Chapter 3: Parallel and Perpendicular Lines Section 3.5 ... ? Â· Chapter 3: Parallel and Perpendicular Lines ... (3, 1) and K(2, ... Determining Whether Lines Are Parallel, Perpendicular, or

Download Chapter 3: Parallel and Perpendicular Lines Section 3.5 ... ? Â· Chapter 3: Parallel and Perpendicular Lines ... (3, 1) and K(2, ... Determining Whether Lines Are Parallel, Perpendicular, or

Post on 03-Feb-2018

215 views

Category:

Documents

1 download

Embed Size (px)

TRANSCRIPT

<ul><li><p>Geometry B Name:______________________ Date: ___________ </p><p>Chapter 3: Parallel and Perpendicular Lines </p><p>Section 3.5: Slope of Lines </p><p>Are you ready? (This should be completed for homework.) </p><p>Find the value of m. </p><p>1. 2. </p><p>3. 4. </p><p>Why learn this?____________________________________________ </p><p>_________________________________________________________ </p><p>Objectives of Lesson: ________________________________________ </p><p>_________________________________________________________ </p><p>_________________________________________________________ </p><p>The slope_________________________________________________ </p><p>_________________________________________________________ </p><p>_________________________________________________________</p><p>_________________________________________________________ </p><p>Slope of a Line </p><p>Definition Example </p></li><li><p> 2 </p><p>Example 1: Finding the Slope of a Line </p><p>Use the slope formula to determine the slope of each line: AB, AC, AD and </p><p>CD </p><p>Remember_________________________________________________</p><p>_________________________________________________________ </p><p>Example 2: Finding the Slope of a Line </p><p>Use the slope formula to determine the slope of JK through J(3, 1) and </p><p>K(2, 1). </p><p>Summary: Slope of a Line </p><p>Positive Slope Negative Slope Zero Slope Undefined Slope </p></li><li><p> 3 </p><p>One interpretation__________________________________________ </p><p>_________________________________________________________</p><p>_________________________________________________________ </p><p>Example 3: Transportation Application </p><p>Justin is driving from home to his college dormitory. At 4:00 p.m., he is 260 </p><p>miles from home. At 7:00 p.m., he is 455 miles from home. Graph the line </p><p>that represents Justins distance from home at a given time. Find and </p><p>interpret the slope of the line. </p><p>Example 3: Application </p><p>Tony is driving from Dallas, Texas, to Atlanta, Georgia. At 3:00 P.M., he is </p><p>180 miles from Dallas. At 5:30 P.M., he is 330 miles from Dallas. Graph the </p><p>line that represents Tonys distance from Dallas at a given time. Find and </p><p>interpret the slope of the line. </p><p>Example 4: What if? Use the graph above to estimate how far Tony will </p><p>have traveled by 6:30 P.M. if his average speed stays the same. </p></li><li><p> 4 </p><p>Slopes of Parallel and Perpendicular Lines </p><p>Parallel Lines Theorem </p><p>Perpendicular Lines Theorem </p><p>If a line __________________________________________________ </p><p>_________________________________________________________</p><p>_________________________________________________________ </p><p>Caution: __________________________________________________ </p><p>_________________________________________________________</p><p>_________________________________________________________ </p><p>Example 5: Determining Whether Lines Are Parallel, Perpendicular, or </p><p>Neither </p><p>Graph each pair of lines. Use their slopes to determine whether they are </p><p>parallel, perpendicular, or neither. </p><p>UV and XY for U(0, 2), V(1, 1), X(3, 1), and Y(3, 3) </p></li><li><p> 5 </p><p>Example 6: Determining Whether Lines Are Parallel, Perpendicular, or </p><p>Neither </p><p>Graph each pair of lines. Use their slopes to determine whether they are </p><p>parallel, perpendicular, or neither. </p><p>CD and EF for C(1, 3), D(1, 1), E(1, 1), and F(0, 3) </p><p>Example 7: Determining Whether Lines Are Parallel, Perpendicular, or </p><p>Neither </p><p>Graph each pair of lines. Use their slopes to determine whether they are </p><p>parallel, perpendicular, or neither. </p><p>GH and IJ for G(3, 2), H(1, 2), I(2, 4), and J(2, 4) </p></li><li><p> 6 </p><p>Example 8: Determining Whether Lines Are Parallel, Perpendicular, or </p><p>Neither </p><p>Graph each pair of lines. Use their slopes to determine whether they are </p><p>parallel, perpendicular, or neither. </p><p>WX and YZ for W(3, 1), X(3, 2), Y(2, 3), and Z(4, 3) </p><p>Example 9: Determining Whether Lines Are Parallel, Perpendicular, or </p><p>Neither </p><p>Graph each pair of lines. Use their slopes to determine whether they are </p><p>parallel, perpendicular, or neither. </p><p>KL and MN for K(4, 4), L(2, 3), M(3, 1), and N(5, 1) </p></li><li><p> 7 </p><p>Example 10: Determining Whether Lines Are Parallel, Perpendicular, or </p><p>Neither </p><p>Graph each pair of lines. Use their slopes to determine whether they are </p><p>parallel, perpendicular, or neither. </p><p>BC and DE for B(1, 1), C(3, 5), D(2, 6), and E(3, 4) </p><p>smilardo.wordpress.com - homework: worksheets: link to book and more </p><p>@MsMilardo </p></li></ul>