chapter 3 chemistry electrochemistry

32
Electrochemistry is the study of production of electricity from energy released during spontaneous chemical reactions and the use of electrical energy to bring about non-spontaneous chemical transformations. The subject is of importance both for theoretical and practical considerations. A large number of metals, sodium hydroxide, chlorine, fluorine and many other chemicals are produced by electrochemical methods. Batteries and fuel cells convert chemical energy into electrical energy and are used on a large scale in various instruments and devices. The reactions carried out electrochemically can be energy efficient and less polluting. Therefore, study of electrochemistry is important for creating new technologies that are ecofriendly. The transmission of sensory signals through cells to brain and vice versa and communication between the cells are known to have electrochemical origin. Electrochemistry, is therefore, a very vast and interdisciplinary subject. In this Unit, we will cover only some of its important elementary aspects. After studying this Unit, you will be able to describe an electrochemical cell and differentiate between galvanic and electrolytic cells; apply Nernst equation for calculating the emf of galvanic cell and define standard potential of the cell; derive relation between standard potential of the cell, Gibbs energy of cell reaction and its equilibrium constant; define resistivity (ρ), conductivity (κ) and molar conductivity (m ) of ionic solutions; differentiate between ionic (electrolytic) and electronic conductivity; describe the method for measurement of conductivity of electrolytic solutions and calculation of their molar conductivity; justify the variation of conductivity and molar conductivity of solutions with change in their concentration and define ° m Λ (molar conductivity at zero concentration or infinite dilution); enunciate Kohlrausch law and learn its applications; understand quantitative aspects of electrolysis; describe the construction of some primary and secondary batteries and fuel cells; explain corrosion as an electrochemical process. Objectives Chemical reactions can be used to produce electrical energy, conversely, electrical energy can be used to carry out chemical reactions that do not proceed spontaneously. 3 Electr Electr Electr Electr Electrochemistr ochemistr ochemistr ochemistr ochemistry Unit Unit Unit Unit Unit 3 Electr Electr Electr Electr Electrochemistr ochemistr ochemistr ochemistr ochemistry

Upload: vikasbhati151

Post on 09-Jul-2016

271 views

Category:

Documents


1 download

DESCRIPTION

chemistry class 12 electrochemistry

TRANSCRIPT

Page 1: Chapter 3 Chemistry electrochemistry

E le c t r oc h e m is t r y is t h e s t u d y of p r od u c t ion ofelect r icity from en ergy r elea s ed d u r in g s p on ta n eou sch em ica l r ea ct ion s a n d th e u s e of elect r ica l en ergy tob r in g a b o u t n o n - s p o n t a n e o u s c h e m ic a lt r a n s form a t ion s . Th e s u b ject is of im p or ta n ce b othfor th eoret ica l a n d p ra ct ica l con s id era t ion s . A la rgen u m b e r of m e t a ls , s od iu m h yd r oxid e , c h lor in e ,flu or in e a n d m a n y oth er ch em ica ls a re p rod u ced b yelect r och em ica l m et h od s . Ba t t er ies a n d fu el cellscon ver t ch em ica l en ergy in to elect r ica l en ergy a n d a reu s ed on a la rge s ca le in va r iou s in s t ru m en ts a n dd evices . Th e r ea ct ion s ca r r ied ou t elect roch em ica llyca n b e en ergy efficien t a n d les s p ollu t in g. Th erefore,s tu dy of electroch em is try is im porta n t for crea t in g n ewtech n ologies th a t a re ecofr ien d ly. Th e t r a n s m is s ion ofs en s ory s ign a ls th rou gh cells to b ra in a n d vice ver s aa n d com m u n ica t ion b etween th e cells a r e k n own toh a ve e lec t r och em ica l or igin . E lec t r och em is t r y, isth erefore, a very va s t a n d in terd is cip lin a ry s u b ject . Inth is Un it , we will cover on ly s om e of it s im p or ta n telem en ta ry a s p ect s .

After s tu dyin g th is Un it , you will bea b le to• d es cr ib e a n e lec t r och em ica l ce ll

a n d d ifferen t ia te between ga lva n ica n d elect rolyt ic cells ;

• a p p ly Ne r n s t e q u a t io n fo rca lcu la t in g th e em f of ga lva n ic cella n d d efin e s t a n d a r d p ot en t ia l ofth e cell;

• d er ive r ela t ion b etween s t a n d a r dpoten t ia l of th e cell, Gibbs en ergyof cell rea ct ion a n d its equ ilib r iu mcon s t a n t ;

• d efin e r es is t ivity (ρ), con d u ct ivity(κ) a n d m ola r con d u ct ivity (m) ofion ic s olu t ion s ;

• d iffe r e n t ia t e b e t w e e n io n ic(e le c t r o ly t ic ) a n d e le c t r o n iccon d u ct ivit y;

• d e s c r ib e t h e m e t h o d fo rm ea s u r em en t of con d u c t ivit y ofe le c t r o ly t ic s o lu t io n s a n dc a lc u la t io n o f t h e ir m o la rcon d u ct ivit y;

• ju s t i fy t h e va r ia t io n o fc o n d u c t ivi t y a n d m o la rc o n d u c t ivi t y o f s o lu t io n s w it hch a n ge in th eir con cen tra t ion a n dd efin e °mΛ (m ola r con d u ct ivity a tze r o c o n c e n t r a t io n o r in fin i t ed ilu t ion );

• e n u n c ia t e Koh lr a u s c h la w a n dlea rn it s a p p lica t ion s ;

• u n d er s t a n d qu a n t it a t ive a s p ect sof elect rolys is ;

• des cr ibe th e con s tru ct ion of s om ep r im a r y a n d s econ d a r y b a t t er iesa n d fu el cells ;

• e x p la in c o r r o s io n a s a nelect r och em ica l p r oces s .

Objectives

Ch em ica l rea ction s ca n be u s ed to prod u ce e lectrica l en ergy ,convers ely , e lectrica l energy can be us ed to carry ou t chem ica lreactions tha t d o not proceed s pon taneous ly .

3ElectrElectrElectrElectrElectrochemistrochemistrochemistrochemistrochemistryyyyy

UnitUnitUnitUnitUnit

3ElectrElectrElectrElectrElectrochemistrochemistrochemistrochemistrochemistryyyyy

Page 2: Chapter 3 Chemistry electrochemistry

6 4Ch em is t r y

In Cla s s XI, Un it 8 , we h a d s tu d ied th e con s tru ction a n d fu n ction in gof Danie ll ce ll (Fig. 3 .1). Th is cell con verts th e ch em ica l en ergy libera teddu rin g th e redox rea ction

Zn (s ) + Cu 2+(a q) → Zn 2+(a q) + Cu (s ) (3 .1 )t o e lec t r ica l en er gy a n d h a s a n

electr ica l poten tia l equ a l to 1 .1 V wh encon cen tra t ion of Zn 2+ an d Cu 2+ ion s isu n ity ( 1 m ol dm –3)*. Su ch a device isca lled a galvanic or a voltaic cell.

If an extern a l oppos ite poten tia l isapplied [Fig. 3 .2(a )] an d in creased s lowly,we fin d th at th e reaction con tin u es to takeplace till th e opposin g voltage reach es th evalu e 1.1 V [Fig. 3.2(b)] wh en , th e reactions tops a ltogeth er an d n o cu rren t flowsth rou gh th e cell. An y fu rth er in crease inth e extern a l poten tia l aga in s ta rts th ereaction bu t in th e opposite direction [Fig.3.2(c)]. It n ow fu n ction s as an electrolyticce ll, a device for u s in g electrica l en ergyt o ca r r y n on -s p on t a n eou s ch em ica lreaction s . Both types of cells a re qu iteim portan t an d we sh a ll s tu dy som e ofth eir s a lien t fea tu res in th e followin gpages .

*S trictly s peak ing activ ity s hou ld be u s ed in s tead of concen tra tion . It is d irectly proportiona l to concen tra tion . In d ilu tes olu tions , it is equal to concentra tion . You w ill s tud y m ore about it in h igher clas s es .

3. 1 ElectrochemicalCells

Fig . 3 .1 : Daniell cell having electrod es of z inc andcop p e r d ip p in g in th e s olu t ion s of th e irres pective s a lts .

Page 3: Chapter 3 Chemistry electrochemistry

6 5 E lect r och em is t r y

As m en t ion ed ea r lie r (Cla s s XI, Un it 8 ) a ga lva n ic ce ll is a nelectroch em ica l cell th a t con verts th e ch em ica l en ergy of a spon tan eou sredox rea ct ion in to electr ica l en ergy. In th is device th e Gibbs en ergy ofth e spon ta n eou s redox rea ct ion is con verted in to electr ica l work wh ichm ay be u sed for ru n n in g a m otor or oth er electr ica l gadgets like h ea ter,fa n , geyser, etc.

Da n iell cell d is cu s sed ea r lier is on e su ch cell in wh ich th e followin gredox rea ction occu rs .

Zn (s ) + Cu 2+(a q) → Zn 2+ (a q) + Cu (s )Th is rea ct ion is a com bin a tion of two h a lf rea ct ion s wh ose a dd it ion

gives th e overa ll cell rea ct ion :(i) Cu 2+ + 2e– → Cu (s ) (redu ction h a lf rea ct ion ) (3 .2 )

(ii) Zn (s ) → Zn 2+ + 2e– (oxida tion h a lf rea ct ion ) (3 .3 )Th ese rea ct ion s occu r in two d ifferen t port ion s of th e Da n iell cell.

Th e redu ction h a lf rea ct ion occu rs on th e copper electrode wh ile th eoxida tion h a lf rea ction occu rs on th e zin c electrode. Th ese two port ion sof th e cell a re a lso ca lled half-c e lls or re dox c ouple s . Th e copperelectrode m a y be ca lled th e redu ction h a lf cell a n d th e zin c electrode,th e oxida tion h a lf-cell.

We can con stru ct in n u m erable n u m ber of ga lvan ic cells on th e patternof Da n iell cell by ta k in g com bin a tion s of d ifferen t h a lf-cells . Ea ch h a lf-cell con s is ts of a m eta llic electrode d ipped in to a n electrolyte. Th e twoh a lf-cells a re con n ected by a m eta llic wire th rou gh a voltm eter a n d aswitch extern a lly. Th e electrolytes of th e two h a lf-cells a re con n ectedin tern a lly th rou gh a s a lt b r idge a s sh own in Fig. 3 .1 . Som etim es , bothth e electrodes d ip in th e sa m e electrolyte solu tion a n d in su ch ca ses wedon ’t requ ire a s a lt b r idge.

Fig . 3 .2 : Fu n ction in g of Da n iell ce ll w h en extern a l volta ge Eext oppos in g th ecell poten tia l is applied .

3.2 Galvanic Cells

Page 4: Chapter 3 Chemistry electrochemistry

6 6Ch em is t r y

At ea ch electrode-electrolyte in terfa ce th ere is a ten den cy of m eta lion s from th e solu t ion to depos it on th e m eta l electrode tryin g to m a keit pos it ively ch a rged . At th e s a m e t im e, m eta l a tom s of th e electrodeh a ve a ten den cy to go in to th e solu t ion a s ion s a n d lea ve beh in d th eelectron s a t th e electrode tryin g to m a ke it n ega tively ch a rged . Atequ ilibriu m , th ere is a sepa ra tion of ch a rges an d depen din g on th eten den cies of th e two oppos in g reaction s , th e electrode m ay be pos itivelyor n ega tively ch a rged with respect to th e solu tion . A poten tia l d ifferen cedevelops between th e electrode a n d th e electrolyte wh ich is ca llede lec trode potent ial. Wh en th e con cen tra tion s of a ll th e species in volvedin a h a lf-cell is u n ity th en th e electrode poten tia l is kn own a s s tandarde le c t ro de po t e n t ia l . Accor d in g t o IUPAC con ven t ion , s t a n d a r dredu ct ion poten t ia ls a re n ow ca lled s ta n da rd electrode poten t ia ls . In aga lvan ic cell, th e h a lf-cell in wh ich oxida tion takes p lace is ca lled anodea n d it h a s a n ega tive poten tia l with respect to th e solu t ion . Th e oth erh a lf-cell in wh ich redu ction ta kes p la ce is ca lled c athode a n d it h a s apositive poten tia l with respect to th e solu tion . Thu s, there exists a poten tiald ifferen ce between th e two electrodes an d as soon as th e switch is in th eon position th e electron s flow from n ega tive electrode to pos itive electrode.Th e d irect ion of cu rren t flow is oppos ite to th a t of electron flow.

Th e poten tia l d ifferen ce between th e two electrodes of a ga lva n ic cellis ca lled th e cell poten tia l a n d is m ea s u red in volts . Th e cell poten tia lis th e d ifferen ce between th e electrode poten t ia ls (redu ct ion poten t ia ls )of th e ca th ode a n d a n ode. It is ca lled th e cell electrom otive force (em f)of th e cell wh en n o cu rren t is d ra wn th rou gh th e cell. It is n ow anaccepted con ven tion th a t we keep th e a n ode on th e left a n d th e ca th odeon th e r igh t wh ile rep res en t in g th e ga lvan ic cell. A ga lva n ic cell isgen era lly rep res en ted by pu t t in g a ver t ica l lin e between m eta l a n delectrolyte s olu t ion a n d pu t t in g a dou b le ver t ica l lin e between th e twoelectrolytes con n ected by a s a lt b r idge. Un der th is con ven tion th e em fof th e cell is pos it ive an d is given by th e poten tia l of th e h a lf-cell on th er igh t h a n d s ide m in u s th e poten tia l of th e h a lf-cell on th e left h an d s idei.e.

Ecell = Er igh t – E leftTh is is illu s tra ted by th e followin g exa m ple:Cell rea ction :Cu (s ) + 2Ag+(a q) ⎯→ Cu 2+(a q) + 2 Ag(s ) (3 .4 )Ha lf-cell rea ction s :Ca th ode (red uction ): 2Ag+(a q) + 2e– → 2Ag(s ) (3 .5 )An ode (oxid ation ): Cu (s ) → Cu 2+(a q) + 2e– (3 .6 )It can be seen th a t th e su m of (3 .5) an d (3 .6) leads to overa ll reaction

(3 .4) in th e cell an d th a t s ilver electrode acts a s a ca th ode an d copperelectrode acts a s an an ode. Th e cell can be represen ted a s :

Cu (s )| Cu 2+(a q)|| Ag+(a q)| Ag(s )a n d we h a ve Ecell = Er igh t – E left = EAg+⎥Ag – ECu 2+⎥Cu (3 .7 )

Th e poten tia l of in dividu al h a lf-cell can n ot be m easu red. We can m easu reon ly th e differen ce between th e two h a lf-cell poten tia ls th a t gives th e em fof th e cell. If we a rb it ra r ily ch oos e th e poten t ia l of on e electrode (h a lf-

3 .2 .1 Me as ure m e ntof Ele c trodePote nt ial

Page 5: Chapter 3 Chemistry electrochemistry

6 7 E lect r och em is t r y

cell) th en th a t of th e oth er ca n be determ in ed with res pect to th is .Accord in g to con ven tion , a h a lf-cell ca lled s ta n da rd h ydrogen electrode(Fig.3 .3 ) repres en ted by Pt(s )⎥ H2(g)⎥ H+(a q), is a s s ign ed a zero poten t ia la t a ll tem pera tu res corres pon d in g to th e rea ct ion

H+ (a q) + e– → 12 H2(g)

Th e s ta n da rd h ydrogen electrode con s is ts of a p la t in u m electrodecoa ted with p la t in u m b la ck . Th e electrode is d ipped in a n a cid ics olu t ion a n d p u r e h yd r ogen ga s is b u b b led t h r ou gh it . Th econ cen tra t ion of both th e redu ced a n d oxid is ed form s of h ydrogen ism a in ta in ed a t u n ity (Fig. 3 .3 ). Th is im pliesth a t th e p res s u re of h ydrogen ga s is on eba r a n d th e con cen tra t ion of h ydrogen ionin th e s olu t ion is on e m ola r.

At 298 K th e em f of th e cell, s ta n da rdh yd r oge n e le c t r od e ⎜⎜s e c on d h a lf- c e llcon s tru cted by ta k in g s ta n da rd h ydrogenelectrode a s a n ode (referen ce h a lf-cell) a n dth e oth er h a lf-cell a s ca th ode, gives th eredu ct ion poten t ia l of th e oth er h a lf-cell. Ifth e con cen tra t ion s of th e oxid is ed a n d th eredu ced form s of th e s pecies in th e r igh th a n d h a lf-cell a r e u n it y, t h en t h e cellp oten t ia l is equ a l to s ta n d a rd elect rod epoten t ia l,E!

R of th e given h a lf-cell.E! = E!

R - E!

LAs E!

L for s ta n da rd h ydrogen electrodeis zero.

E! = E!

R – 0 = E!

RTh e m ea s u red em f of th e cell :Pt(s ) ⎥ H2(g, 1 ba r) ⎥ H+ (a q, 1 M) ⎜⎜ Cu 2+ (a q, 1 M)⎥ Cuis 0 .34 V an d it is a lso th e va lu e for th e s tan da rd electrode poten tia l

of th e h a lf-cell corres pon d in g to th e rea ct ion :Cu 2+ (a q, 1M) + 2 e– → Cu (s )Sim ila r ly, th e m ea s u red em f of th e cell :Pt(s ) ⎥ H2(g, 1 ba r) ⎥ H+ (a q, 1 M) ⎜⎜ Zn 2+ (a q, 1M) ⎜ Znis -0 .76 V corres pon d in g to th e s ta n da rd electrode poten t ia l of th e

h a lf-cell rea ct ion :Zn 2+ (a q, 1 M) + 2e– → Zn (s )Th e pos it ive va lu e of th e s ta n da rd electrode poten t ia l in th e firs t

ca s e in d ica tes th a t Cu 2+ ion s get redu ced m ore ea s ily th a n H+ ion s .Th e reverse process can n ot occu r, th a t is , h ydrogen ion s can n ot oxidiseCu (or a ltern a t ively we ca n s a y th a t h ydrogen ga s ca n redu ce copperion ) u n der th e s ta n da rd con d it ion s des cr ibed a bove. Th u s , Cu doesn ot d is s olve in HCl. In n it r ic a cid it is oxid is ed by n it ra te ion a n d n otby h ydrogen ion . Th e n ega tive va lu e of th e s tan da rd electrode poten tia lin th e s econ d ca s e in d ica tes th a t h ydrogen ion s ca n oxid is e zin c (orzin c ca n redu ce h ydrogen ion s ).

Fig . 3 .3 : S tand ard Hy d rogen Electrod e (S HE).

Page 6: Chapter 3 Chemistry electrochemistry

6 8Ch em is t r y

In view of th is con ven t ion , th e h a lf r ea ct ion for th e Da n iell cell inFig. 3 .1 ca n b e wr it ten a s :

Left electrode : Zn (s ) → Zn 2+ (a q, 1 M) + 2 e–

Righ t electrode: Cu 2+ (a q, 1 M) + 2 e– → Cu (s )Th e overa ll rea ct ion of th e cell is th e s u m of a bove two rea ct ion s

a n d we ob ta in th e equ a t ion :Zn (s ) + Cu 2+ (a q) → Zn 2+ (a q) + Cu (s )

Em f of th e cell = 0cellE = E0

R - E0L

= 0 .34V – (– 0 .76)V = 1 .10 VSom etim es m eta ls like p la tin u m or gold a re u sed a s in ert electrodes .

Th ey do n ot pa r t icipa te in th e rea ct ion bu t p rovide th eir su rfa ce foroxida tion or redu ction rea ct ion s a n d for th e con du ction of electron s .For exa m ple, Pt is u sed in th e followin g h a lf-cells :Hydrogen electrode: Pt(s )| H2(g)| H+(a q)

With h a lf-cell rea ct ion : H+ (a q)+ e– → ½ H2(g)Brom in e electrode: Pt(s )| Br2(a q)| Br –(a q)With h a lf-cell rea ct ion : ½ Br2(a q) + e– → Br –(a q)Th e s ta n d a rd elect rod e p oten t ia ls a re very im p or ta n t a n d we ca n

ext ra ct a lot of u s efu l in form a t ion from th em . Th e va lu es of s ta n d a rdelect rode poten t ia ls for s om e s elected h a lf-cell redu ct ion rea ct ion s a regiven in Ta b le 3 .1 . If th e s ta n d a rd elect rod e p oten t ia l of a n electrodeis grea ter th a n zero th en it s red u ced form is m ore s ta b le com p a red toh ydrogen ga s . Sim ila r ly, if th e s ta n da rd electrode poten t ia l is n ega t iveth en h ydrogen ga s is m ore s ta b le th a n th e redu ced form of th e species .It ca n b e s een th a t th e s ta n d a rd elect rod e p oten t ia l for flu or in e is th eh igh es t in th e Ta b le in d ica t in g th a t flu orin e ga s (F2) h a s th e m axim u mten den cy to get redu ced to flu or ide ion s (F–) a n d th erefore flu or in e ga sis th e s tron ges t oxid is in g a gen t a n d flu oride ion is th e weakes t redu cin gagen t. Lith iu m h as th e lowes t electrode poten tia l in dica tin g th a t lith iu mion is th e wea kes t oxid is in g a gen t wh ile lith iu m m eta l is th e m os tp owerfu l red u cin g a gen t in a n a qu eou s s olu t ion . It m a y b e s een th a ta s we go from top to b ot tom in Ta b le 3 .1 th e s ta n d a rd elect rod ep oten t ia l d ecrea s es a n d with th is , d ecrea s es th e oxid is in g p ower ofth e s pecies on th e left a n d in crea s es th e redu cin g power of th e s pecieson th e r igh t h a n d s id e of th e rea ct ion . E lect roch em ica l cells a reexten s ively u s ed for d et er m in in g th e p H of s olu t ion s , s olu b ilit yp rodu ct , equ ilib r iu m con s ta n t a n d oth er th erm odyn a m ic p roper t iesa n d for p oten t iom etr ic t it r a t ion s .

Intext Questions

3 .1 How wou ld you determ in e th e s tan da rd electrode poten tia l of th e sys tem Mg2+| Mg?3 .2 Ca n you s tore copper s u lph a te s olu t ion s in a zin c pot?3 .3 Con s u lt th e ta b le of s ta n da rd electrode poten t ia ls a n d s u gges t th ree s u bs ta n ces

th a t ca n oxid is e fer rou s ion s u n der s u ita b le con d it ion s .

Page 7: Chapter 3 Chemistry electrochemistry

6 9 E lect r och em is t r y

F2(g) + 2e– → 2F– 2 .8 7Co3+ + e– → Co2+ 1 .8 1H2O2 + 2H+ + 2e– → 2H2O 1 .7 8Mn O4

– + 8H+ + 5e– → Mn 2+ + 4H2O 1 .5 1Au 3+ + 3e– → Au (s ) 1 .4 0Cl2(g) + 2e– → 2Cl– 1 .3 6Cr 2O7

2– + 14H+ + 6e– → 2Cr 3+ + 7H2O 1 .3 3O2(g) + 4H+ + 4e– → 2H2O 1 .2 3Mn O2(s ) + 4H+ + 2e– → Mn 2+ + 2H2O 1 .2 3Br 2 + 2e– → 2Br – 1 .0 9NO3

– + 4H+ + 3e– → NO(g) + 2H2O 0 .9 72Hg2+ + 2e– → Hg2

2+ 0 .9 2Ag+ + e– → Ag(s ) 0 .8 0Fe3+ + e– → Fe2+ 0 .7 7O2(g) + 2H+ + 2e– → H2O2 0 .6 8I2 + 2e– → 2 I– 0 .5 4Cu + + e– → Cu (s ) 0 .5 2Cu 2+ + 2e– → Cu (s ) 0 .3 4AgCl(s ) + e– → Ag(s ) + Cl– 0 .2 2AgBr(s ) + e– → Ag(s ) + Br – 0 .1 02 H+ + 2 e – → H2(g) 0 . 0 0Pb 2+ + 2e– → Pb(s ) –0 .1 3Sn 2+ + 2e– → Sn (s ) –0 .1 4Ni2+ + 2e– → Ni(s ) –0 .2 5Fe2+ + 2e– → Fe(s ) –0 .4 4Cr 3+ + 3e– → Cr (s ) –0 .7 4Zn 2+ + 2e– → Zn (s ) –0 .7 6

2H2O + 2e– → H2(g) + 2OH–(a q) –0 .8 3Al3+ + 3e– → Al(s ) –1 .6 6

Mg2+ + 2e– → Mg(s ) –2 .3 6Na + + e– → Na (s ) –2 .7 1Ca 2+ + 2e– → Ca (s ) –2 .8 7K+ + e– → K(s ) –2 .9 3Li+ + e– → Li(s ) –3 .0 5

Table 3 .1 The s tandard e le c trode pote nt ials at 2 9 8 K

Ion s a re p resen t a s a qu eou s species a n d H2O a s liqu id ; ga ses a n d solids a re sh own by g a n d s .

Re ac t ion (Oxidise d form + ne – →→→→→ Re duc e d form ) E⊖/ V

Inc

reas

ing

stre

ngth

of

oxid

isin

g ag

ent

Inc

reas

ing

stre

ngth

of

redu

cing

age

nt

1 . A n ega tive E⊖ m ea n s th a t th e redox cou ple is a s tron ger redu cin g a gen t th a n th e H+/ H2 cou ple.2 . A pos it ive E⊖ m ea n s th a t th e redox cou ple is a wea ker redu cin g a gen t th a n th e H+/ H2 cou ple.

Page 8: Chapter 3 Chemistry electrochemistry

7 0Ch em is t r y

We h a ve a s s u m ed in th e p reviou s s ect ion th a t th e con cen tra t ion of a llth e s pecies in volved in th e electrode rea ct ion is u n ity. Th is n eed n ot bea lwa ys t ru e. Nern s t s h owed th a t for th e electrode rea ct ion :

Mn +(a q) + n e–→ M(s )th e electrode poten tia l a t an y con cen tra tion m easu red with respect to

s tan da rd h ydrogen electrode can be represen ted by:

( ) ( )n nM / M M / ME E+ += V

– RTnF

ln [M][M ]n +

bu t con cen tra t ion of solid M is ta ken a s u n ity a n d we h a ve

( ) ( )n nM / M M / ME E+ += V

– RTnF ln n +

1[M ] (3 .8 )

( )nM / ME +

V

h a s a lr ea d y b een d efin ed , R is ga s con s ta n t (8 .3 1 4

J K–1 m ol–1), F is Fa ra da y con s ta n t (96487 C m ol–1), T is tem pera tu re inkelvin a n d [Mn +] is th e con cen tra t ion of th e species , Mn +.

In Dan iell cell, th e electrode poten tia l for an y given con cen tra tion ofCu 2+ an d Zn 2+ ion s , we write

For Ca th ode:

( )2Cu / CuE + = ( )2Cu / Cu

E +V

– RTF2

ln ( )2

1Cu a q+⎡ ⎤⎣ ⎦

(3 .9 )

For An ode:

( )2Zn / ZnE + = ( )2Zn / Zn

E +V

– RTF2 ln ( )2

1Zn a q+⎡ ⎤⎣ ⎦

(3 .10 )

Th e cell poten tia l, E(cell) = ( )2Cu / CuE + – ( )2Zn / Zn

E +

= ( )2Cu / CuE +

V

– RTF2 ln 2 +

1Cu (a q)⎡ ⎤⎣ ⎦

- ( )2Zn / ZnE +

V

+ RTF2 ln 2 +

1Zn (a q)⎡ ⎤⎣ ⎦

= ( )2Cu / CuE +

V

– ( )2Zn / ZnE +

V

– RTF2 ( ) ( )2 + 2 +

1 1ln – lnCu a q Zn a q⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

E(cell) = ( )cellE V – RTF2 ln

[ ]+[ ]

2Zn2Cu

+(3 .11 )

It ca n be s een th a t E(cell) depen ds on th e con cen tra t ion of both Cu 2+

a n d Zn 2+ ion s . It in crea ses with in crea se in th e con cen tra t ion of Cu 2+

ion s a n d decrea se in th e con cen tra t ion of Zn 2+ ion s .By con vertin g th e n a tu ra l loga rith m in Eq. (3 .11) to th e ba se 10 an d

su bs t itu t in g th e va lu es of R, F a n d T = 298 K, it redu ces to

E(cell) = ( )cellE V –0 059

2

2

2. [ ]

[ ]log Zn

Cu

+

+ (3 .12 )

We sh ou ld u se th e s a m e n u m ber of electron s (n ) for both th eelectrodes a n d th u s for th e followin g cell

3 .3 NernstEquation

Page 9: Chapter 3 Chemistry electrochemistry

7 1 E lect r och em is t r y

Ni(s )⎥ Ni2+(a q) ⎥⎥ Ag+(a q)⎥ AgTh e cell rea ct ion is Ni(s ) + 2Ag+(a q) →Ni2+(a q) + 2Ag(s )Th e Nern s t equ a tion ca n be writ ten a s

E(cell) = ( )cellE V – RTF2 ln [Ni ]

[Ag ]

2+

2+

a n d for a gen era l electroch em ica l rea ct ion of th e type:

a A + bB n e⎯ →⎯⎯ cC + dDNern s t equ a tion ca n be writ ten a s :

E(cell)= ( )cellE V – RTnF 1n Q

= ( )cellE V – RTnF ln [C] [D]

[A] [B]

c d

a b (3 .13 )

If th e circu it in Da n iell cell (Fig. 3 .1 ) is closed th en we n ote th a t th ereaction

Zn (s ) + Cu 2+(a q) → Zn 2+(a q) + Cu (s ) (3 .1 )ta k es p la ce a n d a s t im e p a s s es , th e con cen t r a t ion of Zn 2+ k eep s

on in crea s in g wh ile th e con cen t r a t ion of Cu 2+ k eep s on d ecrea s in g.At th e s a m e t im e volta ge of th e cell a s r ea d on th e voltm eter k eep son d ecrea s in g. After s om e t im e, we s h a ll n ote th a t th ere is n o ch a n gein th e con cen t r a t ion of Cu 2+ a n d Zn 2+ ion s a n d a t th e s a m e t im e,voltm eter gives zero rea d in g. Th is in d ica tes th a t equ ilib r iu m h a s beena t t a in ed . In th is s itu a t ion th e Nern s t equ a t ion m a y b e wr it t en a s :

E(cell) = 0 = ( )cellE V – 2 .303

2log [Zn ]

[Cu ]

2

2RT

F

+

+

or ( )cellE V = 2

22 .3 0 3 [Zn ]log

2 [Cu ]R T

F

+

+

Bu t a t equ ilib r iu m ,

3 .3 .1 EquilibriumCons tantfrom Ne rns tEquat ion

Example 3.1Represen t th e cell in wh ich th e followin g rea ct ion ta kes p la ceMg(s ) + 2Ag+(0 .0001M) → Mg2+(0 .130M) + 2Ag(s )

Ca lcu la te its E(cell) if ( )cellE V = 3 .17 V.

Th e cell ca n be writ ten a s Mg⎥Mg2+(0 .130M)⎥⎥Ag+(0 .0001M)⎥Ag

( ) ( )

2

cell cell 2

MgRT– ln2F Ag

E E+

+

⎡ ⎤⎣ ⎦=⎡ ⎤⎣ ⎦

V

= 3 .17 V – 0 059

2 0 0001 2. log

( . )V 0 .130

= 3 .17 V – 0 .21V = 2 .96 V.

Solution

Page 10: Chapter 3 Chemistry electrochemistry

7 2Ch em is t r y

[ ][ ]ZnCu

2

2

+

+ = Kc for th e rea ct ion 3 .1

a n d a t T = 298K th e a bove equ a tion ca n be writ ten a s

( )cellE V =0 059

2. V

log KC = 1 .1 V ( ( )cellE V = 1 .1V)

log KC = (1 .1 V × 2 ) 37 .28 80 .05 9 V

=

KC = 2 × 10 37 a t 298K.In gen era l,

( )cellE V = 2 .303 RTnF

log KC (3 .14 )

Th u s , Eq. (3 .14) gives a rela t ion sh ip between equ ilib r iu m con s ta n tof th e rea ct ion a n d s ta n da rd poten tia l of th e cell in wh ich th a t rea ct ionta kes p la ce. Th u s , equ ilib r iu m con s ta n ts of th e rea ct ion , d ifficu lt tom ea su re oth erwise, ca n be ca lcu la ted from th e correspon din g E⊖ va lu eof th e cell.

Electr ica l work don e in on e s econ d is equ a l to electr ica l poten t ia lm u lt ip lied by tota l ch a rge pa s s ed . If we wa n t to ob ta in m a xim u mwork from a ga lva n ic cell th en ch a rge h a s to be pa s s ed revers ib ly. Th erevers ib le work don e by a ga lva n ic cell is equ a l to decrea se in its Gibbsen ergy a n d th erefore, if th e em f of th e cell is E a n d nF is th e a m ou n tof ch a rge pa s s ed a n d ∆rG is th e Gibbs en ergy of th e rea ct ion , th en

∆rG = – nFE (cell) (3 .15 )It m a y be rem em bered th a t E(cell) is a n in ten s ive pa ra m eter bu t

∆rG is a n exten s ive th erm odyn a m ic property a n d th e va lu e depen ds onn . Th u s , if we write th e rea ct ion

Zn (s ) + Cu 2+(a q) ⎯→ Zn 2+(a q) + Cu (s ) (3 .1 )∆rG = -2FE (cell)bu t wh en we write th e rea ct ion2 Zn (s) + 2 Cu 2+(aq) ⎯→2 Zn 2+(a q)+2 Cu (s )

3 .3 .2 Ele c tro-c h e m ic alCe ll andGibbsEne rgy ofthe Re ac t ion

Calcu la te th e equ ilibriu m con s tan t of th e reaction :Cu (s ) + 2Ag+(a q) → Cu 2+(a q) + 2Ag(s )

( )cellEV = 0 .46 V

( )cellE V =0 059

2. V

log KC = 0 .46 V or

log KC = 0 46 20 059..

VV×

= 15 .6

KC = 3 .92 × 10 15

Example 3.2

Solution

Page 11: Chapter 3 Chemistry electrochemistry

7 3 E lect r och em is t r y

Intext Questions

3 .4 Ca lcu la te th e poten tia l of h ydrogen electrode in con ta ct with a solu t ion wh osepH is 10 .

3 .5 Ca lcu la te th e em f of th e cell in wh ich th e followin g rea ct ion ta kes p la ceNi(s ) + 2Ag+ (0 .002 M) → Ni2+ (0 .160 M) + 2Ag(s )

Given th a t (cell)EV = 1 .05 V3 .6 Th e cell in wh ich th e followin g rea ct ion occu rs :

( ) ( ) ( ) ( )3 222Fe 2I 2Fe Ia q a q a q s+ − ++ → + h as 0

cellE = 0.236 V a t 298 K. Calcu la teth e s ta n da rd Gibbs en ergy a n d th e equ ilib r iu m con s ta n t of th e cell rea ct ion .

It is n ecessary to defin e a few term s before we con sider th e su bject ofcon du ctan ce of electricity th rou gh electrolytic solu tion s . Th e electrica lres is tan ce is represen ted by th e sym bol ‘R’ an d it is m easu red in oh m (Ω)wh ich in term s of SI base u n its is equ al to (kg m 2)/ (s 3 A2). It can bemeasu red with the help of a Wheatstone bridge with wh ich you are familiar

3 .4 Conductanceof ElectrolyticSolutions

∆rG = –4FE (cell)If th e con cen tra t ion of a ll th e rea ct in g species is u n ity, th en E(cell)

= ( )cellE V a n d we h a ve

∆rG⊖ = –nF (cell)

VE (3 .16 )

Th u s , from th e m ea su rem en t of ( )cellE V we ca n ob ta in a n im porta n tth erm odyn a m ic qu a n tity, ∆rG

⊖, s ta n da rd Gibbs en ergy of th e rea ct ion .From th e la t ter we ca n ca lcu la te equ ilib r iu m con s ta n t by th e equ a tion :

∆rG⊖ = –R T ln K.

Th e s ta n da rd electrode poten t ia l for Da n iell cellis 1 .1V. Ca lcu la te th e s ta n da rd Gibbs en ergy for th e rea ct ion :

Zn (s ) + Cu 2+(a q) ⎯→ Zn 2+(a q) + Cu (s )

∆rG⊖ = – nF (cell)EV

n in th e a bove equ a tion is 2 , F = 96487 C mol –1 an d

( )cellE V = 1 .1 V

Th erefore, ∆rG⊖ = – 2 × 1.1V × 96487 C mol –1

= –21227 J m ol–1

= –21 .227 kJ m ol–1

Example 3.3

Solution

Page 12: Chapter 3 Chemistry electrochemistry

7 4Ch em is t r y

from you r stu dy of physics. The electrical resistance of any object is directlyproportion a l to its len gth , l, an d in versely proportion a l to its a rea of crosssection , A. Th at is ,

R ∝ lA

or R = ρ lA

(3 .17 )

Th e con s tan t of proportion a lity, ρ (Greek, rh o), is ca lled res is t ivity(specific res is ta n ce). Its SI u n its a re oh m m etre (Ω m ) a n d qu ite oftenits su bm u ltiple, oh m cen tim etre (Ω cm ) is a lso u sed. IUPAC recom m en dsth e u se of th e term res is t ivity over specific res is ta n ce a n d h en ce in th eres t of th e book we sh a ll u se th e term res is tivity. Ph ysica lly, th e res is tivityfor a su bs ta n ce is its res is ta n ce wh en it is on e m etre lon g a n d its a reaof cros s s ect ion is on e m 2. It ca n be s een th a t :

1 Ω m = 100 Ω cm or 1 Ω cm = 0 .01 Ω mTh e in verse of res is ta n ce, R , is ca lled c onduc tanc e , G, a n d we

h a ve th e rela t ion :

G = 1R

= =ρl

κA Al

(3 .18 )

Th e SI u n it of con du cta n ce is s iem en s , represen ted by th e sym bol‘S’ a n d is equ a l to oh m –1 (a lso kn own a s m h o) or Ω–1. Th e in verse ofres is t ivity, ca lled c onduc t ivity (specific con du cta n ce) is represen ted byth e sym bol, κ (Greek , ka ppa ). IUPAC h a s recom m en ded th e u se of termcon du ctivity over specific con du cta n ce a n d h en ce we sh a ll u se th e termcon du ctivity in th e res t of th e book . Th e SI u n its of con du ctivity a re Sm –1 bu t qu ite often , κ is expres sed in S cm –1. Con du ctivity of a m a ter ia lin S m –1 is its con du cta n ce wh en it is 1 m lon g a n d its a rea of cros ssect ion is 1 m 2. It m a y be n oted th a t 1 S cm –1 = 100 S m –1.

It ca n be s een from Ta ble 3 .2 th a t th e m a gn itu de of con du ctivityva ries a grea t dea l a n d depen ds on th e n a tu re of th e m a ter ia l. It a lsodepen ds on th e tem pera tu re a n d pres su re a t wh ich th e m ea su rem en ts

Table 3 .2 Thevalue s ofConduc t ivity ofsom e Se le c te dMate rials at2 9 8 .1 5 K

Mat e ria l Co n du c t iv i t y / Mat e ria l Co n du c t iv i t y /S m –1 S m –1

Co n d u c t o r s Aq u eou s S olu t ion sS od iu m 2 .1×1 0 3 Pu re wa ter 3 .5×1 0 –5

Cop p er 5 .9×1 0 3 0 .1 M HCl 3 .9 1S ilver 6 .2×1 0 3 0 .01M KCl 0 .1 4Gold 4 .5×1 0 3 0 .0 1 M Na Cl 0 .1 2Iron 1 .0×1 0 3 0 .1 M HAc 0 .0 4 7Gr a p h it e 1 .2×1 0 0 .01M HAc 0 .0 1 6In s u l a t o r s S e m ic on d u c t or sGla s s 1 .0×10 –16 Cu O 1×1 0 –7

Teflon 1 .0×10 –18 S i 1 .5×1 0 –2

Ge 2 .0

Page 13: Chapter 3 Chemistry electrochemistry

7 5 E lect r och em is t r y

a re m a de. Ma ter ia ls a re cla s s ified in to con du ctors , in s u la tors a n dsem icon du ctors depen din g on th e m a gn itu de of th eir con du ctivity.Meta ls a n d th eir a lloys h a ve very la rge con du ctivity a n d a re kn own a scon du ctors . Certa in n on -m eta ls like ca rbon -b la ck , gra ph ite a n d som eorga n ic polym ers * a re a lso electron ica lly con du ctin g. Su bs ta n ces likegla s s , cera m ics , etc., h a vin g very low con du ct ivity a re kn own a sin su la tors . Su bs ta n ces like s ilicon , doped s ilicon a n d ga lliu m a rsen ideh a vin g con du ct ivity between con du ctors a n d in s u la tors a re ca lledsem icon du ctors an d a re im portan t electron ic m ateria ls . Certa in m ateria lsca lled su percon du ctors by defin it ion h a ve zero res is t ivity or in fin itecon d u ct ivit y. E a r lier , on ly m et a ls a n d t h eir a lloys a t ver y lowtem pera tu res (0 to 15 K) were kn own to beh a ve a s su percon du ctors ,bu t n owa da ys a n u m ber of cera m ic m a ter ia ls a n d m ixed oxides a rea lso kn own to sh ow su percon du ctivity a t tem pera tu res a s h igh a s150 K.

Electrica l con du ctan ce th rou gh m eta ls is ca lled m eta llic or electron iccon du ctan ce an d is du e to th e m ovem en t of electron s . Th e electron iccon du ctan ce depen ds on

(i) th e n a tu re a n d s tru ctu re of th e m eta l(ii) th e n u m ber of va len ce electron s per a tom

(iii) tem pera tu re (it decrea ses with in crea se of tem pera tu re).As th e electron s en ter a t on e en d a n d go ou t th rou gh th e oth er en d ,

th e com pos it ion of th e m eta llic con du ctor rem a in s u n ch a n ged . Th em ech a n ism of con du cta n ce th rou gh s em icon du ctors is m ore com plex.

We a lrea dy kn ow (Cla s s XI, Un it 7 ) th a t even very pu re wa ter h a ssm a ll a m ou n ts of h ydrogen a n d h ydroxyl ion s (~10 –7M) wh ich len d itvery low con du ctivity (3 .5 × 10 –5 S m –1). Wh en electrolytes a re d is solvedin water, th ey fu rn ish th eir own ion s in th e solu tion h en ce its con du ctivitya lso in crea ses . Th e con du cta n ce of electr icity by ion s p resen t in th esolu tion s is ca lled electrolyt ic or ion ic con du cta n ce. Th e con du ctivity ofelectrolyt ic (ion ic) solu t ion s depen ds on :

(i) th e n a tu re of th e electrolyte a dded(ii) s ize of th e ion s p rodu ced a n d th eir solva tion

(iii) th e n a tu re of th e solven t a n d its vis cos ity(iv) con cen tra t ion of th e electrolyte(v) tem pera tu re (it in crea ses with th e in crea se of tem pera tu re).Passage of d irect cu rren t th rou gh ion ic solu tion over a prolon ged

period can lead to ch an ge in its com pos ition du e to electroch em ica lreaction s (Section 3 .4 .1 ).

* Electron ica lly cond ucting poly m ers – In 1977 MacDiarm id , Heeger and S h irak aw a d is covered tha t acety lene gas canbe poly m eris ed to prod uce a poly m er, poly acety lene w hen expos ed to vapours of iod ine acqu ires m eta llic lu s tre andcon d u ctiv ity . S in ce th en s evera l orga n ic con d u ctin g poly m ers h a ve been m a d e s u ch a s poly a n ilin e , poly py rrole a n dpoly th ioph en e . Th es e orga n ic m eta ls , be in g com pos ed w h olly of e lem en ts lik e ca rbon , h y d rogen a n d occa s ion a llyn itrogen , oxy gen or s u lphur, a re m uch ligh ter than norm a l m eta ls and can be u s ed for m ak ing ligh t-w eigh t ba tteries .Bes id es , they have the m echan ica l properties of poly m ers s uch a s flexibility s o tha t one can m ak e electron ic d evicess u ch a s tra n s is tors th a t ca n ben d lik e a s h ee t of p la s tic. For th e d is covery of con d u ctin g poly m ers , Ma cDia rm id ,Heeger and S h irak aw a w ere aw ard ed the Nobel Priz e in Chem is try for the y ear 2000 .

Page 14: Chapter 3 Chemistry electrochemistry

7 6Ch em is t r y

We kn ow th a t accu ra te m easu rem en t of an u n kn own res is tan ce can beper form ed on a Wh eats ton e bridge. However, for m easu rin g th e res is tan ceof an ion ic solu tion we face two problem s . Firs tly, pass in g direct cu rren t(DC) ch an ges th e com position of th e solu tion . Secon dly, a solu tion can n otbe con n ected to th e bridge like a m eta llic wire or oth er solid con du ctor.Th e firs t d ifficu lty is resolved by u s in g an a ltern a tin g cu rren t (AC) sou rceof power. Th e secon d problem is solved by u s in g a specia lly des ign edvessel ca lled conduct ivity ce ll. It is ava ilable in severa l des ign s an d twos im ple on es a re sh own in Fig. 3 .4 .

3 .4 .1Me a s u re m e n t o ft h e Co n du c t iv i t yof Ion ic Solut ions

Fig . 3 .4 : Tw o d ifferen t ty pes of cond uctivity cells .

Bas ica lly it con s is ts of two pla tin u m electrodes coa ted with pla tin u mb la ck (fin ely d ivid ed m eta llic Pt is d ep os it ed on t h e elect r od eselectroch em ica lly). Th ese h a ve a rea of cros s s ection equ a l to ‘A’ an d a resepa ra ted by d is ta n ce ‘l’. Th erefore, solu t ion con fin ed between th eseelectrodes is a colu m n of len gth l a n d a rea of cros s s ect ion A . Th eres is ta n ce of su ch a colu m n of solu t ion is th en given by th e equ a tion :

R = ρ lA = l

Aκ (3 .17 )

Th e qu an tity l/ A is ca lled cell con s tan t den oted by th e sym bol, G*.It depen ds on th e d is tan ce between th e electrodes an d th eir a rea ofcross -section an d h as th e d im en s ion of len gth –1 an d can be ca lcu la tedif we kn ow l an d A. Mea s u rem en t of l an d A is n ot on ly in con ven ien tbu t a lso u n reliable. Th e cell con stan t is u su a lly determ in ed by m easu rin gth e res is tan ce of th e cell con ta in in g a solu tion wh ose con du ctivity isa lready kn own . For th is pu rpose, we gen era lly u se KCl solu tion s wh osecon du ctivity is kn own accu ra tely a t va riou s con cen tra tion s (Table 3 .3 )an d a t d ifferen t tem pera tu res . Th e cell con s tan t, G*, is th en given by th eequ a tion :

G* = lA = R κ (3 .18 )

Page 15: Chapter 3 Chemistry electrochemistry

7 7 E lect r och em is t r y

O n c e t h e c e ll c o n s t a n t isd et er m in ed , we ca n u s e it form e a s u r in g t h e r e s is t a n c e o rcon du ctivity of a n y solu t ion . Th eset u p for th e m ea su rem en t of th eres is ta n ce is sh own in Fig. 3 .5 .

It con s is ts of two res is tan ces R3an d R4, a variable res is tan ce R1 an dth e con du ct ivity cell h a vin g th eu n k n o w n r e s is t a n c e R 2 . Th eWh ea ts ton e b r idge is fed by a noscilla tor O (a sou rce of a .c. powerin th e a u dio frequ en cy ra n ge 550to 5000 cycles per s econ d). P is asu ita b le detector (a h ea dph on e oroth er elect ron ic device) a n d th ebridge is ba la n ced wh en n o cu rren t pa s ses th rou gh th e detector. Un derth ese con dit ion s :

Un kn own res is ta n ce R2 = 1 4

3

R RR

(3 .19 )

Th ese da ys , in expen s ive con du ctivity m eters a re a va ila b le wh ichca n d irect ly rea d th e con du cta n ce or res is ta n ce of th e solu t ion in th econ du ctivity cell. On ce th e cell con stan t an d th e res is tan ce of th e solu tionin th e cell is determ in ed , th e con du ctivity of th e solu tion is given by th eequ a tion :

cell constant G*R R

κ = = (3 .20 )

Th e con du ctivity of solu t ion s of d ifferen t electrolytes in th e s a m esolven t a n d a t a given tem pera tu re d iffers du e to ch a rge a n d s ize of th eion s in wh ich th ey d is socia te, th e con cen tra t ion of ion s or ea se withwh ich th e ion s m ove u n der a poten tia l gra d ien t . It , th erefore, becom esn eces sa ry to defin e a ph ys ica lly m ore m ea n in gfu l qu a n tity ca lled m olarc onduc t ivity den oted by th e sym bol Λm (Greek , la m bda ). It is rela tedto th e con du ctivity of th e solu t ion by th e equ a tion :

Mola r con du ctivity = Λm = cκ

(3 .21 )

In th e above equ ation , if κ is expressed in S m –1 an d th e con cen tra tion ,

Table 3 .3Co n du c t iv i t y an dMolar c onduc t ivityof KCl so lut ions at2 9 8 .1 5 K

Fig. 3 .5 : Arrangem entfor m e a s u re m e n t ofre s is t a n ce o f as olu t ion o f a nelectroly te .

m ol L–1 m ol m –3 S cm –1 S m –1 S cm 2m ol–1 S m 2 m ol–1

1 . 0 0 0 1 0 0 0 0 . 1 1 1 3 1 1 . 1 3 1 1 1 . 3 1 1 1 . 3 ×1 0 –4

0 . 1 0 0 1 0 0 . 0 0 . 0 1 2 9 1 . 2 9 1 2 9 . 0 1 2 9 . 0 ×1 0 –4

0 . 0 1 0 1 0 . 0 0 0 . 0 0 1 4 1 0 . 1 4 1 1 4 1 . 0 1 4 1 . 0 ×1 0 –4

Molarity Concentrat ion Conduct ivity Molar Conductivity

Page 16: Chapter 3 Chemistry electrochemistry

7 8Ch em is t r y

c in m ol m –3 th en th e u n its of Λm a re in S m 2 m ol–1 . It m a y be n otedth a t:

1 m ol m –3 = 1000(L/ m 3) × m ola r ity (m ol/ L), a n d h en ce

Λm(S m 2 m ol–1) = 1

3 1 (S m )

10 0 0 L m × m ola r ity (m ol L )

− −κ

If we u se S cm –1 a s th e u n its for κ a n d m ol cm –3, th e u n its ofcon cen tra tion , th en th e u n its for Ëm a re S cm 2 m ol–1. It can be ca lcu la tedby u s in g th e equ a tion :

Lm (S cm m ol ) (S cm ) 1 0 0 0 cm / L)m ola r ity (m ol/ L)

2 11 3

−−

= ×κ (

Both type of u n its a re u sed in litera tu re a n d a re rela ted to ea choth er by th e equ a tion s :

1 S m 2m ol–1 = 10 4 S cm 2m ol–1 or1 S cm 2m ol–1 =10 –4 S m 2m ol–1.

Res is ta n ce of a con du ctivity cell filled with 0 .1 m ol L–1 KCl solu t ionis 100 Ω. If th e res is ta n ce of th e s a m e cell wh en filled with 0 .02 m ol L–1 KClsolu tion is 520 Ω, ca lcu la te th e con du ctivity a n d m ola r con du ctivity of 0 .02 m olL–1 KCl solu tion . Th e con du ctivity of 0 .1 m ol L–1 KCl solu t ion is 1 .29 S/ m .

Th e cell con s ta n t is given by th e equ a tion :Cell con s ta n t = G* = con du ctivity × res is ta n ce= 1 .29 S/ m × 100 Ω = 129 m –1 = 1 .29 cm –1

Con du ctivity of 0 .02 m ol L–1 KCl solu t ion = cell con s ta n t / res is ta n ce

= *G

R = –1129 m

520 Ω = 0 .248 S m –1

Con cen tra t ion = 0 .02 m ol L–1

= 1000 × 0 .02 m ol m –3

= 20 m ol m –3

Mola r con du ctivity = =m cκΛ

= –3 –1

–324 8 × 10 S m

2 0 m ol m = 124 × 10 –4 S m 2m ol–1

Altern a tively, –11 .29 cm =

5 20 Ωκ

= 0 .248 × 10 –2 S cm –1

a n d Λm = κ × 1000 cm 3 L–1 m ola r ity–1

Example 3.4

Solution

Page 17: Chapter 3 Chemistry electrochemistry

7 9 E lect r och em is t r y

–2 –1 3 –1

–10 .24 8×1 0 S cm ×10 00 cm L=

0 .02 m ol L = 124 S cm 2 m ol–1

Th e electr ica l res is ta n ce of a colu m n of 0 .05 m ol L–1 Na OH solu tionof d ia m eter 1 cm a n d len gth 50 cm is 5 .55 × 10 3 oh m . Ca lcu la te its res is t ivity,con du ctivity a n d m ola r con du ctivity.

A = π r2 = 3 .14 × 0 .5 2 cm 2 = 0 .785 cm 2 = 0 .785 × 10 –4 m 2

l = 50 cm = 0 .5 m

= lRA

ρ or ρ × Ω ×= =

3 25 .5 5 1 0 0 .7 8 5 cm5 0 cm

RA l = 87 .135 Ω cm

Con du ctivity = κρ1 = = (

18 7 .1 3 5 ) S cm –1

= 0 .01148 S cm –1

Mola r con du ctivity , × 10 0 0 =

cmΛ κ cm 3 L–1

–1 3 –1

–10 .01148 S cm ×1000 cm L=

0 .05 m ol L= 229 .6 S cm 2 m ol–1

If we wa n t to ca lcu la te th e va lu es of d ifferen t qu a n tit ies in term s of ‘m ’ in s tea d of‘cm ’,

ρ = RAl

= 3 –4 25 .55 × 1 0 × 0 .7 85×10 m

0.5 mΩ

= 87 .135 ×10 –2 Ω m

1 = κρ =

10 0 m87 .1 3 5

Ω = 1 .148 S m –1

a n d = m cκΛ =

–1

–31 .148 S m 50 m ol m

= 229 .6 × 10 –4 S m 2 m ol–1 .

Example 3.5

Solution

B o t h c o n d u c t ivit y a n d m o la r c o n d u c t ivit y c h a n ge w it h t h econ cen t r a t ion of th e elect rolyte. Con d u ct ivity a lwa ys d ecrea s es withd ecrea s e in con cen t r a t ion b oth , for wea k a n d s t ron g elect rolytes .Th is ca n b e exp la in ed b y th e fa ct th a t th e n u m b er of ion s p er u n itvolu m e th a t ca r ry th e cu r ren t in a s olu t ion d ecrea s es on d ilu t ion .Th e con d u ct ivity of a s olu t ion a t a n y given con cen t r a t ion is th econ d u ct a n ce of on e u n it volu m e of s olu t ion k ep t b et ween t wo

3 .4 .2 Variat ion ofConduct ivityand MolarConduct ivitywithConcentration

Page 18: Chapter 3 Chemistry electrochemistry

8 0Ch em is t r y

p la t in u m elect rod es with u n it a rea of cros s s ect ion a n d a t a d is ta n ceof u n it len gth . Th is is clea r from th e equ a t ion :

= = AG κ κl (both A a n d l a re u n ity in th eir a ppropria te u n its in

m or cm )Mola r con du ctivity of a solu t ion a t a given con cen tra t ion is th e

con du cta n ce of th e volu m e V of s olu t ion con ta in in g on e m ole ofelectrolyte kept between two electrodes with a rea of cros s s ection A an ddis ta n ce of u n it len gth . Th erefore,

= =κ κΛm

Al

Sin ce l = 1 a n d A = V ( volu m e con ta in in g 1 m ole of elect rolyte)Λm = κ V (3 .22 )Mola r con du ct ivity in crea s es with decrea s e in con cen tra t ion . Th is

is beca u s e th e tota l volu m e, V, of s olu t ion con ta in in g on e m ole ofelect rolyte a ls o in crea s es . It h a s been fou n d th a t decrea s e in κ ond ilu t ion of a s olu t ion is m ore th a n com pen s a ted by in crea s e in it svolu m e. Ph ys ica lly, it m ea n s th a t a t a given con cen tra t ion , Λm ca n bedefin ed a s th e con du cta n ce of th e electrolyt ic s olu t ion kep t betweenth e elect rodes of a con du ct ivity cell a t u n it d is ta n ce bu t h a vin g a reaof cros s s ect ion la rge en ou gh to a ccom m oda te s u fficien t volu m e ofs olu t ion th a t con ta in s on e m ole of th e electrolyte. Wh en con cen tra t iona pproa ch es zero, th e m ola r con du ct ivity is kn own a s lim it in g m olarc onduc t ivit y a n d is rep res en ted by th e s ym bol Ëm

°. Th e va r ia t ion inΛm with con cen tra t ion is d ifferen t (Fig. 3 .6 ) for s t ron g a n d wea kelectrolytes .

For s tron g electrolytes , Λ in crea ses s lowly with d ilu t ion a n d ca n berepresen ted by th e equ a tion :

Λm = Ëm ° – A c ½ (3 .23 )

It ca n be s eenth a t if we p lot (Fig.3 .1 2 ) Λm a ga in s tc1 / 2 , we ob t a in as t r a igh t lin e within tercep t equ a l toËm

° a n d s lope equ a lto ‘–A’. Th e va lu e ofth e con s ta n t ‘A’ fora given solven t an dt e m p e r a t u r ed e p e n d s o n t h etype of electrolytei.e., th e ch a rges ont h e c a t io n a n da n ion produ ced onth e d is socia t ion oft h e elect r olyt e in

Strong Electrolytes

Fig . 3 .6 : Molarcond uctivity vers usc½ for acetic acid(w eak electroly te)and potas s iumch lorid e (s trongelectroly te) inaqueous s olu tions .

Page 19: Chapter 3 Chemistry electrochemistry

8 1 E lect r och em is t r y

th e solu t ion . Th u s , Na Cl, Ca Cl2, MgSO4 a re kn own a s 1-1 , 2 -1 a n d 2-2 electrolytes respectively. All electrolytes of a pa r t icu la r type h a ve th esa m e va lu e for ‘A’.

Th e m ola r con du ctivity of KCl solu t ion s a t d ifferen t con cen tra t ion s a t298 K a re given below:

c / m ol L–1 ΛΛΛΛΛm / S cm 2 m ol–1

0 .0 0 0 1 9 8 1 4 8 .6 10 .0 0 0 3 0 9 1 4 8 .2 90 .0 0 0 5 2 1 1 4 7 .8 10 .0 0 0 9 8 9 1 4 7 .0 9

Sh ow th a t a p lot between Ëm a n d c1/ 2 is a s tra igh t lin e. Determ in e th e va lu esof Ëm

° a n d A for KCl.

Ta k in g th e s qu a re root of con cen tra t ion we ob ta in :c 1 / 2 / (m ol L–1 )1 / 2 ΛΛΛΛΛm / S c m 2 m o l–1

0 .0 1 4 0 7 1 4 8 .6 10 .0 1 7 5 8 1 4 8 .2 90 .0 2 2 8 3 1 4 7 .8 10 .0 3 1 4 5 1 4 7 .0 9

A p lot of Λm( y-a xis ) a n d c1/ 2 (x-a xis ) is sh own in (Fig. 3 .7 ).It ca n be s een th a t it is n ea r ly a s tra igh t lin e. From th e in tercep t (c1/ 2 = 0),we fin d th a t Ëm

°= 150.0 S cm 2 m ol–1 a n dA = – s lope = 87 .46 S cm 2 m ol–1/ (m ol/ L–1)1/ 2 .

Example 3.6

Solution

Fig . 3 .7 : Varia tionof Ëm agains t c½ .

Page 20: Chapter 3 Chemistry electrochemistry

8 2Ch em is t r y

Koh lra u sch exa m in ed Ëm ° va lu es for a n u m ber of s tron g electrolytes

a n d observed cer ta in regu la r it ies . He n oted th a t th e d ifferen ce in Ëm ° of

th e electrolytes Na X a n d KX for a n y X is n ea r ly con s ta n t . For exa m plea t 298 K:

Ëm °

(KCl) – Ëm °

(Na Cl)= Ëm °

(KBr) – Ëm °

(Na Br)= Ëm

° (KI) – Ëm

° (Na I) ≃ 23 .4 S cm 2 m ol–1

a n d s im ila r ly it wa s fou n d th a tËm

° (Na Br)– Ëm

° (Na Cl)= Ëm

° (KBr) – Ëm

° (KCl) ≃ 1.8 S cm 2 m ol–1

On th e bas is of th e above observa tion s h e en u n cia ted Kohlrauschlaw of independent m igrat ion of ions . Th e law s ta tes th a t lim itingm olar conductivity of an electroly te can be repres ented as the s um ofthe ind ividual contributions of the anion and cation of the electroly te.Thus , if λ°Na+ and λ°Cl– are lim iting m olar conductivity of th e sodiu m an dch loride ion s respectively, th en th e lim itin g m olar con du ctivity for sodiu mch loride is given by th e equ a tion :

Ëm °

(Na Cl) = λ0Na

+ + λ0Cl

– (3 .24 )In gen era l, if a n electrolyte on d is socia t ion gives v+ ca t ion s a n d v–

a n ion s th en its lim it in g m ola r con du ctivity is given by:Ëm

° = ν+ λ0

+ + ν– λ0– (3 .25 )

Here, λ +0 a n d λ −

0 a re th e lim it in g m ola r con du ctivit ies of th e ca t iona n d a n ion respectively. Th e va lu es of λ0 for som e ca t ion s a n d a n ion s a t298 K a re given in Ta ble 3 .4 .

Table 3 .4Li m i t i n g m o l a rc o n du c t iv i t y fo rs o m e i o n s i nwate r at 2 9 8 K

Io n λλλλλ0 / (S c m 2m ol–1 ) Io n λλλλλ 0 / (S c m 2 m ol–1 )

H+ 3 4 9 .6 OH– 1 9 9 .1

Na + 5 0 .1 Cl– 7 6 .3

K+ 7 3 .5 Br – 7 8 .1

Ca 2 + 1 1 9 .0 CH 3COO – 4 0 .9

Mg2 + 1 0 6 .0 SO 42 − 1 6 0 .0

Wea k electrolytes like a cet ic a cid h a ve lower degree of d is socia t ion a th igh er con cen tra tion s a n d h en ce for su ch electrolytes , th e ch a n ge in Λmwith d ilu t ion is du e to in crea se in th e degree of d is socia t ion a n dcon sequ en tly th e n u m ber of ion s in tota l volu m e of solu tion th a t con ta in s1 m ol of electrolyte. In su ch ca ses Ëm in crea ses s teep ly (Fig. 3 .12) ondilu t ion , especia lly n ea r lower con cen tra t ion s . Th erefore, Ëm

° ca n n ot beobta in ed by extrapola tion of Λm to zero con cen tra tion . At in fin ite d ilu tion(i.e., con cen tra t ion c → zero) electrolyte d is socia tes com pletely (α =1),bu t a t su ch low con cen tra t ion th e con du ctivity of th e solu t ion is so lowth a t it can n ot be m easu red accu ra tely. Th erefore, Ëm

° for weak electrolytesis ob ta in ed by u s in g Koh lra u sch la w of in depen den t m igra t ion of ion s(Exa m ple 3 .8 ). At a n y con cen tra t ion c, if α is th e degree of d is socia t ionth en it ca n be a pproxim a ted to th e ra t io of m ola r con du ctivity Ëm a t th econ cen tra t ion c to lim it in g m ola r con du ctivity, Ëm

°. Th u s we h a ve:

We ak e le c tro lyte s

Page 21: Chapter 3 Chemistry electrochemistry

8 3 E lect r och em is t r y

° = m

m

ΛαΛ (3 .26 )

Bu t we kn ow th a t for a wea k electrolyte like a cet ic a cid (Cla s s XI,Un it 7 ),

( ) ( )2 22

2

a 11

ο οο

ο

α= = =− α ⎛ ⎞ −−⎜ ⎟

⎝ ⎠

m m

m m mmm

m

c ccK Λ ΛΛ Λ ΛΛΛ

Λ(3 .27 )

Us in g Koh lra u sch la w of in depen den t m igra tion of ion s , it is pos s ib le toca lcu la te Ëm

° for a n y electrolyte from th e λo of in d ividu a l ion s . Moreover,for weak electrolytes like acetic a cid it is poss ib le to determ in e th e va lu eof its d is socia t ion con s ta n t on ce we kn ow th e Ëm

° a n d Λm a t a givencon cen tra t ion c.

Applic at ions ofKohlrausc h law

Example 3.7

Solution

Ca lcu la te Ëm ° for Ca Cl2 a n d MgSO4 from th e da ta given in Ta ble 3 .4 .

We kn ow from Koh lra u sch la w th a t

( ) 2+ –2CaCl Ca Cl

2ο ο ο= λ + λmΛ = 119 .0 S cm 2 m ol–1 + 2(76 .3) S cm 2 m ol–1

= (119 .0 + 152 .6) S cm 2 m ol–1

= 271 .6 S cm 2 m ol–1

( ) 2–2+4 4MgSO Mg SO

ο ο ο= λ + λmΛ = 106 .0 S cm 2 m ol–1 + 160 .0 S cm 2 m ol–1

= 266 S cm 2 m ol–1 .

Ëm ° for Na Cl, HCl a n d Na Ac a re 126 .4 , 425 .9 a n d 91 .0 S cm 2 m ol–1

respectively. Ca lcu la te Λo for HAc.

( ) + –HAc H Acο ο ο= λ + λmΛ + – – + – +H Cl Ac Na Cl Na

ο ο ο ο ο ο= λ + λ + λ + λ − λ − λ

( ) ( ) ( )HCl Na Ac Na Clο ο ο= + −m m mΛ Λ Λ

= (425 .9 + 91 .0 – 126 .4 ) S cm2 mol –1

= 390 .5 S cm 2 m ol–1 .

Th e con du ctivity of 0 .001028 m ol L–1 a cetic a cid is 4 .95 × 10 –5 Scm –1. Ca lcu la te its d is socia t ion con s ta n t if Ëm

° for a cet ic a cid is 390 .5 S cm 2 m ol–1 .

. .

.

5 1 32 1

1

4 9 5 10 S cm 1 00 0 cm 4 8 1 5 S cm m ol0 0 0 10 2 8 m ol L L

− −

−−

×= = × =κΛ m c

2 1m

2 1m

48 .15 S cm m ol 0 .1233390.5 S cm mol

ο −α = = =ΛΛ

( ). ( . )c .

1 .αα

−×= = = ×− −

–1 2250 001028 molL 0 1233 1 78 10

1 0 1233K m ol L–1

Example 3.8

Solution

Example 3.9

Solution

Page 22: Chapter 3 Chemistry electrochemistry

8 4Ch em is t r y

In an e lec trolyt ic ce ll extern a l sou rce of voltage is u sed to brin g abou ta ch em ical reaction . Th e electroch em ical processes are of great im portan cein the laboratory and the chem ical indu stry. One of the sim plest electrolyticcell con s is ts of two copper s trips d ippin g in an aqu eou s solu tion ofcopper su lph a te. If a DC voltage is applied to th e two electrodes , th enCu 2+ ion s disch arge a t th e ca th ode (n ega tively ch arged) an d th e followin greaction takes place:

Cu 2+(a q) + 2e– → Cu (s ) (3 .28 )Copper m eta l is depos ited on th e ca th ode. At th e a n ode, copper is

con verted in to Cu 2+ ion s by th e rea ct ion :Cu (s ) → Cu 2+(s ) + 2e– (3 .29 )Th u s cop p er is d is s olved (oxid is ed ) a t a n od e a n d d ep os it ed

(redu ced ) a t ca th ode. Th is is th e ba s is for a n in du s t r ia l p roces s inwh ich im pu re copper is con ver ted in to copper of h igh pu r ity. Th eim pu re copper is m a de a n a n ode th a t d is s olves on pa s s in g cu r ren ta n d pu re copper is depos ited a t th e ca th ode. Ma n y m eta ls like Na , Mg,Al, etc. a re p rodu ced on la rge s ca le by elect roch em ica l redu ct ion ofth eir res pect ive ca t ion s wh ere n o s u ita b le ch em ica l redu cin g a gen tsa re a va ila b le for th is pu rpos e.

Sodiu m a n d m a gn es iu m m eta ls a re p rodu ced by th e electrolys is ofth eir fu sed ch lor ides a n d a lu m in iu m is p rodu ced (Cla s s XII, Un it 6 ) byelectrolys is of a lu m in iu m oxide in p resen ce of cryolite.

Mic hae l Faraday wa s th e firs t s cien tis t wh o descr ibed th e qu a n tita t ivea spects of electrolys is . Now Fa ra da y’s la ws a lso flow from wh a t h a sbeen d is cu s sed ea r lier.

After h is exten s ive in ves t iga t ion s on electrolys is of solu t ion s a n d m eltsof electrolytes , Fa ra da y pu blish ed h is resu lts du rin g 1833-34 in th eform of th e followin g well kn own Fa ra da y’s two la ws of electrolys is :

Th e a m ou n t of ch em ica l rea ct ion wh ich occu rs a t a n y electrode du rin gelectrolys is by a cu rren t is p roport ion a l to th e qu a n tity of electr icitypa s sed th rou gh th e electrolyte (solu t ion or m elt).

Th e a m ou n ts of d ifferen t su bs ta n ces libera ted by th e s a m e qu a n tity ofelectr icity pa s s in g th rou gh th e electrolyt ic solu t ion a re p roport ion a l toth eir ch em ica l equ iva len t weigh ts (Atom ic Ma ss of Meta l ÷ Nu m ber ofelectron s requ ired to redu ce th e ca t ion ).

Intext Questions

3 .7 Wh y does th e con du ct ivity of a s olu t ion decrea s e with d ilu t ion ?3 .8 Su gges t a wa y to deter m in e th e Λm

° va lu e of wa ter.3 .9 Th e m ola r con du ct ivity of 0 .025 m ol L–1 m eth a n oic a cid is 46 .1 S cm 2 m ol–1 .

Ca lcu la te its degree of d is s ocia t ion a n d d is s ocia t ion con s ta n t . Given λ0(H+)= 349 .6 S cm 2 m ol–1 a n d λ0(HCOO–) = 54 .6 S cm 2 m ol–1

3 .5 ElectrolyticCells andElectrolysis

Faraday ’s Lawsof Ele c tro lys is

1 . Firs t La w

2 . S econd La w

Quant itat iveAspe c ts ofEle c tro lys is

Page 23: Chapter 3 Chemistry electrochemistry

8 5 E lect r och em is t r y

Th ere were n o con s ta n t cu rren t sou rces a va ila b le du rin g Fa ra da y’st im es . Th e gen era l p ra ct ice wa s to pu t a cou lom eter (a s ta n da rdelectrolytic cell) for determ in in g th e qu a n tity of electr icity pa s sed fromth e am ou n t of m eta l (gen era lly s ilver or copper) depos ited or con su m ed.However, cou lom eters a re n ow obsolete a n d we n ow h a ve con s ta n tcu rren t (I) sou rces a va ila b le a n d th e qu a n tity of electr icity Q, pa s sedis given by

Q = ItQ is in colou m bs wh en I is in a m pere a n d t is in s econ d .Th e a m ou n t of electr icity (or ch a rge) requ ired for oxida tion or

redu ction depen ds on th e s toich iom etry of th e electrode rea ct ion . Forexa m ple, in th e rea ct ion :

Ag +(a q) + e– → Ag(s ) (3 .30 )On e m ole of th e electron is requ ired for th e redu ction of on e m ole

of s ilver ion s . We kn ow th a t ch a rge on on e electron is equ a l to 1 .6021×10 –19C. Th erefore, th e ch a rge on on e m ole of electron s is equ a l to:

NA × 1 .6 0 2 1 × 1 0 –1 9 C = 6 .0 2 × 10 23 m ol–1 × 1 .6021 × 10 –1 9

C = 96487 C m ol–1

Th is qu a n tity of electr icity is ca lled Faraday a n d is represen ted byth e sym bol F.

For a pproxim a te ca lcu la t ion s we u se 1F ≃ 96500 C m ol–1.For th e electrode rea ct ion s :

Mg2+(l) + 2e– ⎯→ Mg(s ) (3 .31 )Al3+(l) + 3e– ⎯→ Al(s ) (3 .32 )

It is obviou s th a t on e m ole of Mg2+ a n d Al3+ requ ire 2 m ol ofelectron s (2F) a n d 3 m ol of electron s (3F) respectively. Th e ch a rgepa s sed th rou gh th e electrolyt ic cell du r in g electrolys is is equ a l to th eprodu ct of cu rren t in a m peres a n d t im e in s econ ds . In com m ercia lprodu ction of m eta ls , cu rren t a s h igh a s 50 ,000 a m peres a re u sedth a t a m ou n ts to a bou t 0 .518 F per s econ d .

A solu tion of Cu SO4 is electrolysed for 10 m in u tes with a cu rren t of1 .5 a m peres . Wh a t is th e m a ss of copper depos ited a t th e ca th ode?

t = 600 s ch a rge = cu rren t × t im e = 1 .5 A × 600 s = 900 CAccord in g to th e rea ct ion :Cu 2+(a q) + 2e– = Cu (s )We requ ire 2F or 2 × 96487 C to depos it 1 m ol or 63 g of Cu .For 900 C, th e m a ss of Cu depos ited = (63 g m ol–1 × 900 C)/ (2 × 96487 C m ol–1)= 0 .2938 g.

Example 3.10

Solution

Prod u ct s of elect rolys is d ep en d on th e n a tu re of m a ter ia l b ein gelectrolysed a n d th e type of electrodes bein g u sed . If th e electrode isin er t (e.g., p la t in u m or gold), it does n ot pa r t icipa te in th e ch em ica lrea ct ion a n d a cts on ly a s sou rce or s in k for electron s . On th e oth erh an d, if th e electrode is reactive, it pa rticipa tes in th e electrode reaction .Th u s , th e produ cts of electrolys is m a y be d ifferen t for rea ctive a n d in ert

3 .5 .1 Produc ts ofEle c tro lys is

Page 24: Chapter 3 Chemistry electrochemistry

8 6Ch em is t r y

electrodes .Th e produ cts of electrolys is depen d on th e d ifferen t oxid is in ga n d redu cin g species p resen t in th e electrolyt ic cell a n d th eir s ta n da rdelectrode poten tia ls . Moreover, som e of th e electroch em ica l p roces sesa lth ou gh fea s ib le, a re so s low k in et ica lly th a t a t lower volta ges th esedon ’t s eem to ta ke p la ce a n d extra poten tia l (ca lled overpoten tia l) h a sto be a pp lied , wh ich m a kes su ch proces s m ore d ifficu lt to occu r.

For exa m ple, if we u se m olten Na Cl, th e p rodu cts of electrolys is a resodiu m m eta l a n d Cl2 ga s . Here we h a ve on ly on e ca t ion (Na +) wh ich isredu ced a t th e ca th ode (Na + + e– → Na ) a n d on e a n ion (Cl–) which isoxidis ed at the anode (Cl–→ ½Cl2+e– ) . Du rin g th e electrolys is of a qu eou ssodiu m ch lor ide solu t ion , th e p rodu cts a re Na OH, Cl2 a n d H2. In th isca se bes ides Na + a n d Cl– ion s we a lso h a ve H+ a n d OH– ion s a lon g withth e solven t m olecu les , H2O.

At th e ca th ode th ere is com petit ion between th e followin g redu ctionreaction s :

Na + (a q) + e– → Na (s ) ( )cellVE = – 2 .71 V

H+ (a q) + e– → ½ H2 (g) ( )cellVE = 0 .00 V

Th e rea ct ion with h igh er va lu e of E⊖ is p referred a n d , th erefore, th erea ct ion a t th e ca th ode du rin g electrolys is is :

H+ (a q) + e– → ½ H2 (g) (3 .33 )bu t H+ (a q) is p rodu ced by th e d is socia t ion of H2O, i.e.,H2O (l ) → H+ (a q) + OH– (a q) (3 .34 )Th erefore, th e n et reaction a t th e ca th ode m ay be written a s th e su m

of (3 .33) a n d (3 .34) a n d we h a veH2O (l ) + e– → ½H2(g) + OH– (3 .35 )At th e a n ode th e followin g oxida tion rea ct ion s a re pos s ib le:

Cl– (aq) → ½ Cl2 (g) + e– ( )cellVE = 1.36 V (3 .36 )

2H2O (l )→ O2 (g) + 4H+(a q) + 4e– ( )cellVE = 1 .23 V (3 .37 )

Th e rea ction a t a n ode with lower va lu e of E ⊖ is p referred a n dth erefore, wa ter sh ou ld get oxid is ed in p referen ce to Cl– (a q). However,on accou n t of overpoten tia l of oxygen , reaction (3 .36) is preferred . Th u s ,th e n et rea ct ion s m a y be su m m a ris ed a s :

Na Cl (a q) H O2⎯ →⎯⎯⎯ Na + (a q) + Cl– (a q)Ca th ode: H2O(l ) + e– → ½ H2(g) + OH– (a q)An ode: Cl– (a q) → ½ Cl2(g) + e–

Net rea ction :Na Cl(a q) + H2O(l ) → Na +(a q) + OH–(a q) + ½H2(g) + ½Cl2(g)Th e s tan dard electrode poten tia ls a re replaced by electrode poten tia ls

given by Nern s t equ a tion (Eq. 3 .8) to take in to accou n t th e con cen tra tioneffects . Du rin g th e electrolys is of su lph u ric a cid , th e followin g processesa re pos s ib le a t th e a n ode:

2H2O(l )→ O2(g) + 4H+(a q) + 4e– ( )cellE V = +1.23 V, (3 .38 )

Page 25: Chapter 3 Chemistry electrochemistry

8 7 E lect r och em is t r y

Intext Questions

3 .1 0 If a cu rren t of 0 .5 a m pere flows th rou gh a m eta llic wire for 2 h ou rs , th en h owm a n y electron s wou ld flow th rou gh th e wire?

3 .1 1 Su gges t a lis t of m eta ls th a t a re extra cted electrolyt ica lly.3 .1 2 Con s ider th e rea ct ion :

Cr 2O72– + 14H+ + 6e– → 2Cr 3+ + 8H2O

Wh a t is th e qu a n t ity of electr icity in cou lom bs n eeded to redu ce 1 m ol ofCr 2O7

2 –?

2SO42– (a q) → S2O8

2– (a q) + 2e– ( )cellE V = 1 .96 V (3 .39 )

For d ilu te su lph u ric a cid , rea ct ion (3 .38) is p referred bu t a t h igh ercon cen tra t ion s of H2SO4 proces s , rea ct ion (3 .39) is p referred .

An y ba t tery (a ctu a lly it m a y h a ve on e or m ore th a n on e cell con n ectedin s er ies ) or cell th a t we u s e a s a s ou rce of electr ica l en ergy is ba s ica llya ga lva n ic cell wh ere th e ch em ica l en ergy of th e redox rea ct ion iscon verted in to electr ica l en ergy. However, for a ba ttery to be of pra ctica lu s e it s h ou ld be rea s on a b ly ligh t , com pa ct a n d its volta ge s h ou ld n otva ry appreciably du rin g its u se. Th ere a re m a in ly two types of ba tter ies .

In th e p r im a ry ba t ter ies , th e rea ct ion occu rs on ly on ce a n d a fter u s eover a per iod of t im e ba t tery becom es dea d a n d ca n n ot be reu s eda ga in . Th e m os t fa m ilia r exa m ple of th is type is th e d ry cell (kn own a sLecla n ch e cell a fter its d is coverer) wh ich is u sed com m on lyin ou r t ra n s is tors a n d clocks . Th e cell con s is ts of a zin ccon ta in er th a t a ls o a cts a s a n ode a n d th e ca th ode is aca rbon (gra ph ite) rod su rrou n ded by powdered m a n ga n esed ioxid e a n d ca rb on (Fig.3 .8 ). Th e s p a ce b etween th eelect rodes is filled by a m ois t pa s te of a m m on iu m ch loride(NH4Cl) a n d zin c ch lor ide (Zn Cl2). Th e elect rode rea ct ion sa re com plex, bu t th ey ca n be wr it ten a pp roxim a tely a sfollows :

An ode: Zn (s ) ⎯→ Zn 2+ + 2e–

Ca th ode: Mn O2+ NH4++ e–⎯→ Mn O(OH) + NH3

In th e rea ct ion a t ca th ode, m a n ga n ese is redu ced fromth e + 4 oxida tion s ta te to th e +3 s ta te. Am m on ia p rodu cedin th e rea ct ion form s a com plex with Zn 2+ to give [Zn(NH3)4]2+. Th e cell h a s a poten tia l of n ea r ly 1 .5 V.

Mercu ry cell, (Fig. 3 .9 ) su ita b le for low cu rren t deviceslike h ea r in g a ids , wa tch es , etc. con s is ts of zin c – m ercu rya m a lga m a s a n ode a n d a pa s te of HgO a n d ca rbon a s th eca th ode. Th e electrolyte is a pa s te of KOH a n d Zn O. Th eelectrode rea ct ion s for th e cell a re given below:

Anode: Zn(Hg) + 2OH– ⎯→ ZnO(s) + H2O + 2e–

Ca th ode: HgO + H2O + 2e– ⎯→ Hg(l ) + 2OH–

3.6 Batteries

3 .6 .1 Prim aryBatteries

Fig . 3 .8 : A com m e rcia l d ry ce llcon s is t s o f a g ra p h it e (ca rb on )ca th od e in a z in c con ta in e r; th ela tter acts as the anod e.

Page 26: Chapter 3 Chemistry electrochemistry

8 8Ch em is t r y

Th e overa ll rea ct ion is represen ted byZn (Hg) + HgO(s ) ⎯→ Zn O(s ) + Hg(l )

Th e cell poten tia l is a pproxim a tely 1 .35 Van d rem ain s con stan t du rin g its life as th e overa llrea ct ion does n ot in volve a n y ion in solu t ionwh ose con cen tra t ion ca n ch a n ge du rin g its lifetim e.

3 .6 .2 Se c ondary Bat te rie sA secon da ry cell a fter u se ca n be rech a rged byp a s s in g cu r ren t th rou gh it in th e op p os ited irect ion so th a t it ca n be u sed a ga in . A goodsecon da ry cell ca n u n dergo a la rge n u m ber ofd is ch a rgin g a n d ch a rgin g cycles . Th e m os tim porta n t s econ da ry cell is th e lea d s tora geb a t t e r y (F ig . 3 . 1 0 ) c o m m o n ly u s e d in

a u tom obiles a n d in vertors . It con s is ts of a lea d a n ode a n d a gr id oflea d pa cked with lea d d ioxide (PbO2 ) a s ca th ode. A 38% solu tion ofsu lph u ric a cid is u sed a s a n electrolyte.

Th e cell rea ct ion s wh en th e ba t tery is in u se a re given below:An ode: Pb(s ) + SO4

2–(a q) → PbSO4(s ) + 2e–

Ca th ode: PbO2(s ) + SO42–(a q) + 4H+(a q) + 2e– → PbSO4 (s ) + 2H2O (l )

i.e., overa ll cell rea ct ion con s is t in g of ca th ode a n d a n ode rea ct ion sis :

Pb(s )+PbO2(s )+2H2SO4(a q)→ 2PbSO4(s ) + 2H2O(l)On ch a rgin g th e ba t tery th e rea ct ion is reversed a n d PbSO4(s ) on

a n ode a n d ca th ode is con verted in to Pb a n d PbO2, respectively.

Fig . 3 .9 : Com m only us ed m ercury cell.Th e re d u cin g a ge n t is z in c a n d th eoxid is ing agent is m ercury (II) oxid e.

Fig . 3 .1 0 : The Lead s torage ba ttery .

Page 27: Chapter 3 Chemistry electrochemistry

8 9 E lect r och em is t r y

A n o t h e rim porta n t s econ da ryc e ll is t h e n ic k e l-ca d m iu m ce ll (F ig.3 . 1 1 ) w h ic h h a slon ger life th a n th elea d s tora ge cell bu tm or e e xp e n s ive t om a n u fa c t u r e . Wes h a ll n o t go in t odeta ils of work in g oft h e c e l l a n d t h ee le c t r od e r e a c t ion sdu rin g ch a rgin g a n dd is c h a r g in g . Th eo ve r a ll r e a c t io ndu rin g d is ch a rge is :

Cd (s )+2Ni(OH)3 (s ) → CdO (s ) +2Ni(OH)2 (s ) +H2O(l )

Produ ction of electr icity by th erm a l p la n ts is n ot a very efficien t m eth oda n d is a m a jor sou rce of pollu t ion . In su ch p la n ts , th e ch em ica l en ergy(h ea t of com bu s tion ) of fos s il fu els (coa l,ga s or oil) is firs t u sed for con vert in gwa ter in to h igh pres su re s tea m . Th is isth en u sed to ru n a tu rb in e to p rodu ceelectr icity. We kn ow th a t a ga lva n ic celld irect ly con verts ch em ica l en ergy in toelectricity an d is h igh ly efficien t. It is n owposs ib le to m a ke su ch cells in wh ichrea cta n ts a re fed con tin u ou s ly to th eelect rodes a n d p rodu cts a re rem ovedc o n t in u o u s ly fr o m t h e e le c t r o ly t ecom pa r tm en t . Ga lva n ic cells th a t a red e s ign e d t o c on ve r t t h e e n e r gy ofcom b u s t ion of fu e ls lik e h yd r ogen ,m eth a n e, m eth a n ol, etc. d irect ly in toelectr ica l en ergy a re ca lled fue l c e lls .

On e of th e m ost su ccessfu l fu el cellsu ses th e reaction of h ydrogen with oxygento form water (Fig. 3.12). The cell was u sedfor providin g electrica l power in th e Apollo space program m e. Th e watervapou rs produ ced du rin g th e reaction were con den sed an d added to th edrin kin g water su pply for th e as tron au ts . In th e cell, h ydrogen an d oxygenare bu bbled th rou gh porou s carbon electrodes in to con cen tra ted aqu eou ssodiu m h ydroxide solu tion . Ca ta lys ts like fin ely divided pla tin u m orpalladiu m m etal are in corporated in to th e electrodes for in creasin g th e ra teof electrode reaction s . Th e electrode reaction s a re given below:

Ca th ode: O2(g) + 2H2O(l ) + 4e–⎯→ 4OH–(a q)An ode: 2H2 (g) + 4OH–(a q) ⎯→ 4H2O(l) + 4e–

Fig . 3 .1 1 : A rechargeablen ick e l-ca d m iu m ce ll in aje lly roll a rra n gem en t a n ds e p a ra t e d b y a la y e rs oak ed in m ois t s od ium orpotas s ium hy d roxid e.

3.7 Fuel Cells

Fig . 3 .1 2 : Fuel cell us ing H2 andO2 prod uces electricity .

Page 28: Chapter 3 Chemistry electrochemistry

9 0Ch em is t r y

Overa ll rea ct ion bein g:2H2(g) + O2(g) ⎯→ 2 H2O(l )Th e cell ru n s con tin u ou s ly a s lon g a s th e rea cta n ts a re su pplied .

Fu el cells produ ce electr icity with an efficien cy of abou t 70 % com paredto th erm a l p la n ts wh ose efficien cy is a bou t 40%. Th ere h a s beentrem en dou s progres s in th e developm en t of n ew electrode m a ter ia ls ,better ca ta lys ts an d electrolytes for in creas in g th e efficien cy of fu el cells .Th ese h a ve been u sed in a u tom obiles on a n experim en ta l ba s is . Fu elcells a re pollu t ion free a n d in view of th eir fu tu re im porta n ce, a va r ietyof fu el cells h a ve been fa br ica ted a n d tr ied .

Corros ion s lowly coa ts th e su rfa ces of m eta llic ob jects with oxides oroth er s a lts of th e m eta l. Th e ru s t in g of iron , ta r n ish in g of s ilver,developm en t of green coa tin g on copper a n d bron ze a re som e of th eexam ples of corros ion . It cau ses en orm ou s dam age to bu ildin gs , bridges ,sh ips a n d to a ll ob jects m a de of m eta ls especia lly th a t of iron . We losecrores of ru pees every yea r on a ccou n t of corros ion .

In corros ion , a m eta l is oxid is ed by los s of electron s to oxygen a n dform a tion of oxides . Corros ion of iron (com m on ly kn own a s ru s t in g)occu rs in presen ce of wa ter a n d a ir. Th e ch em is try of corros ion is qu itecom plex bu t it m a y be con s idered es sen tia lly a s a n electroch em ica lph en om en on . At a pa r t icu la r spot (Fig. 3 .13) of a n ob ject m a de of iron ,oxida tion ta kes p la ce a n d th a t spot beh a ves a s a n ode a n d we ca n writeth e rea ct ion

An ode: 2 Fe (s ) ⎯→ 2 Fe2+ + 4 e– 2+(Fe / Fe)

VE = – 0 .44 V

Electron s releaseda t a n odic spot m ovet h r ou gh t h e m e t a la n d go t o a n ot h e rspot on th e m eta l an dr e d u c e o x yge n inpresen ce of H+ (wh ichis b e lie ve d t o b ea va ila b le from H2CO3fo r m e d d u e t od is solu t ion of ca rbondioxide from a ir in towa ter. Hydrogen ionin wa ter m a y a lso bea va ila b le d u e t od is s olu t ion of oth er

a cid ic oxides from th e a tm osph ere). Th is spot beh a ves a s ca th ode withth e rea ct ion

Ca th ode: O2(g) + 4 H+(a q) + 4 e– ⎯→ 2 H2O (l ) +2 2H O H O

= 1 .23 V| |

E V

Th e overa ll rea ct ion bein g:

2Fe(s )+O2(g) + 4H+(a q) ⎯→ 2Fe2 +(a q)+ 2 H2O (l ) (cell)VE =1.67 V

3.8 Corrosion

Fig . 3 .1 3 : Corros ion of iron in a tm os phere.

Oxida tion : Fe (s )→ Fe2+ (a q) +2e–

Redu ction : O2 (g) + 4H+(a q) +4e– → 2H2O(l)

Atom os p h er icoxida tion : 2Fe2+(a q) + 2H2O(l) + ½O2(g) → Fe2O3(s ) + 4H+(a q)

Page 29: Chapter 3 Chemistry electrochemistry

9 1 E lect r och em is t r y

Th e ferrou s ion s a re fu r th er oxid is ed by a tm osph eric oxygen toferr ic ion s wh ich com e ou t a s ru s t in th e form of h ydra ted ferr ic oxide(Fe2O3. x H2O) a n d with fu r th er p rodu ction of h ydrogen ion s .

Preven tion of corros ion is of p r im e im porta n ce. It n ot on ly s a vesm on ey bu t a lso h elps in p reven tin g a cciden ts su ch a s a b r idge colla pseor fa ilu re of a key com pon en t du e to corros ion . On e of th e s im ples tm eth ods of preven tin g corros ion is to preven t th e su rface of th e m eta llicobject to com e in con tact with a tm osph ere. Th is can be don e by coverin gth e su rfa ce with pa in t or by som e ch em ica ls (e.g. b isph en ol). An oth ers im ple m eth od is to cover th e su rfa ce by oth er m eta ls (Sn , Zn , etc.) th a ta re in er t or rea ct to s a ve th e ob ject . An electroch em ica l m eth od is toprovide a s a cr ificia l electrode of a n oth er m eta l (like Mg, Zn , etc.) wh ichcorrodes its elf bu t s a ves th e ob ject .

Intext Questions

3 .1 3 Write th e ch em is try of r ech a rgin g th e lea d s tora ge ba t tery, h igh ligh t in g a ll th em a ter ia ls th a t a re in volved du r in g rech a rgin g.

3 .1 4 Su gges t two m a ter ia ls oth er th a n h ydrogen th a t ca n be u s ed a s fu els in fu elcells .

3 .1 5 Expla in h ow ru s t in g of iron is en vis a ged a s s et t in g u p of a n electroch em ica l cell.

The Hydrogen Economy

At p res en t th e m a in s ou rce of en ergy th a t is d r ivin g ou r econ om y is fos s il fu els s u cha s coa l, oil a n d ga s . As m ore peop le on th e p la n et a s p ire to im prove th eir s ta n da rdof livin g, th eir en ergy requ irem en t will in crea s e. In fa ct , th e per ca p ita con s u m ptionof en ergy u s ed is a m ea s u re of developm en t . Of cou rs e, it is a s s u m ed th a t en ergy isu s ed for p rodu ct ive pu rpos e a n d n ot m erely wa s ted . We a re a lr ea dy a wa r e th a t ca rbond ioxid e p rod u ced b y th e com b u s t ion of fos s il fu els is r es u lt in g in th e ‘Green h ou s eEffect ’. Th is is lea d in g to a r is e in th e tem p era tu re of th e Ea r th ’s s u r fa ce, ca u s in gpola r ice to m elt a n d ocea n levels to r is e. Th is will flood low-lyin g a rea s a lon g th e coa s ta n d s om e is la n d n a t ion s s u ch a s Ma ld ives fa ce tota l s u bm ergen ce. In order to a voids u ch a ca ta s trope, we n eed to lim it ou r u s e of ca rbon a ceou s fu els . Hydrogen p rovidesa n id ea l a lt ern a t ive a s it s com b u s t ion r es u lt s in wa ter on ly. Hyd rogen p rod u ct ionm u s t com e from s p lit t in g wa ter u s in g s ola r en ergy. Th erefore, h ydrogen ca n be u s eda s a ren ewa ble a n d n on pollu t in g s ou rce of en ergy. Th is is th e vis ion of th e HydrogenE con om y. Both t h e p r od u ct ion of h yd r ogen b y elect r olys is of wa ter a n d h yd r ogencom bu s t ion in a fu el cell will be im porta n t in th e fu tu re. An d both th es e tech n ologiesa re b a s ed on elect roch em ica l p r in cip les .

An e le c t ro c h e m ic al c e ll con s is t s of t wo m et a llic e lec t r od es d ip p in g in e lec t r olyt ics olu t ion (s ). Th u s a n im porta n t com pon en t of th e electroch em ica l cell is th e ion ic con du ctoror elect rolyte. E lect roch em ica l cells a re of two typ es . In galvan ic c e ll, th e c h e m ic al

SummarySummarySummarySummarySummary

Page 30: Chapter 3 Chemistry electrochemistry

9 2Ch em is t r y

e ne rgy of a s pontane ous re dox re ac t ion is con ver ted in to electr ica l work , wh erea s ina n elect rolyt ic cell, elect r ica l en ergy is u s ed to ca r ry ou t a n o n -s po n t an e o us re do xre ac t ion . Th e s tandard e le c t rode pote nt ial for a n y electrode d ipp in g in a n a ppropr ia tes olu t ion is defin ed with res pect to s ta n da rd elect rode poten t ia l of hydroge n e le c t rodeta ken a s zero. Th e s ta n da rd poten t ia l of th e cell ca n be ob ta in ed by ta k in g th e d ifferen ceof th e s ta n d a r d p oten t ia ls of ca th od e a n d a n od e ( ( )cell

VE = EV

ca th ode – EV

a n ode). Th es ta n da rd poten t ia l of th e cells a re rela ted to s ta n da rd Gibbs en ergy (ÄrG

V

= –nF ( )cellVE )

a n d e quilibrium c ons tant (ÄrGV

= – R T ln K) of th e r ea ct ion ta k in g p la ce in th e cell.Con cen tra t ion depen den ce of th e poten t ia ls of th e electrodes a n d th e cells a re given byNer n s t equ a t ion .

Th e c onduc t ivity , κ, of a n electrolyt ic s olu t ion depen ds on th e con cen tra t ion of th eelect rolyte, n a tu re of s olven t a n d tem p era tu re. Mo lar c o n duc t iv it y , Ëm , is d efin ed b y= κ / c wh er e c is t h e con cen t r a t ion . Con d u ct ivit y d ecr ea s es b u t m ola r con d u ct ivit yin c r e a s e s wit h d e c r e a s e in c on c e n t r a t ion . It in c r e a s e s s lowly wit h d e c r e a s e incon cen tra t ion for s t ron g electrolytes wh ile th e in crea s e is very s teep for wea k electrolytesin very d ilu te s olu t ion s . Koh lra u s ch fou n d th a t m ola r con du ct ivity a t in fin ite d ilu t ion ,for a n elect rolyte is s u m of th e con t r ib u t ion of th e m ola r con d u ct ivity of th e ion s inwh ich it d is s ocia tes . It is kn own a s law o f in de pe n de n t m igrat ion o f ion s a n d h a sm a n y a p p lica t ion s . Ion s con d u ct e lect r ic it y t h r ou gh t h e s olu t ion b u t oxid a t ion a n dredu ct ion of th e ion s ta ke p la ce a t th e electrodes in a n electroch em ica l cell. Bat te rie sa n d fue l c e lls a re very u s efu l form s of ga lva n ic cell. Corros ion of m eta ls is es s en t ia llya n e le c t ro c h e m i c a l p h e n o m e n o n . E lec t r och em ica l p r in c ip le s a r e r e leva n t t o t h eHy dro ge n Ec o n o m y .

3 . 1 Arra n ge th e followin g m eta ls in th e order in wh ich th ey d isp la ce ea ch oth er from th es olu t ion of th eir s a lts .Al, Cu , Fe, Mg a n d Zn .

3 . 2 Given th e s ta n d a rd elect rod e p oten t ia ls ,K+/ K = –2 .93V, Ag+/ Ag = 0 .80V,Hg2+/ Hg = 0 .79VMg2+/ Mg = –2 .37 V, Cr 3+/ Cr = – 0 .74VArra n ge th es e m eta ls in th eir in crea s in g order of r edu cin g power.

3 . 3 Dep ict th e ga lva n ic cell in wh ich th e rea ct ion Zn (s )+2Ag+(a q) →Zn 2+(a q)+2Ag(s )ta kes p la ce. Fu r th er s h ow:

(i) Wh ich of th e electrode is n ega t ively ch a rged?(ii) Th e ca rr iers of th e cu rren t in th e cell.

(iii) In d ivid u a l rea ct ion a t ea ch elect rod e.3 . 4 Ca lcu la te th e s ta n da rd cell poten tia ls of ga lva n ic cell in wh ich th e followin g rea ction s

ta k e p la ce:(i) 2Cr(s ) + 3Cd 2+(a q) → 2Cr 3+(a q) + 3Cd

(ii) Fe2+(a q) + Ag+(a q) → Fe3+(a q) + Ag(s )Ca lcu la te th e ∆rG

⊖ a n d equ ilib r iu m con s ta n t of th e rea ct ion s .3 . 5 Write th e Ner n s t equ a tion a n d em f of th e followin g cells a t 298 K:

(i) Mg(s )| Mg2+(0 .0 0 1 M)|| Cu 2+(0 .0 0 0 1 M)| Cu (s )

ExercisesExercisesExercisesExercisesExercises

Page 31: Chapter 3 Chemistry electrochemistry

9 3 E lect r och em is t r y

(ii) Fe(s )| Fe2+(0 .0 0 1 M)|| H+(1 M)| H2(g)(1 b a r )| Pt (s )(iii) Sn (s )| Sn 2+(0 .050 M)|| H+(0 .020 M)| H2(g) (1 b a r )| Pt (s )(iv) Pt(s )| Br 2(l )| Br –(0 .010 M)|| H+(0 .030 M)| H2(g) (1 ba r )| Pt (s ).

3 . 6 In th e bu tton cells widely u sed in wa tch es a n d oth er devices th e followin g rea ctionta k es p la ce:Zn (s ) + Ag2O(s ) + H2O(l ) → Zn 2+(a q) + 2Ag(s ) + 2OH–(a q)Determ in e ∆r G⊖ a n d E⊖ for th e rea ct ion .

3 . 7 Defin e con d u ct ivity a n d m ola r con d u ct ivity for th e s olu t ion of a n elect rolyte.Dis cu s s th eir va r ia t ion with con cen t ra t ion .

3 . 8 Th e con du ctivity of 0 .20 M solu tion of KCl a t 298 K is 0 .0248 S cm –1. Ca lcu la teit s m ola r con du ct ivity.

3 . 9 Th e res is ta n ce of a con du ctivity cell con ta in in g 0 .001M KCl solu tion a t 298 K is1500 Ω. Wh a t is th e cell con s ta n t if con du ctivity of 0 .001M KCl solu tion a t 298K is 0 .146 × 10 –3 S cm –1.

3 . 1 0 Th e con du ctivity of sod iu m ch lor ide a t 298 K h a s been determ in ed a t d ifferen tcon cen tra t ion s a n d th e res u lts a re given below:Con cen t r a t ion / M 0 .0 0 1 0 .0 1 0 0 .0 2 0 0 .0 5 0 0 .1 0 010 2 × κ/ S m –1 1 .2 3 7 1 1 .8 5 2 3 .1 5 5 5 .5 3 1 0 6 .7 4Ca lcu la te Λm for a ll con cen tra t ion s a n d dra w a p lot between Λm a n d c½ . Fin d th e

va lu e of 0mΛ .

3 . 1 1 Con du ctivity of 0 .00241 M a cetic a cid is 7 .896 × 10 –5 S cm –1. Ca lcu la te its m ola r

con du ctivity a n d if 0mΛ for a cetic a cid is 390 .5 S cm 2 m ol–1, wh a t is its d is socia t ion

con s t a n t ?3 . 1 2 How m u ch ch a rge is requ ired for th e followin g redu ct ion s :

(i) 1 m ol of Al3+ to Al.(ii) 1 m ol of Cu 2+ to Cu .

(iii) 1 m ol of Mn O4– to Mn 2+.

3 . 1 3 How m u ch electr icity in term s of Fa ra da y is requ ired to p rodu ce(i) 20 .0 g of Ca from m olten Ca Cl2.

(ii) 40 .0 g of Al from m olten Al2O3.3 . 1 4 How m u ch electr icity is requ ired in cou lom b for th e oxida tion of

(i) 1 m ol of H2O to O2.(ii) 1 m ol of FeO to Fe2O3.

3 . 1 5 A solu tion of Ni(NO3)2 is electrolysed between p la t in u m electrodes u s in g a cu rren tof 5 a m peres for 20 m in u tes . Wh a t m a ss of Ni is depos ited a t th e ca th ode?

3 . 1 6 Th ree electrolyt ic cells A,B,C con ta in in g s olu t ion s of Zn SO4, AgNO3 a n d Cu SO4,respectively a re con n ected in s er ies . A s tea dy cu rren t of 1 .5 a m peres wa s pa s sedth rou gh th em u n til 1 .45 g of s ilver depos ited a t th e ca th ode of cell B. How lon gdid th e cu rren t flow? Wh a t m a ss of copper a n d zin c were depos ited?

3 . 1 7 Usin g th e s ta n da rd electrode poten tia ls given in Ta ble 3 .1 , p red ict if th e rea ctionbetween th e followin g is fea s ib le:

(i) Fe3+(a q) a n d I–(a q)

Page 32: Chapter 3 Chemistry electrochemistry

9 4Ch em is t r y

(ii) Ag+ (a q) a n d Cu (s )(iii) Fe3+ (a q) a n d Br – (a q)(iv) Ag(s ) a n d Fe

3+ (a q)(v) Br 2 (a q) a n d Fe 2 + (a q).

3 . 1 8 Pred ict th e p rodu cts of electrolys is in ea ch of th e followin g:(i) An a qu eou s s olu t ion of AgNO3 with s ilver electrodes .

(ii) An a qu eou s s olu t ion of AgNO3with p la t in u m elect rodes .(iii) A d ilu te s olu t ion of H2SO4with p la t in u m electrodes .(iv) An a qu eou s s olu t ion of Cu Cl2 with p la t in u m electrodes .

Ans we rs to Som e Inte xt Que s t ions

3 . 5 E(cell) = 0 .91 V

3 . 6 1r G 45 .54 kJ m ol−∆ = −V , Kc = 9.62 ×10 7

3 . 9 0.114 , 3 .67 ×10 –4 m ol L–1