chapter 3: direct stiffness method

Upload: james-sonu

Post on 03-Apr-2018

243 views

Category:

Documents


2 download

TRANSCRIPT

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    1/30

    University of California, San Diego Department of Structural EngineeringSE 201 Fall 2004 Class Notes Instructor: J oel P. Conte

    1 1F ,

    2 2F ,

    3 3F ,

    i

    4 4F ,

    5 5F ,

    6 6F ,

    j

    1 1F ,

    2 2F ,

    3 3F ,

    i

    4 4F ,

    5 5F ,

    6 6F ,

    j

    2

    1

    3

    NOT90

    2

    1

    3

    NOT90

    3 DIRECT STIFFNESS METHOD APPLIED TO 2-D FRAME STRUCTURES

    3.1 GENERAL

    , :

    F

    = F k (3.1)

    Figure 3.1

    , : F

    = F k (3.2)

    Figure 3.2

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    2/30

    3-2

    4 4F ,

    5 5F ,

    6 6F ,

    j

    J

    1 1F ,

    2 2F ,

    3 3F ,

    i

    I

    4 4F ,

    5 5F ,

    6 6F ,

    j

    J

    4 4F ,

    5 5F ,

    6 6F ,

    j

    JJJ

    1 1F ,

    2 2F ,

    3 3F ,

    i

    I

    1 1F ,

    2 2F ,

    3 3F ,

    i

    II

    , :F = F k (3.3)

    Figure 3.3

    , :F

    = F k (3.4)

    Figure 3.4

    4 4F ,

    5 5F ,

    6 6F ,

    j

    2xd

    2yd

    J

    Y

    X

    E,G,A,

    As,I,L

    1 1F ,

    2 2F ,

    3 3F ,

    i

    1xd

    1yd

    I

    4 4F ,

    5 5F ,

    6 6F ,

    j

    2xd

    2yd

    J 4 4F ,

    5 5F ,

    6 6F ,

    j

    2xd

    2yd

    JJ

    Y

    X

    E,G,A,

    As,I,L

    1 1F ,

    2 2F ,

    3 3F ,

    i

    1xd

    1yd

    I

    Y

    X

    Y

    X

    E,G,A,

    As,I,L

    E,G,A,

    As,I,L

    E,G,A,

    As,I,L

    1 1F ,

    2 2F ,

    3 3F ,

    i

    1xd

    1yd

    I1 1F ,

    2 2F ,

    3 3F ,

    i

    1xd

    1yd

    II

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    3/30

    3-3

    3.1.1 Structure Stiffness Matrix: K

    Element a:

    Node I = node 1

    Node J = node 2

    (a ) (a) (a )x x (node J) x (node I) 8 = - =

    (a) (a ) (a )y y (node J) y (node I) 0 = - =

    ( ) ( )2 2

    (a) (a ) (a )L x y 8= + =

    (a )(a )

    (a )

    xcos 1

    L

    = =

    (a )(a )

    (a )

    ysin 0

    L

    = =

    Figure 3.5

    (a)EI

    = 25,000 k-inL

    (a )EA k

    = 3,750L in

    Element b:

    Node I = node 3

    Node J = node 2

    (b) (b) (b)x x (node J) x (node I) 8 = - =

    (b) (b) (b)y y (node J) y (node I) 0 = - =

    (b) 2 2L 8 6 10= + =

    (b )8 4

    cos 0.8010 5 = = =

    (b )6

    sin 0.6010

    = =

    (b)EI

    165,000 k-inL

    =

    ;

    (b)EA k

    4,200L in

    =

    Y

    X

    100 k

    8

    6

    1 2a

    b

    3

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    4/30

    3-4

    Member a:

    [ ]EI

    25,000 k-inL

    =

    [ ]2EI 25,000 8 12 2,400,000 k-in= =

    [ ]42,400,000

    I 82.759 in29,000

    = =

    EA k3,750

    L in

    =

    [ ]EA 3, 750 8 12 360, 000 k = =

    [ ]2360,000

    A 12.414 in29,000

    = =

    Member b:

    [ ]EI

    165,000 k-inL

    =

    [ ]2EI 165,000 10 12 19,800,000 k-in= =

    [ ]419,800,000

    I 682.759 in29,000

    = =

    EA k4,200

    L in

    =

    [ ]EA 4, 200 10 12 504, 000 k = =

    [ ]2504,000

    A 17.379 in29,000

    = =

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    5/30

    3-5

    1 2

    3

    1U

    2U

    3U

    4U

    5U

    6U

    7U

    8U

    9U

    a

    b

    11 22

    33

    1U

    2U

    3U

    4U

    5U

    6U

    7U

    8U

    9U

    a

    b

    3.1.2 Structure Degrees of Freedom Numbering:

    Node 2 : free node

    Node 1 and 3 : restrained nodes

    Figure 3.6

    Node displacements at free dofs: [ ]T

    f 1 2 3U U U=U

    Node displacements at restrained dofs: [ ]T

    d 4 5 6 7 8 9U U U U U U=U

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    6/30

    3-6

    a

    (a)

    2F

    (a)

    1F

    (a)

    3F

    (a)

    5F

    (a)

    6F

    (a)

    4F1

    6P

    5P

    7P

    (a)

    2F

    (a)

    1F

    (a)

    3F

    21

    P

    2P

    3P

    (a)

    5F(a)

    6F

    (a)

    4F

    (b)

    5F

    (b)

    6F

    (b)

    4F

    b

    (b)

    5F

    (b)

    6F

    (b)

    4F

    (b)

    2F

    (b)

    1F(b)

    3F

    37

    P

    9P

    8P (b)2F

    (b)

    1F(b)

    3F

    a

    (a)

    2F

    (a)

    1F

    (a)

    3F

    (a)

    5F

    (a)

    6F

    (a)

    4F11

    6P

    5P

    7P

    (a)

    2F

    (a)

    1F

    (a)

    3F

    221

    P

    2P

    3P

    (a)

    5F(a)

    6F

    (a)

    4F

    (b)

    5F

    (b)

    6F

    (b)

    4F

    b

    (b)

    5F

    (b)

    6F

    (b)

    4F

    (b)

    2F

    (b)

    1F(b)

    3F

    337

    P

    9P

    8P (b)2F

    (b)

    1F(b)

    3F

    3.1.3 Equilibrium Equations for Free DOFs only:

    [ ]T

    f 1 2 3P P P=P : Applied forces

    in free dofs( ) ( )

    1 4 4P F Fa b= + ( ) ( )

    2 5 5P F Fa b= +

    ( ) ( )

    3 6 6P F Fa b

    = +

    [ ]T

    d 4 5 6 7 8 9 10P P P P P P P=P :

    forces at dofs with known

    displacements (support reactions)

    Figure 3.7

    3.1.4 Direct Assembly/Formation of Equilibrium Matrix

    Equilibrium equations for free and restrained dofs:

    ( ) ( )

    1 4 4P F Fa b= + ( ) ( )

    2 5 5P F Fa b= +

    ( ) ( )

    3 6 6P F Fa b= +

    ( )

    4 1P Fa=

    ( )

    5 2P Fa= : Equilibrium between internal (Fs) and external (Ps) forces

    ( )

    6 3P Fa=

    ( )

    7 1P F b=

    ( )

    8 2P Fb=

    ( )

    9 3P Fb=

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    7/30

    3-7

    In matrix form:

    (3.5)

    Notes:

    ( )T( ) ( )f bf

    ee e= P A F ( )T( ) ( )d bdee e= P A F

    ( ) ( )

    f bf f

    e e= A U ( ) ( )( ) f de ee += ( ) ( )d bd de e= A U

    From element equilibrium, we can express the complete set of element end forces in the

    global reference system 1 2 3 4 5 6( , , , , , )F F F F F F in terms of the basic forces 1 2 3( , , )

    F F F as

    T T TREZ ROT RBM

    = F F

    RBM ROT REZ( ) =

    1

    ( )2

    1

    3

    2

    4f 3

    5d 4

    6

    5

    7

    6

    8

    9

    P 0 0 0 1 0 0 0 0 0 1 0 0P 0 0 0 0 1 0 0 0 0 0 1 0

    FP 0 0 0 0 0 1 0 0 0 0 0

    FP 1 0 0 0 0 0

    FP 0 1 0 0 0 0

    FP 0 0 1 0 0 0

    FP 0 0 0 0 0 0

    FP 0 0 0 0 0 0

    P 0 0 0 0 0 0

    a

    = = = +

    PP

    P

    ( )

    1

    2

    3

    4

    5

    6

    F1

    F0 0 0 0 0 0

    F0 0 0 0 0 0

    F0 0 0 0 0 0

    F1 0 0 0 0 0

    F0 1 0 0 0 0

    0 0 1 0 0 0

    b

    ( )T

    f

    a= A ( )Tfb= A

    ( )T

    d

    a= A ( )Tdb= A

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    8/30

    3-8

    HereREZ = I (identity matrix, since = )

    ROT

    x y0 0 0 0

    L L

    y

    x 0 0 0 0L L

    0 0 1 0 0 0

    x y0 0 0 0

    L L

    y x0 0 0 0

    L L

    0 0 0 0 0 1

    =

    RBM

    1 10 1 0 0

    L L

    1 10 0 0 1

    L L

    1 0 0 1 0 0

    =

    2 2

    2 2

    T T T TREZ ROT RBM

    2 2

    2 2

    y y x

    L L L

    x x y

    L L L

    1 0 0

    y y x

    L L L

    x x y

    L L L

    0 1 0

    = =

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    9/30

    3-9

    Thus,

    ( )f( )T ( )T

    d

    0 0 0 1 0 0 0 0 0 1 0 0

    0 0 0 0 1 0 0 0 0 0 1 0

    0 0 0 0 0 1 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0

    0 1 0 0 0 0 0 0 0 0 0 0

    0 0 1 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 1 0 0 0 0 0

    0 0 0 0 0 0 0 1 0 0 0 0

    0 0 0 0 0 0 0 0 1 0 0 0

    aa b

    = = +

    PP F

    P

    ( )bF

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    10/30

    3-10

    3.1.5 Direct Assembly/Formation of Compatibility Matrix

    Compatibility between node displacements in global reference system and element end

    displacements in global reference system:

    Figure 3.8

    (a) (b)

    1 4 4U = =

    2a

    b

    1

    3

    (a) (b)2 5 5U = =

    2a

    b

    1

    3

    (a) (b)3 6 6U = = 2

    a

    b

    3

    1

    (a) (b)3 6 6U = =

    (a) (b)2 5 5U = =

    (a) (b)1 4 4U = =

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    11/30

    3-11

    ( )

    1

    2

    1

    3( ) ( )( )f 2 bf f

    4

    35

    6

    0 0 0

    0 0 0U

    0 0 0U

    1 0 0U

    0 1 0

    0 0 1

    a

    a aa

    = = = =

    A U

    N

    ( )

    1

    2

    1

    3( ) ( )( )f 2 bf f

    4 Boolean displacement3 transformation matrix

    5

    6

    0 0 0

    0 0 0U

    0 0 0U

    1 0 0U

    0 1 0

    0 0 1

    b

    b bb

    = = = =

    A U

    Using element compatibility, we can related the element deformations 1 2 3( , , ) to the

    element end displacements in the global reference system 1 2 6( , , ... , ) :

    ( )( ) ( )

    aa a = ; ( ) ( ) ( )b b b =

    whereRBM ROT REZ REZ

    (here )= = I

    2 2 2 2

    2 2 2 2

    y x y x1 0

    L L L L

    y x y x0 1

    L L L L

    x y x y0 0

    L L L L

    =

    ( ) ( )( )f f

    a aa = A U

    ( )( )( )

    f f

    bbb = A U

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    12/30

    3-12

    Form

    ( )

    f f( )

    a

    b

    = =

    A U

    where

    ( )( )

    bff ( )( )

    bf

    :

    aa

    bb

    =

    AA

    Astructure compatibility matrix for free dofs

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    13/30

    3-13

    3.1.6 Direct Stiffness Implementation

    In the direct stiffness implementation of the displacement method, we proceed as follows:

    We realize that the equilibrium equations at the free dofs can be written as (see p. 3-9):

    ( ) ( )( )T ( )T( )T ( )Tf bf bf

    a ba ba b = + P A F A F

    We express the basic element forces F in terms of basic element deformations according to the force-deformation relation of element e:

    ( ) ( ) ( )e e e = F k

    Finally, the basic element deformations can be expressed in terms of the displacements at

    the free global dofs according to (see p. 3-11):

    ( )( )( )

    f f

    eee = A U

    In the absence of initial forces, we obtain

    ( ) ( ) ( ) ( )( )T ( )T( )T ( )T

    f bf bf

    a a b ba ba b = + P A k A k

    ( ) ( )( )T ( ) ( )T ( )( )T ( ) ( )T ( )

    f bf bf f bf bf f a b

    a a b ba a b b = + P A k A U A k A U

    We note that the product

    ( )( )T ( ) ( )

    aa a a = k k

    is the element stiffness matrix in the global reference system.

    After factoring out the displacements at the free global dofs, we obtain

    ( )T ( ) ( )T ( )( ) ( )f bf bf bf bf f

    a a b ba b = + P A k A A k A U

    We recognize in the square brackets the structure stiffness matrix for the free global dofs,

    and generalizing toNelelements, we have

    Nel( )T ( )( )

    ff bf bf

    1

    e ee

    e=

    = K A k A (3.6)

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    14/30

    3-14

    3.1.7 Direct Assembly of Structure Stiffness Matrix

    FromNel

    ( )T ( )( )ff bf bf

    1

    e ee

    e=

    = K A k A , we recognize that the structure stiffness matrix is derived

    from the summation of element stiffness contributions, as long as these are expressed first

    in the global reference system.

    We also recognize that the compatibility matrices ( )fe

    A are Boolean matrices of 1s and

    0s. The 1s lie at the rows and columns corresponding to the relation between local

    (element) and global (structure) dofs (each row and column thus contains at most one

    non-zero term). Consequently, multiplication by ( )fe

    A involves the positioning of the

    terms of the element stiffness matrix in the appropriate address of the structure stiffness

    matrix. Element contributions are summed up in the process. We illustrate this for

    element a in the example:

    which indicates that element dof 4 corresponds to global (structure) dof 1,

    element dof 5 to global dof 2, and element dof 6 to global dof 3. The

    other element dofs correspond to restrained global (structure) dofs.

    ID array for element a reads

    4 0

    5 06 0

    1 1

    2 2

    3 3

    ( )

    bf

    0 0 00 0 0

    0 0 0

    1 0 0

    0 1 0

    0 0 1

    a

    =

    A

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    15/30

    3-15

    K( , ) K( , ) khid id id id = +

    structure stiffness matrix element stiffness matrix

    K( , ) K( , ) khid id id id = +

    structure stiffness matrix element stiffness matrix

    Similarly, ID array for element b reads

    7 0

    8 0

    9 0

    1 1

    2 23 3

    The ID array of the element provides the scheme for the proper addressing of the element

    stiffness coefficients into the structure stiffness matrix as follows:

    Note: In Matlab (Fedeaslab), the redirection of the stiffness coefficients of a single element

    into the appropriate addresses of the structure stiffness matrix can be accomplished with

    vector indexing in a single command:

    11 12 13

    ff 21 22 23

    31 32 33

    K K K

    K K K

    K K K

    =

    K

    ID [ ]( ) ( ) ( ) ( ) ( ) ( )

    11 12 13 14 15 16

    ( ) ( ) ( ) ( ) ( ) ( )

    21 22 23 24 25 26

    ( ) ( ) ( ) ( ) ( ) ( )

    31 32 33 34 35 36( )( ) ( ) ( ) ( ) ( )

    41 42 43 44 45 46

    0 0 0 1 2 3

    0 k k k k k k

    0 k k k k k k

    0 k k k k k k

    1 k k k k k k

    2

    3

    a a a a a a

    a a a a a a

    a a a a a a

    aa a a a a

    =

    k( )

    ( ) ( ) ( ) ( ) ( ) ( )

    51 52 53 54 55 56

    ( ) ( ) ( ) ( ) ( ) ( )

    61 62 63 64 65 66

    k k k k k k

    k k k k k k

    a

    a a a a a a

    a a a a a a

    11 12 13

    ff 21 22 23

    31 32 33

    K K K

    K K K

    K K K

    =

    K

    ID [ ]( ) ( ) ( ) ( ) ( ) ( )

    11 12 13 14 15 16

    ( ) ( ) ( ) ( ) ( ) ( )

    21 22 23 24 25 26

    ( ) ( ) ( ) ( ) ( ) ( )

    31 32 33 34 35 36( )( ) ( ) ( ) ( ) ( )

    41 42 43 44 45 46

    0 0 0 1 2 3

    0 k k k k k k

    0 k k k k k k

    0 k k k k k k

    1 k k k k k k

    2

    3

    a a a a a a

    a a a a a a

    a a a a a a

    aa a a a a

    =

    k( )

    ( ) ( ) ( ) ( ) ( ) ( )

    51 52 53 54 55 56

    ( ) ( ) ( ) ( ) ( ) ( )

    61 62 63 64 65 66

    k k k k k k

    k k k k k k

    a

    a a a a a a

    a a a a a a

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    16/30

    3-16

    3.1.8 Direct Assembly of Resisting Force Vector

    Equilibrium equations (at the structure level):

    r f=P P : express static equilibrium between external forces and internal (resisting) forces.

    where r fResisting force vector in free global dof's=P U

    f fApplied (external) forces in free global dof's=P U

    ( )T ( )T( ) ( )r bf bf

    a ba b= + P A F A F

    Generalizing toNelelements in the model:

    Nel( )T ( )

    r bf

    1

    e e

    e=

    = P A F (3.7)

    It is important to recall that we have not yet included the initial end forces (fixed-end forces)

    due to temperature changes, shrinkage, lack-of-fit (unintentional deviations from the reference

    geometry), prestressing, etc. Well include these effects later.

    ( )

    ( ) ( )( ) T T T ( )T

    REZ ROT RBM

    e T

    e ee e

    =

    = =

    F F F

    From element force-deformation relation:

    ( ) ( ) ( )e e e = F k where ( ) ( )( ) ( ) ( ) f fe ee e e = = A U

    ( )( )( ) ( )T ( )

    f fe

    ee e e = F k A U

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    17/30

    3-17

    3.1.9 Implementation of Direct Assembly

    From the preceding discussion, it is apparent that it is possible to directly assemble the

    structure resisting force vector (and thus express the structure equilibrium equations) and the

    structure stiffness matrix. These two operations can be expressed in compact form as follows.

    Nel( )T ( )( )

    ff bf bf

    1

    e ee

    e=

    = K A k A : structure stiffness matrix (3.6)

    where( )

    ( ) T T TREZ ROT RBM RBM ROT REZ

    ee = k k

    ( )Te= ( )e=

    ( )( ) T T T

    REZ ROT RBM RBM ROT REZ

    ee = k k

    ( )Te= ( )e=

    Nel( )T ( )

    r bf

    1

    e e

    e=

    = P A F (3.7)

    where, for linear elastic material response,

    ( )( )( ) ( )T ( )

    f f

    ( )( )bf f

    eee e e

    ee

    =

    =

    F k A U

    k A U

    r ff f = P K U : Structure resisting force vector

    The structure equilibrium equations read: f r=P P

    3.1.10 Structure State Determination

    The process of determining the structure stiffness matrix ffK and the structure resisting force

    vector rP is called structure state determination. During this process, each element e in the

    model is called to supply its stiffness matrix ( )ek and resisting force vector ( )eF in global

    coordinates. This sub-process is known as element state determination.

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    18/30

    3-18

    Back to the example:

    Element a: units: k-in

    ( )

    REZ

    a = I (no rigid end-offsets)

    ( )

    ROT

    0 0 0 0 1 0 0 0 0 0

    - 0 0 0 0 0 1 0 0 0 0

    0 0 1 0 0 0 0 0 1 0 0 0

    0 0 0 0 0 0 0 1 0 0

    0 0 0 - 0 0 0 0 0 1 0

    0 0 0 0 0 1 0 0 0 0 0 1

    cos 1

    sin 0

    a

    c s

    s c

    c s

    s c

    c

    s

    = = =

    = =

    = =

    I

    RBM

    ( )

    ( )

    1 11 10 1 0 00 1 0 0

    96 96L L

    1 1 1 10 0 0 1 0 0 0 1

    L L 96 96

    1 0 0 1 0 0 1 0 0 1 0 0

    4 20

    100,000(k-in) 50,000(k-in) 02 4

    0 50,000(k-in) 100,000(k-in) 0

    0

    0 0

    a

    a

    EI EI

    L L

    EI EI

    L L

    EA

    L

    = =

    = =

    k

    0 3,750(k/in)

    8 ft 96 inL = =

    RBM

    ( )

    ( )

    1 11 10 1 0 00 1 0 0

    96 96L L

    1 1 1 10 0 0 1 0 0 0 1

    L L 96 96

    1 0 0 1 0 0 1 0 0 1 0 0

    4 20

    100,000(k-in) 50,000(k-in) 02 4

    0 50,000(k-in) 100,000(k-in) 0

    0

    0 0

    a

    a

    EI EI

    L L

    EI EI

    L L

    EA

    L

    = =

    = =

    k

    0 3,750(k/in)

    8 ft 96 inL = =

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    19/30

    3-19

    ( )( )T ( )T ( )T ( ) ( ) ( )( )REZ ROT RBM RBM ROT REZ

    aa a a a a aa = k k

    [ ]0 0 0 1 2 3

    0 3,750. 0 0 3,750. 0 0

    0 0 35.552 1,562.5 0 35.552 1,562.5

    0 0 1,562.5 100,000. 0 1,562.5 50,000.

    1 3,750. 0 0 3,750. 0 0

    2 0 32

    3

    =

    .552 1,562.5 0 32.552 1,562.5

    0 1,562.5 50,000. 0 1,562.5 100,000.

    11to K 22to K

    23to K

    ID array

    of element a [ ]0 0 0 1 2 3

    0 3,750. 0 0 3,750. 0 0

    0 0 35.552 1,562.5 0 35.552 1,562.5

    0 0 1,562.5 100,000. 0 1,562.5 50,000.

    1 3,750. 0 0 3,750. 0 0

    2 0 32

    3

    =

    .552 1,562.5 0 32.552 1,562.5

    0 1,562.5 50,000. 0 1,562.5 100,000.

    11to K 22to K

    23to K

    ID array

    of element a

    ID array:

    ( )

    1

    ( )

    2

    ( )

    3

    ( )

    4 1

    ( )

    5 2

    ( )

    6 3

    0

    0

    0

    U

    U

    U

    a

    a

    a

    a

    a

    a

    =

    =

    =

    =

    =

    =

    ( )

    1

    ( )

    2

    ( )

    3

    ( )

    4 1

    ( )

    5 2

    ( )

    6 3

    0

    0

    0

    U

    U

    U

    a

    a

    a

    a

    a

    a

    =

    =

    =

    =

    =

    =

    ID array of element a

    0

    0

    0

    1

    2

    3

    =

    Element b:

    ( )

    REZ

    b = I (no rigid end-offsets)

    ( )

    ROT

    0 0 0 0 0.8 0.6 0 0 0 0

    - 0 0 0 0 0.6 0.8 0 0 0 0

    0 0 1 0 0 0 0 0 1 0 0 0

    0 0 0 0 0 0 0 0.8 0.6 00 0 0 - 0 0 0 0 0.6 0.8 0

    0 0 0 0 0 1 0 0 0 0 0 1

    cos 0.80

    sin 0.60

    b

    c s

    s c

    c ss c

    c

    s

    = =

    = =

    = =

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    20/30

    3-20

    [ ]0 0 0 1 2 3

    0 2,737.5 1,950. 4,950. 2,737.5 1,950. 4,950.

    0 1,950. 1,600. 6,600. 1,950. 1,600. 6,600.

    0 4,950. 6,600. 660,

    1

    2

    3

    =

    000. 4,950. 6,600. 330,000.

    2,737.5 1,950. 4,950. 2,737.5 1,950. 4,950.

    1,950. 1,600. 6,600. 1,950. 1,600. 6,600.

    4,950. 6,600. 330,000. 4,950. 6,600. 660,000.

    11to K 22to K 23to K

    ID array

    of element b [ ]0 0 0 1 2 3

    0 2,737.5 1,950. 4,950. 2,737.5 1,950. 4,950.

    0 1,950. 1,600. 6,600. 1,950. 1,600. 6,600.

    0 4,950. 6,600. 660,

    1

    2

    3

    =

    000. 4,950. 6,600. 330,000.

    2,737.5 1,950. 4,950. 2,737.5 1,950. 4,950.

    1,950. 1,600. 6,600. 1,950. 1,600. 6,600.

    4,950. 6,600. 330,000. 4,950. 6,600. 660,000.

    11to K 22to K 23to K

    ID array

    of element b

    ( )bRBM

    ( )

    ( )

    1 11 10 1 0 00 1 0 0

    120 120L L

    1 1 1 10 0 0 1 0 0 0 1

    L L 120 120

    1 0 0 1 0 0 1 0 0 1 0 0

    4 20

    660, 000(k-in) 330, 000(k-in) 02 4

    0 330,000(k-in) 660,000(

    0 0

    b

    b

    EI EI

    L L

    EI EI

    L L

    EA

    L

    = =

    = =

    k k-in) 0

    0 0 4,200(k/in)

    10 ft 120 inL = =

    ( )bRBM

    ( )

    ( )

    1 11 10 1 0 00 1 0 0

    120 120L L

    1 1 1 10 0 0 1 0 0 0 1

    L L 120 120

    1 0 0 1 0 0 1 0 0 1 0 0

    4 20

    660, 000(k-in) 330, 000(k-in) 02 4

    0 330,000(k-in) 660,000(

    0 0

    b

    b

    EI EI

    L L

    EI EI

    L L

    EA

    L

    = =

    = =

    k k-in) 0

    0 0 4,200(k/in)

    10 ft 120 inL = =

    ( )( )T ( )T ( )T ( ) ( ) ( )( )REZ ROT RBM RBM ROT REZ

    bb b b b b bb = k k

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    21/30

    3-21

    Direct assembly of structure stiffness matrix:

    Nel=2( )T ( )( )

    ff bf bf

    1

    6,487.5 1,950. 4,950.

    1,950. 1,632.552 8,162.5

    4,950. 8,162.5 760, 000.

    e ee

    e=

    =

    =

    K A k A

    Equilibrium equations: f f f f =K U P

    1

    2

    3

    6, 487.5 1,950. 4,950. U 0

    1,950. 1,632.552 8,162.5 U 100

    4,950. 8,162.5 760,000. U 0

    =

    1

    2

    3

    1

    2

    3

    6, 487.5 1,950. 4,950. U 0

    1,950. 1,632.552 8,162.5 U 100

    4,950. 8,162.5 760,000. U 0

    =

    11

    22

    33

    Eq. 11 expresses the horizontal equilibrium of node 2 (free node 1).

    Eq. 22 expresses the vertical equilibrium of node 2 (free node 1).

    Eq. 33 expresses the rotational equilibrium of node 2 (free node 1).

    Solve equilibrium equations for fU (using Matlab)

    -1

    f ff f = U K P

    0.03361 in

    0.10831 in

    0.001382 rad

    =

    Check thatf ff f

    f

    -1

    P K U

    P

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    22/30

    3-22

    3.1.10.1 Element State Determination (more generally known as stress recovery phase in finiteelement analysis)

    Element a:

    ( )

    1

    2

    3

    0 0

    0 0

    0 0

    U 0.03361

    U 0.10831

    U 0.001382

    a

    = =

    ( ) ( ) ( ) ( ) ( )RBM ROT REZ

    0.0011282 rad

    0.00025394 rad

    0.033610 in

    a a a a a

    = =

    ( ) ( ) ( ) ( )

    100,000. 50,000. 0

    50,000. 100,000. 0

    0 0 3,750.

    a a a a

    = =

    F k

    ( )

    I

    ( )

    J

    ( )

    100.12 M (k-in)

    31.02 M (k-in)

    126. N (k)

    a

    a

    a

    =

    Element b:

    ( )

    1

    2

    3

    0 0

    0 00 0

    U 0.03361

    U 0.10831

    U 0.001382

    b

    = =

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    23/30

    3-23

    ( )( ) ( ) ( ) ( )RBM ROT REZ

    0.00089 rad

    0.000492 rad

    0.038098 in

    bb b b b

    = =

    ( ) ( ) ( ) ( )

    660,000. 330,000. 0

    330,000. 660,000. 0

    0 0 4,200.

    b b b b

    = =

    F k

    ( )

    I

    ( )

    J

    ( )

    425.1 M (k-in)

    31.02 M (k-in)

    160. N (k)

    b

    b

    b

    =

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    24/30

    3-24

    3.1.10.2 Check Nodal Equilibr ium and Determine Support Reactions

    Figure 3.9

    x

    4F 126 (160)

    5

    3(3.28) 0.032

    5

    0 (round-off error)

    = +

    = +

    x4

    F 126 (160)5

    3(3.28) 0.032

    5

    0 (round-off error)

    = +

    = +

    x

    4F 100 1.366 (3.28

    53

    (160) 0.015

    0 (round-off error)

    = + +

    + =

    x4

    F 100 1.366 (3.28

    53

    (160) 0.015

    0 (round-off error)

    = + +

    + =

    M 31.02 31.02

    0

    = +

    =

    2M 31.02 31.020

    = +

    =

    2M 31.02 31.020

    = +

    =

    22

    Equilibrium Check

    3

    425

    3.28

    3.28

    31.02

    31.02

    3.28

    ( )425 31.02

    3.28 =10 12

    16

    0

    160

    160

    10ft

    160

    3

    4

    5

    ( ) ( )4 3

    160 3.285 5

    126.03=

    425

    ( ) ( )3 4

    160 3.28 98.6245 5

    + =

    Support reactions

    at Node 3

    1001.366 31.02

    1262

    126

    1.366

    100.12 1.366

    126

    100.12

    1

    ( )100.12+31.02

    1.366 =8 12

    126

    100.12

    126

    31.02

    1.366

    8 ft

    Support reactions

    at Node 1

    425

    Units: k, in

    Equilibrium Check

    33

    425

    3.28

    3.28

    31.02

    31.02

    3.28

    ( )425 31.02

    3.28 =10 12

    16

    0

    160

    160

    10ft

    160

    3

    4

    5

    ( ) ( )4 3

    160 3.285 5

    126.03=

    425

    ( ) ( )3 4

    160 3.28 98.6245 5

    + =

    Support reactions

    at Node 3

    1001.366 31.02

    12622

    126

    1.366

    100.12 1.366

    126

    100.12

    11

    ( )100.12+31.02

    1.366 =8 12

    126

    100.12

    126

    31.02

    1.366

    8 ft

    Support reactions

    at Node 1

    425

    Units: k, in

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    25/30

    3-25

    a

    b

    126

    1.366

    100.12

    126.03

    98.624

    425

    100

    2

    3

    1a

    b

    126

    1.366

    100.12

    126.03

    98.624

    425

    100

    22

    33

    11xF 126 126.03 0.03 0 (round-off error)= + = + xF 126 126.03 0.03 0 (round-off error)= + = +

    yF 1.366 100 98.624 0.01 0 (round-off er= + = yF 1.366 100 98.624 0.01 0 (round-off er= + =

    M 100.12 126(6)(12) 425 100(8)(12)

    2.88 0 (round-off error)

    = + + =

    =

    2M 100.12 126(6)(12) 425 100(8)(12)2.88 0 (round-off error)

    = + + =

    =

    22

    425

    100.12

    31.02

    31.0

    2

    425

    100.12

    31.02

    31.0

    2100.12

    31.02

    31.0

    2

    3.1.10.3 Check Global Equilibrium

    Figure 3.10

    Draw internal forces (M,V, N) diagrams according to sign convention:

    Bending moment diagram M:

    Figure 3.11

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    26/30

    3-26

    1.371.373.28

    3.28

    1.371.373.28

    3.28

    2

    3

    1

    2

    inflection point

    100 k

    chord

    + 0.0011282 rad0.00025394 rad

    0.000492 rad

    0.00089 rad+

    22

    33

    11

    2

    inflection point

    100 k

    chord

    + 0.0011282 rad0.00025394 rad

    0.000492 rad

    0.00089 rad+

    Shear force diagram V:

    Figure 3.12

    Axial force diagram N:

    16

    0

    12612616

    0

    16

    0

    12612616

    0126126

    16

    0

    Figure 3.13

    Draw accurate sketch of deflected shape consistent with internal forces, especially bending

    moment diagram:

    Figure 3.14

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    27/30

    3-27

    166.67

    166.67 166.67

    ( )5

    1003

    =

    133.33

    (5.8% difference with frame results)

    133.334

    = (100)

    3

    100

    2

    (4% difference with frame results)

    3

    166.67

    133.33

    100

    133.331

    0

    166.67

    166.67 166.67

    ( )5

    1003

    =

    133.33

    (5.8% difference with frame results)

    133.334

    = (100)

    3

    100

    2

    100

    22

    (4% difference with frame results)

    33

    166.67

    133.33

    100

    133.3311

    0

    If the above structure were to resist as a truss:

    Figure 3.15

    Frame action is very modest in this structural system.

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    28/30

    3-28

    3.2 SLAVING

    Slaving is a particular case of elements with Rigid End Zones. In this case, the dofs of

    several nodes are slaved to those of a Master node. In other words, the displacements of

    several nodes are rigidly linked to those of a single Master node. The typical example is that

    of a rigid floor, where the displacements of the story columns are rigidly linked to those of therigid floor, represented by a Master node. In the figure below, the displacements at the top of

    column i,( ) [ ]

    Ti

    i i iu v = , depend on (are rigidly linked to) those of Master node M

    (typically taken as the center of stiffness or the center of mass of the floor),

    [ ]T

    M M M Mu v = .

    uM

    vM MMaster

    node

    Rigid floor (in- and

    out-of-plane)

    Axially

    rigid

    columns

    Single story shear building model

    uM

    vM MMaster

    node

    Rigid floor (in- and

    out-of-plane)

    Axially

    rigid

    columns

    uM

    vM MMaster

    node

    Rigid floor (in- and

    out-of-plane)

    Axially

    rigid

    columns

    Single story shear building model

    vMM

    x

    y

    uM

    ui

    vii

    i yi

    xi

    vMM

    x

    y

    uM

    ui

    vii

    i yi

    xi

    For node i, whose coordinates are (xi, yi):

    ( ) ( )

    1 0

    0 1

    0 0 1

    i

    i i

    REZ M i M

    y

    x

    = =

    Based on the properties of the transformation matrices:

    ( ) ( ) ( )T

    i i i

    M REZ= F F

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    29/30

    3-29

    where( )i

    F are the forces from the slab onto the top of column i and( )i

    F represent the forces at

    Master nodeM, which are in equilibrium with( )i

    F . Thus:

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( )

    ( )T T T

    iM

    i i i i i i i i i i

    REZ REZ REZ REZ M M M= = = =

    k

    F F k k k

    where( ) ( ) ( ) ( )

    Ti i i i

    REZ REZ= k k

    After assembly of all the column contributions to the equilibrium equations of the slab, we

    have:

    M M =K F

    where MF denote the external forces applied to Master nodeM, K is the stiffness of master

    nodeM(or of the one-story building structure shown in the figure above), and

    are thedisplacements of master nodeM.

    General Procedure (for one-story shear building model):

    (1) For each column element, find the element stiffness matrix in coordinates( )i

    and ,

    respectively:

    ( )ik ,

    ( ) ( ) ( ) ( )T

    i i i i

    REZ REZ= k k

    (2) Assemble the Master node stiffness matrix:

    ( )_ _

    1

    number of columnsi

    M M

    i

    k k=

    =

    (3) Find by solving:

    M M= F K

    (4) Find the top column displacements:

    ( ) ( )i iREZ M=

    (5) Find the top column forces:

    ( ) ( ) ( )i i i= F k

  • 7/28/2019 Chapter 3: Direct Stiffness Method

    30/30

    3-30

    General Case:

    The general case is that of a multi-story shear

    building model (rigid floors and inextensible

    columns), as shown below. Each floor has 3dofs.

    1

    2 3

    4

    5 6

    7

    8 9

    10

    11 12