ax : n

    = a n +

    k= n

    vk k px

    = a n + n | ax

    Exam M - Life Contingencies - LGD c 5

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    6/26

    Whole life immediate: ax

    ax = E [a K ] =

    k=1

    vk k px

    ax =

    1 (1 + i)Axi

    m-thly annuities

    a (m )x = 1 A(m )x

    d(m )

    V ar[Y ] =2A(m )x (A(

    m )x )2

    (d(m ) )2

    a (m )x = a(m )x

    1m

    a (m )x : n

    = a (m )x : n

    1

    m(1 n E x )

    Accumulation function:

    sx : n = ax : n

    n E x=

    n

    0

    1n t E x + t

    Limit of interest rate i = 0 :

    axi=0 ex

    axi=0 1 + ex

    axi=0 ex

    ax : ni=0 ex : n

    ax : ni=0 1 + ex : n 1

    ax : ni=0 ex : n

    Exam M - Life Contingencies - LGD c 6

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    7/26

    Chapter 6: Benet Premiums

    Loss function:Loss = PV of Benets PV of PremiumsFully continuous equivalence premiums(whole life and endowment only):

    P ( Ax ) =Axax

    P ( Ax ) = Ax1 Ax

    P ( Ax ) = 1ax

    V ar[L] = 1 +P

    22Ax ( Ax )2

    V ar[L] =2Ax ( Ax )2

    ( ax )2

    V ar[L] =2Ax ( Ax )2

    (1 Ax )2

    Fully discrete equivalence premiums(whole life and endowment only):

    P (Ax ) = Ax

    ax= P x

    P (Ax ) = dAx1 Ax

    P (Ax ) = 1ax

    d

    V ar[L] = 1 + P d

    22Ax (Ax )2

    V ar[L] =2Ax (Ax )2

    (dax )2

    V ar[L] =2Ax (Ax )2

    (1 Ax )2

    Semicontinuous equivalence premiums:

    P ( Ax ) =Axax

    m-thly equivalence premiums:

    P (m )# = A#a (m )#

    h-payment insurance premiums:

    h P ( Ax ) =A

    xax : h

    h P ( Ax : n ) =Ax : nax : h

    h P x = Axax : h

    h P x : n = Ax : n

    ax : h

    Pure endowment annual premium P 1x : n :it is the reciprocal of the actuarial accumulatedvalue sx : n because the share of the survivor whohas deposited P 1x : n at the beginning of each yearfor n years is the contractual $1 pure endow-ment, i.e.

    P 1x : n sx : n = 1 (1)

    P minus P over P problems:The difference in magnitude of level benet pre-miums is solely attributable to the investmentfeature of the contract. Hence, comparisons of

    the policy values of survivors at age x + n maybe done by analyzing future benets:

    ( n P x P 1x : n )sx : n = Ax + n = n P x P 1x : n

    P 1x : n

    (P x : n n P x )sx : n = 1 Ax + n = P x : n n P x

    P 1x : n

    (P x : n P 1x : n )sx : n = 1 = P x : n P 1x : n

    P 1x : n

    Miscellaneous identities:

    Ax : n = P ( Ax : n )

    P ( Ax : n ) +

    Ax : n = P x : nP x : n + d

    ax : n = 1

    P ( Ax : n ) +

    ax : n = 1P x : n + d

    Exam M - Life Contingencies - LGD c 7

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    8/26

    Chapter 7: Benet Reserves

    Benet reserve tV :The expected value of the prospective loss attime t.

    Continuous reserve formulas:

    Prospective: tV ( Ax ) = Ax + t P ( Ax )ax + t

    Retrospective: tV ( Ax ) = P ( Ax )sx : t A1x : n

    t E xPremium diff.: tV ( Ax ) = P ( Ax + t ) P ( Ax ) ax + t

    Paid-up Ins.: tV ( Ax ) = 1 P ( Ax )

    P ( Ax + t ) Ax + t

    Annuity res.: tV ( Ax ) = 1 ax + t

    ax

    Death ben.: tV ( Ax ) =Ax + t Ax

    1 Ax

    Premium res.: tV ( Ax ) =P ( Ax + t ) P ( Ax )

    P ( Ax + t ) +

    Discrete reserve formulas:

    k V x = Ax + k P k ax + k

    k V x : n = P x + k : n k P x : n ax + k : n k

    k V x : n = 1 P x : n

    P x + k : n kAx + k : n k

    t V x : n = P x : n sx : n tkx

    k V x = 1 ax + k

    ax

    k V x = P x + k P x

    P x + k + d

    k V x = Ax + k Ax

    1 Ax

    h-payment reserves:ht V = Ax + t : n t h P ( Ax : n )ax + t : h t

    hk V x : n = Ax + k : n k h P x : n ax + k : h k

    hk V ( Ax : n ) = Ax + k : n k h P ( Ax : n )ax + k : h k

    hk V

    1( m )x : n = Ax + k : n k h P

    (m )x : n a

    (m )x + k : h k

    Variance of the loss function

    V ar[ t L] = 1 + P

    22Ax + t ( Ax + t )2

    V ar[ t L] =2Ax + t ( Ax + t )2

    (1 Ax )2 assuming EP

    V ar[ t L] = 1 +P

    22Ax + t : n t ( Ax + t : n t )

    2

    V ar[ t L] =2Ax + t : n t ( Ax + t : n t )

    2

    (1 Ax : n )2 assuming EP

    Cost of insurance: funding of the accumu-lated costs of the death claims incurred betweenage x and x + t by the living at t , e.g.

    4kx = dx (1 + i)3 + dx +1 (1 + i)2 + dx +2 (1 + i) + dx +

    lx +4

    =A1x : 44E x

    1kx = dxlx +1

    = q x px

    Accumulated differences of premiums:

    ( n P x P 1x : n )sx : n = n

    n V x n V 1

    x : n )= Ax + n 0 = Ax + n

    ( n P x P x )sx : n = nn V x n V x= P x ax + n

    (P x : n P x )sx : n = n V x : n n V x= 1 n V x

    ( m P x : n m P x )sx : m = mm V x : n mm V x= A

    x + m : n m Ax + m

    Relation between various terminal re-serves (whole life/endowment only):

    m + n + pV x = 1 (1 m V x )(1 n V x + m )(1 pV x + m + n )

    Exam M - Life Contingencies - LGD c 8

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    9/26

    Chapter 8: Benet Reserves

    Notations:b j : death benet payable at the end of year of death for the j -th policy year j 1: benet premium paid at the beginning of the j -th policy yearbt : death benet payable at the moment of death t : annual rate of benet premiums payable continuously at tBenet reserve:

    h V =

    j =0

    bh + j +1 v j +1 j px + h q x + h + j

    j =0

    h + j v j j px + h

    t V =

    0

    bt + u vu u px + t x (t + u)du

    0 t+ u vu u px + t du

    Recursion relations:

    h V + h = v q x + h bh +1 + v px + h h+1 V (h V + h )(1 + i) = q x + h bh +1 + px + h h+1 V (h V + h )(1 + i) = h+1 V + q x + h (bh +1 h+1 V )

    Terminology:policy year h+1 the policy year from time t = h to time t = h + 1h V + h initial benet reserve for policy year h + 1h V terminal benet reserve for policy year hh +1 V terminal benet reserve for policy year h + 1

    Net amount at Risk for policy year h + 1

    Net Amount Risk bh +1 h+1 V

    When the death benet is dened as a function of the reserve:For each premium P , the cost of providing the ensuing years death benet , based on the net amount atrisk at age x + h, is : vq x + h (bh +1 h+1 V ). The leftover, P vq x + h (bh +1 h+1 V ) is the source of reservecreation. Accumulated to age x + n, we have:

    n V =n 1

    h =0

    [P vq x + h (bh +1 h+1 V )] (1 + i)n h

    = P s n n 1

    h =0

    vq x + h (bh +1 h+1 V )(1 + i)n h

    If the death benet is equal to the benet reserve for the rst n policy years

    n V = P s n

    If the death benet is equal to $1 plus the benet reserve for the rst n policy years

    n V = P s n

    n 1

    h =0 vq x + h (1 + i)n h

    Exam M - Life Contingencies - LGD c 9

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    10/26

    If the death benet is equal to $1 plus the benet reserve for the rst n policy years and q x + h q constant

    n V = P s n vq s n = ( P vq )s n

    Reserves at fractional durations:

    ( h V + h )(1 + i)s = s px + h h+ s V + s q x + h v1 s

    UDD ( h V + h )(1 + i)s = (1 s q x + h ) h + s V + s q x + h v1 s

    = h+ s V + s q x + h (v1 s h+ s V )h + s V = v1 s 1 s q x + h + s bh +1 + v1 s 1 s px + h + s h+1 V

    UDD h+ s V = (1 s)( h V + h ) + s(h +1 V )i.e. h+ s V = (1 s)( h V ) + ( s)(h +1 V ) + (1 s)(h )

    unearned premium

    Next year losses:h losses incurred from time h to h + 1

    E [h ] = 0V ar[h ] = v2(bh +1 h+1 V )2 px + h q x + h

    The Hattendorf theorem

    V ar[ h L] = V ar[h ] + v2 px + h V ar[ h +1 L]= v2(bh +1 h+1 V )2 px + h q x + h + v2 px + h V ar[ h +1 L]

    V ar[ h L] = v2(bh +1 h+1 V )2 px + h q x + h

    + v4(bh +2 h+2 V )2 px + h px + h +1 q x + h +1+ v6(bh +3 h+3 V )2 px + h px + h +1 px + h +2 q x + h +2 +

    Exam M - Life Contingencies - LGD c 10

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    11/26

    Chapter 9: Multiple Life Functions

    Joint survival function:

    sT (x )T (y) (s, t ) = P r [T (x) > s &T (y) > t ]

    t pxy = sT (x )T (y)(t, t )= P r [T (x) > t and T (y) > t ]

    Joint life status:

    F T (t) = P r [min(T (x), T (y)) t]= tq xy= 1 t pxy

    Independant livest pxy = t px t pyt q xy = tq x + tq y tq x tq y

    Complete expectation of the joint-life sta-tus:

    exy =

    0

    t pxy dt

    PDF joint-life status:

    f T (xy )(t) = t pxy xy (t)

    xy (t) =f T (xy ) (t)

    1 F T (xy )(t) =

    f T (xy ) (t)t pxy

    Independant lives

    xy (t) = (x + t) + (y + t)f T (xy ) (t) = t px t py [(x + t) + (y + t)]

    Curtate joint-life functions:

    k pxy = k px k py [IL]k q xy = kq x + kq y kq x kq y [IL]

    P r [K = k] = k pxy k+1 pxy= k pxy q x + k :y+ k= k pxy q x + k :y+ k = k|q xy

    q x + t :y+ t = q x + k + q y+ k q x + k q y+ k [IL]

    exy = E [K (xy)] =

    1k pxy

    Last survivor status T (xy):

    T (xy) + T (xy) = T (x) + T (y)

    T (xy) T (xy) = T (x) T (y)f T (xy ) + f T (xy ) = f T (x ) + f T (y)

    F T (xy ) + F T (xy ) = F T (x ) + F T (y)t pxy + t pxy = t px + t pyAxy + Axy = Ax + Ayaxy + axy = ax + ayexy + exy = ex + eyexy + exy = ex + ey

    n |q xy = n |q x + n | q y n |q xy

    Complete expectation of the last-survivorstatus:

    exy =

    0

    t pxy dt

    exy =

    1k pxy

    Variances:

    V ar[T (u)] = 2

    0 t t pu dt (eu )2V ar[T (xy)] = 2

    0

    t t pxy dt (exy )2

    V ar[T (xy)] = 2

    0

    t t pxy dt (exy )2

    Notes:

    For joint-life status, work with ps:n pxy = n px n py

    For last-survivor status, work with q s:

    n q xy = n q x n q y

    Exactly one status:

    n p[1]xy = n pxy n pxy

    = n px + n py 2 n px n py

    = n q x + n q y 2 n q x n q ya [1]xy = ax + ay 2axy

    Exam M - Life Contingencies - LGD c 11

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    12/26

    Common shock model:

    sT (x )(t) = sT (x ) (t) sz (t)

    = sT (x ) (t) e t

    sT (y)(t) = sT (y) (t) sz (t)

    = sT (y) (t) e t

    sT (x )T (y)(t) = sT (x ) (t) T (y) (t) sz (t)

    = sT (x ) (t) sT (y)(t) e t

    xy (t) = (x + t) + (y + t) +

    Insurance functions:

    Au =

    k=0

    vk+1 k pu q u + k

    =

    k=0vk+1 P r [K = k]

    Axy =

    k=0

    vk+1 k pxy q x + k :y+ k

    Axy =

    k=0

    vk+1 ( k px q x + k + k py q y+ k

    k pxy q x + k :y+ k )

    Variance of insurance functions:

    V ar[Z ] = 2Au (Au )2

    V ar[Z ] = 2Axy (Axy )2

    Cov[vT (xy ) , vT (xy ) ] = ( Ax Axy )( Ay Axy )

    Insurances:

    Ax = 1 axAxy = 1 axyA

    xy = 1 a

    xy

    Premiums:

    P x = 1ax

    d

    P xy = 1axy

    d

    P xy = 1axy

    d

    Annuity functions:

    au =

    0

    vt t pu dt

    var [Y ] =2Au ( Au )2

    2

    Reversionary annuities:A reversioanry annuity is payable during the ex-istence of one status u only if another status vhas failed. E.g. an annuity of 1 per year payablecontinuously to ( y) after the death of ( x).

    ax |y = ay axy

    Covariance of T (xy) and T (xy):

    Cov [T (xy), T (xy)] = Cov [T (x), T (y)] + {E [T (x)] E [T (xy)]} {(E [T (y)] E [T (xy)]}

    = Cov [T (x), T (y)] + ( ex exy ) ( ey exy )= ( ex exy ) (ey exy ) [IL]

    Exam M - Life Contingencies - LGD c 12

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    13/26

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    14/26

    Basic relationships:

    t p( )x = exp t

    0

    (1)x (s) + + (m )x (s) ds

    t p( )x =m

    i=1t p (i )x

    t q ( j )x tq ( j )xt p ( j )x t p(

    )x

    UDD for multiple decrements:

    t q ( j )x = t q ( j )

    x

    t q ( )x = t q ( )

    x

    q ( j )x = t p( )

    x ( j )x (t)

    ( j )x (t) = q ( j )x

    t p( )x

    = q ( j )x

    1 t q ( )x

    t p ( j )x = t p( )x

    q( j )x

    qxt

    Decrements uniformly distributed in theassociated single decrement table:

    t q ( j )x = t q ( j )

    x

    q (1)x = q (1)x 1 1

    2q (2)x

    q (2)x = q (2)

    x 1 12

    q (1)x

    q (1)x = q (1)x 1 12

    q (2)x 12

    q (3)x + 13

    q (2)x q (3)x

    Actuarial present values

    A =m

    j =1

    0

    B ( j )x + t vt t p( )x (

    j )x (t)dt

    Instead of summing the benets for each pos-sible cause of death, it is often easier to writethe benet as one benet given regardless of thecause of death and add/subtract other benetsaccording to the cause of death.

    Premiums:

    P ( )x =

    k=0B ( )k+1 v

    k+1 k p( )x q (

    )x + k

    k=0vk k p( )x

    P ( j )x =

    k=0B ( j )k+1 v

    k+1 k p( )x q ( j )x + k

    k=0vk k p

    ( )x

    Exam M - Life Contingencies - LGD c 14

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    15/26

    Chapter 15: Models Including Expenses

    Notations:

    G expense loaded ( or gross) premium

    b face amount of the policyG/b per unit gross premium

    Expense policy fee:The portion of G that is independent of b.

    Asset shares notations:

    G level annual contract premiumk AS asset share assigned to the policy at time t = k

    ck fraction of premium paid for expenses at k (i.e. cG is the expenxe premium)ek expenses paid per policy at time t = k

    q (d)x + k probability of decrement by death

    q (w )x + k probability of decrement by withdrawalk CV cash amount due to the policy holder as a withdrawal benet

    bk death benet due at time t = k

    Recursion formula:

    [ k AS + G(1 ck ) ek ] (1 + i) = q (d)x + k bk+1 + q

    (w )x + k k+1 CV + p

    ( )x + k k+1 AS

    = k+1 AS + q (d)x + k (bk+1 k+1 AS ) + q (w)x + k ( k+1 CV k+1 AS )

    Direct formula:

    n AS =n 1

    h =0

    G(1 ch ) eh vq (d)x + h bh +1 vq

    (w )x + h h +1 CV

    n h E ( )x + h

    Exam M - Life Contingencies - LGD c 15

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    16/26

    Constant Force of Mortality

    Chapter 3

    (x) = > 0, xs(x) = e x

    lx = l0e x

    n px = e n = ( px )n

    ex = 1

    = E [T ] = E [X ]

    ex : n = ex (1 n px )

    V ar[T ] = V ar[x] = 12

    mx =

    Median[T ] = ln2

    = Median[ X ]ex =

    pxq x

    = E [K ]

    V ar[K ] = px(q x )2

    Chapter 4

    Ax = +

    2Ax =

    + 2 A1x : n = Ax (1 n E x )

    n E x = e n (+ )

    (IA)x = ( + )2

    Ax = q q + i

    2Ax = q

    q + 2 i + i2

    A1x : n = Ax (1 n E x )

    Chapter 5

    ax = 1 +

    2ax = 1 + 2

    ax = 1 + i

    q + i

    2ax = (1 + i)2

    q + 2 i + i2

    ax : n = ax (1 n E x )ax : n = ax (1 n E x )

    (IA)x = Ax ax =

    ( + )2

    (I A)x = Ax ax = (1 + i)

    ( + )(q + i)(IA)x = Ax ax =

    q (1 + i)(q + i)2

    (Ia )x = ( ax )2 = 1

    ( + )2

    (I a)x = ( ax )2 =1 + iq + i

    2

    Chapter 6

    P x = vq x = P 1x : nP (

    Ax ) = =

    P (

    A

    1

    x : n )For fully discrete whole life, w/ EP,

    V ar[Loss ] = p 2Ax

    For fully continuous whole life, w/EP,

    V ar[Loss ] = 2Ax

    Chapter 7

    t V ( Ax ) = 0 , t 0

    kV

    x = 0 , k = 0 , 1, 2, . . .

    For fully discrete whole life, assuming EP,

    V ar[k Loss ] = p 2Ax , k = 0 , 1, 2, . . .

    For fully continuous whole life, assuming EP,

    V ar[ t Loss ] = 2Ax , t 0

    Chapter 9For two constant forces, i.e. M acting on ( x)and F acting on ( y), we have:

    Axy = M + F

    M + F +

    axy = 1

    M + F +

    exy = 1M + F

    Axy = q xyq xy + i

    axy = 1 + iq xy + i

    exy = pxy

    q xy

    Exam M - Life Contingencies - LGD c 16

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    17/26

    De Moivres Law

    Chapter 3

    s(x) = 1 x

    lx = l0 x ( x)

    q x = (x) = 1 x

    n |m q x = m x

    n px = x n

    xt px (x + t) = q x = (x) = f T (x), 0 t < x

    Lx = 1

    2(lx + lx +1 )

    ex = x

    2 = E [T ] = Median[ T ]

    ex = x

    2

    12

    = E [K ]

    V ar[T ] = ( x)2

    12

    V ar[K ] = ( x)2 1

    12

    mx = q x1 12 q x

    = 2dx

    lx + lx +1

    a(x) = E [S ] = 1

    2ex : n = n n px +

    n2 n

    q x

    ex : n = ex : n + n2 n

    q x

    Chapter 4

    Ax =a x x

    A1x : n = a n x

    2Ax =a 2( x )2( x)

    Ax =

    a x x

    A1x : n = a n x

    (IA)x =(Ia ) x

    x

    (IA)x =(Ia ) x

    x

    (IA)1x : n = (Ia ) n

    x

    (IA)1x : n = (Ia ) n

    x

    Chapter 5No useful formulas: use ax = 1 A xd and thechapter 4 formulas.

    Chapter 9

    exx = x

    3 ( MDML with = 2 / ( x))

    exx = 2( x)

    3exy = y x px eyy + y x q x ey

    For two lives with different s, simply translateone of the age by the difference in s. E.g.

    Age 30, = 100 Age 15, = 85

    Modied De Moivres Law

    Chapter 3

    s(x) = 1 x

    c

    lx = l0 x

    c

    ( x)c

    (x) = c x

    n px = x n

    x

    c

    ex = x

    c + 1 = E [T ]

    V ar[T ] = ( x)2c(c + 1) 2(c + 2)

    Chapter 9

    exx = x

    2c + 1

    ex with = 2c x

    Exam M - Life Contingencies - LGD c 17

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    18/26

    Uniform Distribution of Deaths (UDD)

    Chapter 3

    t q x = t q x , 0 t 1

    (x + t) = q x1 tq x , 0 t 1

    lx + t = lx t dx , 0 t 1

    s q x + t = sq x1 tq x

    , 0 s + t 1

    V ar[T ] = V ar[K ] + 112

    mx = (x + 12

    ) = q x

    1 12 q x

    Lx = lx 12

    dx

    a(x) = 12

    ex : 1 = px + 12

    q x

    t px (x + t) = q x , 0 t 1

    Chapter 4

    Ax = i

    Ax

    A(m )x = ii(m )

    Ax

    A1x : n = i A1x : n

    (I A)1x : n = i

    (IA)1x : n

    Ax : n = i

    A1x : n + A

    1x : n =

    i

    A1x : n + n E x

    n | Ax = i

    n |Ax

    2Ax = 2i + i2

    2 2Ax

    Chapter 5

    a (m )x ax m 1

    2ma (m )x = (m)ax (m)

    a (m )x : n = (m)ax : n (m)(1 n E x )

    with: (m) = id

    i(m )d(m ) 1

    and (m) = i i(m )

    i(m )d(m )

    m 12m

    a (m )x : n = a(m )x n E x a

    (m )x + n

    Chapter 6

    P ( Ax ) = i

    P x

    P ( A1x : n ) = i

    P 1x : n

    P ( Ax : n ) = i

    P 1x : n + P

    1x : n

    P (m )x = P x

    (m) (m)(P x + d)

    P (m )x : n = P x : n

    (m) (m)(P 1x : n + d)

    n P (m )x = n P x

    (m) (m)(P 1x : n + d)

    h P (m ) ( A1x : n ) = i hP 1(m )x : n

    Chapter 7

    hk V

    (m )x : n =

    hk V x : n + (m) h P

    (m )x : n kV

    1x : h

    hk V

    (m ) ( Ax : n ) = hk V ( Ax : n ) + (m) h P (m ) ( Ax : n ) k V 1x :

    hk V ( Ax : n ) =

    i

    hk V 1

    x : h + hk V

    1x : h

    Chapter 10UDDMDT

    t q ( j )x = t q ( j )xq ( j )x =

    ( j )x (0)

    q ( )x = ( )

    x (0)

    t p ( j )x = t p( )

    x

    q ( j )xq ( )x

    ( j )x = q ( j )x1 t q ( )x

    ( )x = q ( )x

    1 t q ( )x

    UDDASDT

    t q ( j )x = t q ( j )x

    q (1)x = q (1)

    x 1 12

    q (2)x

    q (2)x = q (2)x 1 12

    q (1)x

    q (1)x = q (1)x 1 12

    q (2)x 12

    q (3)x + 13

    q (2)x q (3)x

    Exam M - Life Contingencies - LGD c 18

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    19/26

    Chapter 1: The Poisson Process

    Poisson process with rate :

    P r [N (s + t) N (s) = k] = e t(t )k

    k!E [N (t)] = tV ar[N (t)] = t

    Interarrival time distribution:The waiting time between events. Let T n de-note the time since occurence of the event n 1.Then the T n are independent random variablesfollowing an exponential distribution with mean1/ .

    P r [T i t] = 1 e t

    f T (t) = e t

    E [T ] = 1

    V ar[T ] = 12

    Waiting time distribution:Let S n be the time of the n-occurence of theevent, i.e. S n =

    ni=1 T i .

    S n has a gamma distribution with parameters nand = 1 /

    S n GammaRV[ = n, = 1]

    P r [S n t] =

    j = ne t

    (t ) j

    j !

    f S n (t) = et (t )n 1

    (n i)!

    E [S n ] = n

    V ar[S n ] =

    n2

    Sum of Poisson processes:If N 1, , N k are independent Poisson processeswith rates 1, , k then, N = N 1 + + N kis a Poisson process with rate = 1 + + k .

    Special events in a Poisson process:Let N be a Poisson process with rate .Some events i are special with a probabilityP r [event is special] = i and N i counts the spe-cial events of kind i. Then, N i is a Poissonprocess with rate i = i and the N i are inde-pendent of one another.If the probability i (t) changes with time, then

    E [ N i (t)] = t

    0

    (s)ds

    Non-homogeneous Poisson process:

    (t) intensity functionm(t) mean value function

    =t

    0

    (y)dy

    P r [N (t) = k] = e m ( t )[m(t)]k

    k!

    Compound Poisson process:

    X (t) =N (t )

    i=1

    Y i N (t) PoissonRV w/ rate

    E [X (t)] = t E [Y ]V ar[X (t)] = t E [Y 2]

    Two competing Poisson processes:Probability that n events in the Poisson process ( N 1,1) occur before m events in the Poisson process(N 2,2):

    P r [S 1n < S 2m ] =n + m 1

    k= n

    n + m 1k

    11 + 2

    k 21 + 2

    n + m 1 k

    P r [S 1n < S 21 ] = 1

    1 + 2

    n

    P r [S 11 < S 2

    1] =

    11 + 2

    Exam M - Loss Models - LGD c 1

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    20/26

    Chapter 2&3: Random Variables

    k-th raw moment:

    k = E [X k ]

    k-th central moment:

    k = E [(X )k ]

    Variance:

    V ar[x] = 2 = E [X 2] E [X ]2

    = 2 = 2 2

    Standard deviation:

    = V ar[X ]Coefficient of variation:

    /

    Skewness:

    1 = E [(X )3]

    3 =

    33

    Kurtosis:

    1 = E [(X )4]

    4 =

    44

    Left truncated and shifted variable (akaexcess loss variable):

    Y P = X d|X > d

    Mean excess loss function:

    eX (d) e(d) = E [Y P ]= E [X d|X > d ]

    =

    d S (x)dx1 F (d)

    =

    E [X ] E [X d]1 F (d)

    Higher moments of the excess loss vari-able:

    ekx (d) = E [(X d)k |X > d ]

    =

    d (x d)k f (x)dx1 F (d)

    = x>d(x d)k p(x)

    1 F (d)

    Left censored and shifted variable:

    Y L = ( X d)+

    = 0 X < d

    X d X d

    Moments of the left censored and shiftedvariable:

    E [(X d)k+ ] =

    d

    (x d)k f (x)dx

    =x>d

    (x d)k p(x)

    = ek

    (d)[1 F (d)]

    Limited loss:

    Y = ( X u) = X X < uu X u

    Limited expected value:

    E [X u] = 0

    F (x)dx +u

    0

    S (x)dx

    =u

    0

    [1 F (x)]dx if X is always positive

    Moments of the limited loss variable:

    E [(X u)k ] =u

    xk f (x)dx + uk [1 F (u)]

    =x u

    xk p(x) + uk [1 F (u)]

    Moment generating functions mX (t):

    mX (t) = E [etX ]

    Sum of random variables S k = X 1 + + X k :

    mS k (t) =k

    j =1

    mX j (t)

    Exam M - Loss Models - LGD c 2

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    21/26

    Chapter 4: Classifying and Creating distributions

    k-point mixture ( a i = 1 ):

    F Y (y) = a1F X 1 (y) + + ak F X k (y)

    f Y (y) = a1f X 1 (y) + + ak f X k (y)E [Y ] = a1E [X 1] + + ak E [X k ]

    E [Y 2] = a1E [X 21 ] + + ak E [X 2k ]

    Tail weight:

    existence of moments light tailhazard rate increases light tail

    Multiplication by a constant ,y > 0:

    Y = X F Y (y) = F X ( y) and f Y (y) = 1

    f X ( y)

    Raising to a power:

    Y = X 1

    > 0 : F Y (y) = F X (y )f Y (y) = y 1f X (y )

    < 0 : F Y (y) = 1 F X (y )f Y (y) = y 1f X (y )

    > 0: transformed distribution = 1: inverse distribution

    < 0: inverse transformed

    Exponentiation:

    Y = eX F Y (y) = F X (ln( y))f Y (y) = 1y f X (ln( y))

    Mixing:The random variable X depends upon a para-meter , itself a random variable . For a givenvalue = , the individual pdf is f X | (x |).

    f X (x) = f X | (x |)f ()d If X is a Poisson distribution with parame-

    ter , and follows a Gamma distributionwith parameters ( , ), then the resultingdistribution is a Negative Binomial distri-bution with parameters ( r = , = )

    If X is an Exponential distribution withmean 1/ and is a Gamma distributionwith parameters ( , ), then the resulting

    distribution is a 2-parameter Pareto distri-bution with parameters ( = , = 1 )

    If X is a Normal distribution (, V ) and follows a Normal distribution (, A),then the resulting distribution is a Normaldistribution (, A + V )

    Splicing ( a j > 0, a j = 1 ):

    f (x) =a1f 1(x) c0 < x < c 1

    ... ...

    ak f k (x) ck 1 < x < c k

    Discrete probability function (pf):

    pk = P r [N = k]

    Probability generating function (pgf):

    P N (z) = E [zN ] = p0 + p1z + p2z2 + P (1) = E [N ]P (1) = E [N (N 1)]

    Poisson distribution:

    pk = e k

    k!P (z) = e (z 1)

    E [N ] = V ar[N ] =

    Negative Binomial distribution:Number of failures before success r with proba-bility of success p = 1 / (1 + )

    pk = k + r 1

    k

    1 +

    k 11 +

    r

    P (z) = [1 (z 1)] r

    E [N ] = r V ar[N ] = r (1 + )

    If N 1 and N 2 are independent NegativeBinomial distributions with parameters(r 1, ) and ( r 2, ), then N 1 + N 2 is a Neg-

    ative Binomial distribution with parame-ters ( r = r1 + r 2, )

    Exam M - Loss Models - LGD c 3

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    22/26

    If N is a Negative Binomial distributionwith parameters ( r, ) and some events jare special with probability j , then N j ,the count of special events j , is a Nega-tive Binomial distribution with parame-ters ( r j = r, j = j )

    Geometric distribution:Special case of the negative binomial distribu-tion with r = 1

    pk = k

    (1 + )k+1

    P (z) = [1 (z 1)] 1 = 1

    1 (z 1)

    E [N ] = V ar[N ] = (1 + )

    Binomial distribution:Counting number of successes in m trials givena probability of sucess q

    pk = mk q

    k (1 q )m k

    P (z) = [1 + q (z 1)]m

    E [N ] = mq V ar[N ] = mq (1 q )

    The (a,b, 0) class:

    pk pk 1

    = a + bk

    a > 0 negative binomial or geometricdistribution

    a = 0 Poisson distributiona < 0 Binomial distribution

    Compound frequency models:

    P (z) = P prim (P sec (z))

    Compound frequency and (a,b, 0) class:Let S be a compound distribution of primaryand secondary distributions N and M with pn =P r [N = n] and f n = P r [M = n]. If N is a mem-ber of the ( a,b, 0) class

    gk = 11 af 0

    k

    j =1

    a + j b

    kf j gk j

    g0 = P prim (f 0)

    gk =

    k

    k

    j =1

    j f j gk j

    Mixed Poisson models:If P (z) id the pgf of a Poisson distribution with

    rate drawn from a discrete random variable ,then

    P (z |) = e (z 1)

    P (z) = p(1)e 1 (z 1) + + p( n )e n (z 1)

    Exposure modications on frequency:n policies in force. N j claims produced by the j -th policy. N = N 1 + + N n . If the N j are in-dependent and identcally distributed, then theprobability generating function for N is

    P N (z) = [ P N 1 (z)]n

    If the company exposure grows to n , let N represent the new total number of claims,

    P N (z) = [ P N 1 (z)]n = [ P N (z)]nn

    Conditional expectations:

    E [X | = ] = xf X |(x |)dxE [X ] = E [E [X |]]

    V ar[X ] = E [V ar[X |]] + V ar[E [X |]]

    The variance of the random variable X is thesum of two parts: the mean of the conditionalvariance plus the variance of the conditionalmean.

    Exposure modications on frequency for common distributions:N Parameters for N Parameters for N

    Poisson = n

    n Negative Binomial r, r = nn r, =

    Exam M - Loss Models - LGD c 4

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    23/26

    Chapter 5: Frequency and Severity with Coverage Modications

    Notations:

    X amount of loss

    Y L amount paid per lossY P amount paid per payment

    Per loss variable:

    f Y L (0) = F X (d)f Y L (y) = f x (y + d)F Y L (y) = F X (y + d)

    Per payment variable:

    f Y P (y) = f

    x(y + d)

    1 F X (d)

    F Y L (y) = F X (y + d) F X (d)

    1 F X (d)

    Relations per loss / per payment variable:

    Y P = Y L |Y L > 0

    E [Y P ] = E [Y L ]P r [Y L > 0]

    E [(Y P )k ] = E [(Y L )k ]

    P r [Y L

    > 0]Simple (or ordinary) deductible d:

    X = X Y L = ( X d)+Y P = X d|X > d

    E [Y L ] = E [(X d)+ ]= E [X ] E [X d]

    E [Y P ] = E [X d|X > d ]

    = E [X ] E [X d]

    1 F X (d)

    Franchise deductible d:

    X = X Y L = 0 if X < d, X if X > dY P = X |X > d,

    Y P franchise = Y P

    ordinary + d

    E [Y L ] = E [X ] E [X d] + d[1 F X (d)]E [Y P ] = E [X |X > d ]

    = E [X ] E [X d]1 F X (d)

    + d

    Effect of deductible for various distribu-tions:

    X : exp[mean ] Y P

    : exp[mean ]X : uniform[0, ] Y P : uniform[0, d]X : 2Pareto[ , ] Y P : 2Pareto[ = , = +

    Loss elimination ratio:

    LER X (d) = E [X d]

    E [X ]

    relations:

    c(X d) = ( cX ) (cd)

    c(X d)+ = ( cX cd)+A = ( A b) + ( A b)+

    Ination on expected cost per loss:

    E [Y L ] = (1 + r ) E (X ) E X d1 + r

    Ination on expected cost per payment:

    E [Y P ] =(1 + r ) E (X ) E X d1+ r

    1 F X d1+ r

    u-coverage limit:

    Y L = X uY P = X u |X > 0

    E [Y L ] = E [X u]

    =u

    0

    [1 F x (x)]dx

    u-coverage limit with ination:

    E [X u] (1 + r )E X u1 + r

    u-coverage limit and d ordinary de-ductible:

    Y L = ( X u) (X d)Y P = ( X u) (X d)|X > 0

    = ( X u) d|X > dE [Y L ] = E [X u] E [X d]

    E [Y P ] = E [X u] E [X d]1 F X (d)

    Exam M - Loss Models - LGD c 5

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    24/26

    u-coverage limit and d ordinary deductiblewith ination:

    E [Y L ] = (1 + r ) E X u1 + r

    E X d1 + r

    E [Y P ] = (1 + r )E X u1+ r E X d1+ r

    1 F X d1+ r

    Coinsurance factor :First calculate Y L and Y P with deductible andlimits. Then apply

    Y L = Y L

    Y P = Y P

    Probability of payment for a loss with de-ductible d:

    v = 1 F X (d)

    Unmodied frequency:The number of claims N (frequency) does notchange, only the probabilities associated withthe severity are modied to include the possi-bility of zero payment.

    Bernoulli random variable:

    N = 0 @ 1 p1 @ pE [N ] = p

    V ar[N ] = (1 p) p

    Deductible, limit, ination and coinsurance:

    d = d1 + r

    u = u1 + r

    E [Y L ] = (1 + r ) {E [X u ] E [X d ]}

    E [Y P ] = (1 + r )E [X u ] E [X d ]

    1 F X (d )E [Y L 2] = 2(1 + r )2 E (X u )2 E (X d )2 2d E [X u ] + 2d E [X d ]

    Modied frequency:N (the modied frequency) has a compound distribution: The primary distribution is N , and the secondarydistribution is the Bernoulli random variable I . The probability generating function is

    P N (z) = P N [1 + v(z 1)]

    The frequency distribution is modied to include only non-zero claim amounts. Each claim amount prob-

    ability is modied by dividing it by th eprobability of a non-zero claim. For common distributions, thefrequency distribution changes as follows (the number of positive payments is nothing else than a specialevent with probability = v)

    N Parameters for N Parameters for N Poisson = vBinomial m, q m = m, q = vq Negative Binomial r, r = r, = v

    Exam M - Loss Models - LGD c 6

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    25/26

    Chapter 6: Aggregate Loss Models

    The aggregate loss compound randomvariable:

    S =

    N

    j =1X j

    E [S ] = E [N ] E [X ]V ar[S ] = E [N ] V ar[X ] + V ar[N ] E [X ]2

    S (E [S ], Va r [S ]) if E [N ] is large

    Probability generating function:

    P S (z) = P N [P X (z)]

    Notations:

    f k = P r [X = k] pk = P r [N = k]gk = P r [S = k]

    Compound probabilities:

    g0 = P N (f 0) if P r [X = 0] = f 0 = 0gk = p0 P r [sum of X s = k]

    + p1 P r [sum of one X = k]+ p2 P r [sum of two X s = k]

    + If N is in the (a,b, 0) class, then

    g0 = P N (f 0)

    gk = 11 af 0

    k

    j =1a +

    j bk

    f j gk j

    n-fold convolution of the pdf of X :

    f (n )X (k) = P r [sum of n X s = k]

    f (n )X (k) =k

    j =0f (n 1)X (k j )f X ( j )

    f (1)X (k) = f X (k) = f k

    f (0)X (k) = 1 , k = 00 , otherwise

    n-fold convolution of the cdf of X :

    F (n )X (k) =k

    j =0

    F (n 1)X (k j )f X ( j )

    F (0)X (k) = 0 , k < 01 , k 0

    Pdf of the compound distribution:

    f S (k) =

    n =0 pn f

    (n )X (k)

    Cdf of the compound distribution:

    F S (k) =

    n =0 pn F (n )X (k)

    Mean of the compound distribution:

    E [S ] =

    k=0

    k f S (k) =

    k=0

    [1 F S (k)]

    Net stop-loss premium:

    E [(S d)+

    ] =

    d(x d)f

    S (x)dx

    E [(S d)+ ] =

    d+1

    (x d)f S (x)

    E [(S d)+ ] = E [S ] d d 1

    x =0(x d)f S (x)

    E [(S d)+ ] =

    d

    [1 F S (d)]

    = E [S ]

    d 1

    x =0[1 F S (d)]

    Linear interpolation a < d < b :

    E [(S d)+ ] = b db a

    E [(S a)+ ]+d ab a

    E [(S b)+ ]

    Recursion relations for stop-loss insurance:

    E [(S d 1)+ ] = E [(S d)+ ] [1 F S (d)]E [(S s j )] = E [(S s j +1 )] + ( s j +1 s j )P r [S s j +1 ]

    where the s j s are the possible values of S , S : s0 = 0 < s 1 < s 2 < andP r [S s j +1 ] = 1 P r [S = s0 or S = s1 or or S = s j ]

    Exam M - Loss Models - LGD c 7

  • 7/22/2019 Chapter 3 Survival Distributions and Life Tables Exam M Notes F05

    26/26

    Last Chapter: Multi-State Transition Models

    Notations:

    Q( i,j )n = P r [M n +1 = j |M n = i]

    k Q( i,j )n = P r [M n + k = j |M n = i]P ( i )n = Q(

    i,i )n

    k P ( i )n = P r [M n +1 = = M n + k = i|M n = i]

    Theorem:

    k Qn = Qn Qn +1 Qn + k 1k Qn = Qk for a homogeneous Markov chain

    Inequality:

    k P ( i )n = P (i)

    n P ( i )n +1 P

    ( i )n + k 1 kQ

    ( i,i )n

    Cash ows while in states:

    lC ( i ) = cash ow at time l if subject in state i at time l

    k vn = present value of 1 paid k years after time t = nAP V s@n (C ( i ) ) = actuarial present value at time t = n of all future payments to be

    made while in state i , given that the subject is in state s at t = n

    AP V s@n (C ( i ) ) =

    k=0k Q(s,i )n n + k C (

    i ) kvn

    Cash ows upon transitions:

    l+1 C ( i,j ) = cash ow at time l + 1 if subject in state i at time l and state j at time l + 1

    lQ(s,i )n Q( i,j )n + l = probability of being in state i at time l and in state j at time l + 1

    AP V s@n (C ( i,j ) ) = actuarial present value at time t = n of a cash ow to be paid upontransition from state i to state j

    AP V s@n (C ( i,j ) ) =

    k=0k Q(s,i )n Q

    ( i,j )n + k n + k+1 C

    ( i,j ) k+1 vn