chapter 2 answer maths t focus

Upload: ahmad-haikal

Post on 11-Oct-2015

455 views

Category:

Documents


3 download

DESCRIPTION

focus on exam

TRANSCRIPT

  • Oxford Fajar Sdn. Bhd. (008974-T) 2013

    cHAPTER 2 sEquEncEs And sERiEs

    Focus on Exam 2

    1 u13 = 3, S13 = 234

    a + 12d = 3 132

    (a + u13) = 234

    a = 3 12d ...(1) 132

    (a + 3) = 234 ...(2)

    From (2), a = 33

    When a = 33, 33 = 3 12d d = 52

    S25 = 252

    3(2)(33) + (24)1 5224 =

    252

    (66 60) = 75

    2 (a) a = 1, r = 54

    Sn = a(rn 1)

    r 1 =

    1542n

    1

    154 12 = 431542

    n

    14 (b) Sn > 20

    431542n

    14 > 201542

    n

    1 > 5

    1542n

    > 6

    n lg 54

    > lg 6

    n > 8.03 The least number of terms is 9.

    3 12 22 + 32 42 + + (2n 1)2 (2n)2

    = 3 7 11 a = 3, d = 4

    Sn = n2

    36 + (n 1)( 4)4

    = n2

    (6 4n + 4) = n2

    ( 4n 2)

    = n(2n + 1) [Shown]

    (a) 12 22 + 32 42 + + (2n 1)2 (2n)2

    + (2n + 1)2

    = n(2n + 1) + (2n + 1)2

    = (2n + 1)(n + 2n + 1) = (2n + 1)(n + 1) (b) 212 222 + 232 242 + + 392 402

    = (12 22 + 32 42 + + 392 402) (12 22 + 32 42 + + 192 202)

    = S20 S10= 20(2(20) + 1) [10(2(10) + 1)]= 820 (210) = 610

    4 d = 2 un = a + (n 1)(2) = a + 2n 2 When n = 20, u20 = a + 2(20) 2 = a + 38

    S20 = 1120202

    (a + u20) = 1120

    10(a + a + 38) = 11202a = 74

    a = 37u20 = a + 38 = 37 + 38 = 75

    5 (a) a = 3, d = 4, Sn = 820

    Sn = n2

    [2a + (n 1)d ]

    820 = n2

    (6 + 4n 4)

    1640 = n(2 + 4n)n(1 + 2n) = 820

    n + 2n2 820 = 0(2n + 41)(n 20) = 0

    n = 20 since n = 412

    is not a solution.

    T20 = 3 + 19(4) = 79

  • Oxford Fajar Sdn. Bhd. (008974-T) 2013

    Fully Worked Solution 3ACE AHEAD Mathematics (T) First Term Updated Edition2

    (b) Since they form an A.P., (p2 + q2)2 (p2 2pq q2)2

    = (p2 + 2pq q2)2 (p2 + q2)2

    (p2 + q2 + p2 2pq q2)(p2 + q2 p2

    + 2pq + q2) = (p2 + 2pq + q2 + p2 q2)(p2 + 2pq

    q2 p2 q2) (2p2 2pq)(2q2 + 2pq) = (2p2 + 2pq)

    (2pq 2q2) 4pq(p q)(q + p) = 4pq(p + q)(p q)

    LHS = RHS [Shown]

    6 (a) Sn = pn + qn2, S8 = 20, S13 = 39

    (i) S8 = 8p + 64q8p = 20 64q

    p = 52

    8q jS13 = 39

    13p + 169q = 39 kSubstitute j into k,

    13152 8q2 + 169q = 39652

    104q + 169q = 39

    65q = 132

    q = 110

    p = 52

    81 1102 = 1710

    (ii) un = Sn Sn 1= pn + qn2 [p(n 1) + q(n 1)2]= p(n n + 1) + q[n2 (n 1)2]= p + q[(n + n 1)(n n + 1)]= p + q(2n 1)(1)

    = 1710

    + 110

    (2n 1)

    = 1710

    + n5

    110

    = 8 + n

    5

    (iii) To show that it is an A.P.,un un 1 = un + 1 un = d

    8 + n5

    8 + (n 1)5

    = 8 + (n + 1)

    5

    8 + n5

    2(8 + n)5

    = 8 + (n + 1) + 8 + (n 1)

    52(8 + n) = 16 + 2n2(8 + n) = 2(8 + n)

    LHS = RHS [Shown]

    d = (8 + n)

    5 8 + (n 1)

    5

    = 8 + n 8 n + 1

    5 =

    15

    = 0.2

    7 If J, K, M is a G.P., thenKJ

    = MK

    K 2 = MJ j(ar k 1)2 = (ar m 1) (ar j 1)

    r 2k 2 = rm 1 + j 1

    2k 2 = m + j 2k + k = m + jk m = j k k

    and2k = m + j l

    (k m)lg J + (m j)lg K + ( j k)lg M

    = lg J k m + lg Km j + lg M j k

    = lg J j k + lg Km j + lg M j k [from k]= ( j k)(lg J + lg M) + lg K m j

    = ( j k)lg JM + lg K m j

    = ( j k)lg K2 + (m j)lg K

    = 2( j k)lg K + (m j)lg K

    = (2j 2k + m j)lg K

    = ( j + m 2k)lg K

    = (2k 2k)lg K [from l]= 0 [Proven]

    8 (a) A.P., a = 200, d = 400 Tn = a + (n 1)d = 2000 + (n 1)(400) = 400 n + 1600 = 400 (n + 4)

    (b) Sn = n2

    (a + l) = n2

    [2000 + 400n + 1600]

    = n2

    (400n + 3600)

    = 200n(n + 9)

    (c) Sn > 200 000 200n (n + 9) > 200 000

    n2 + 9n 1000 > 0 n < 36.44135, n > 27.44135 [ n = 28

    9 S5 = 44, a(1 r5)

    1 r = 44 j

    S10 S5 = 118

  • Oxford Fajar Sdn. Bhd. (008974-T) 2013

    Fully Worked Solution 3ACE AHEAD Mathematics (T) First Term Updated Edition2

    a(1 r10)1 r

    a(1 r5)

    1 r =

    118

    a(1 + r5)(1 r5)1 r

    a(1 r5)

    1 r =

    118

    k

    a(1 r5)

    1 r (1 + r5 1) =

    118

    Substitute j into k,44(r5) =

    118

    r5 = 132

    r = 12

    [Shown]

    a31 1 12254

    1 1 122 = 44

    a11 + 1322 = 66a = 64

    S = a

    1 r

    = 64

    1 1 122= 42

    23

    10 (a) r = 3 13 + 1

    3 13 1

    = 3 2 3 + 1

    3 1 = 2 3

    u3 = u2r

    = ( 3 1)(2 3)= 2 3 3 2 + 3= 3 3 5

    u4 = u3r

    = (3 3 5)(2 3)= 6 3 3(3) 10 + 5 3= 11 3 19

    (b) r = 2 3 [< 1]

    S = a

    1 r =

    3 + 11 (2 3 )

    = 3 + 13 1

    3 + 13 + 1

    = 3 + 2 3 + 1

    2= 2 + 3

    11 (a) S6S3

    = 78

    , u2 = 4

    8S6 = 7S3 j

    ar = 4

    a = 4r k

    83a(1 r6)

    1 r 4 = 73a(1 r3)

    1 r 48(1 r6) = 7(1 r3)

    8 8r6 = 7 7r3

    8r6 7r3 1 = 0(r3 1)(8r3 + 1) = 0

    r3 = 1 or 18

    r = 12

    since r = 1 is

    not a solution.a =

    4

    1 122 = 8

    (b) r = 85

    12

    = 45

    , a = 2

    Sn > 9.9a(1 rn)

    1 r > 9.9

    231 1452

    n41152

    > 9.9

    1 1452n

    > 0.99

    1452n

    < 0.01

    n lg 45

    < lg (0.01)

    n > 20.64 The least number of terms is 21.

    12 u3 = S2ar2 =

    a(1 r2)1 r

    ar2(1 r) = a(1 + r)(1 r)ar2 = a(1 + r)

    r2 r 1 = 0

    r = (1) (1)2 4(1)(1)

    2

    = 1 5

    2a = 2

    When r = 1 + 5

    2 [|r| > 1], S doesnt exist

    When r = 1 + 5

    2 [|r| < 1],

  • Oxford Fajar Sdn. Bhd. (008974-T) 2013

    Fully Worked Solution 5ACE AHEAD Mathematics (T) First Term Updated Edition4

    S = a

    1 r

    = 2

    1 1 5

    2

    = 2

    12 1 + 52 2 =

    41 + 5

    1 51 5

    = 4 4 5

    1 5 = 5 1

    13 a = 3, r = 0.4 (a) un < 0.02

    ar n 1 < 0.023(0.4)n 1 < 0.02

    (0.4)n 1 < 1

    150

    (n 1)lg 0.4 < lg 1

    150

    n 1 > 5.47n > 6.47

    The least number of terms is 7. (b) S Sn < 0.01

    a1 r

    a(1 rn)

    1 r < 0.01

    a

    1 r (1 1 + r n) < 0.01

    3

    0.6 (r n) < 0.01

    0.4n < 2 103

    n lg 0.4 < lg (2 103)n > 6.78

    The least number of terms is 7.

    14 Sn = a + ar + ar 2 + + ar n 2 + ar n 1 j

    rSn = ar + ar 2 + + ar n 2 +

    ar n 1 + ar n k j k,

    Sn rSn = a ar n

    Sn(1 r) = a(1 r n)

    Sn = a(1 r n)

    1 r [Shown]

    For S to exist, |r| < 1,

    lim Sn = S = a(1 r )

    1 r =

    a1 rn

    S SnS

    =

    a1 r

    a(1 r n)

    1 ra

    1 r

    =

    a1 r

    [1 (1 r n)]

    a1 r

    = rn [Shown]

    (a) u4 = 18, u7 = 163

    ar3 = 18 j ar6 = 163

    k

    kj

    , r3 = 1163 2 118

    r3 = 1 8272r = 1232

    a12323

    = 18

    a = 2434

    S = 12434 21 2

    3

    = 7294

    (b) S Sn

    S < 0.001

    rn < 0.001

    1232n

    < 0.001

    n lg 23

    < lg 0.001

    n > 17.04 The least value of n is 18.

    15 2r 1

    r(r 1)

    2r + 1r(r + 1)

    = (r + 1)(2r 1) (2r + 1)(r 1)

    r(r 1)(r + 1)

    = 2r2 r + 2r 1 2r2 + 2r r + 1

    r(r 1)(r + 1)

    = 2r

    r(r 1)(r + 1) =

    2(r 1)(r + 1)

    [Verified]

  • Oxford Fajar Sdn. Bhd. (008974-T) 2013

    Fully Worked Solution 5ACE AHEAD Mathematics (T) First Term Updated Edition4

    or = 2

    n 2(r 1)(r + 1)

    = or = 2

    n 3 2r 1r(r 1)

    2r + 1r(r + 1)4

    = or = 2

    2n [ f (r) f (r + 1)] 3f (r) = 2r 1r(r 1)4

    = f (2) f (n + 1)

    = 32

    2n + 1n(n + 1)

    [Proven]

    12

    or = 2

    2(r 1)(r + 1)

    = 12

    lim 332 2n + 1n(n + 1)4n

    = 12

    lim 332 2n

    + 1n2

    1 + 1n4n

    = 12

    132 02 = 34 16

    1r(r + 1)

    1

    (r + 1)(r + 2) =

    r + 2 rr(r + 1)(r + 2)

    = 2

    r(r + 1)(r + 2)[Shown]

    or = 1

    n 1r(r + 1)(r + 2)

    = 12

    or = 1

    n 2r(r + 1)(r + 2)

    = 12

    or = 1

    n 3 1r(r + 1)

    1(r + 1)(r + 2)4

    3f (r) = 1r(r + 1)4 =

    12

    or = 1

    n [ f (r) f (r + 1)]

    = 12

    [ f (1) f (n + 1)]

    = 12

    312 1(n + 1)(n + 2)4 =

    12

    3 n2 + 3n + 2 2

    2(n + 1)(n + 2)4 =

    n2 + 3n4(n + 1)(n + 2)

    17 (a) 1

    (2r 1)(2r + 1)

    A2r 1

    + B

    2r + 11 A(2r + 1) + B(2r 1)

    Let r = 12

    , Let r = 12

    ,

    l = B(2) 1 = A(2)

    B = 12

    A = 12

    1

    (2r 1)(2r + 1) =

    12(2r 1)

    1

    2(2r + 1)

    = 121

    12r 1

    1

    2r + 12 (b) o

    r = n

    2n

    1(2r 1)(2r + 1)

    = or = n

    2n 3 12(2r 1)

    12(2r + 1)4

    = 12

    or = n

    2n [ f (r) f (r + 1)] 3f (r) = 12r 14,

    = 12

    [ f (n) f (2n + 1)]

    = 12

    3 12n 1 1

    4n + 14 =

    12

    1 4n + 1 2n + 1(2n 1)(4n + 1)2 =

    n + 1(2n 1)(4n + 1)

    = an + b

    (2n 1)(4n + 1) [Shown] a = 1, b = 1

    (c) lim 3 n + 1(2n 1)(4n + 1)4n

    = lim 31n

    + 1n2

    8 2n

    1n24 = 0n

    18 Let 1(2r + 1)(2r + 3)

    A2r + 1

    + B

    2r + 3 l A(2r + 3) + B(2r + 1)

    Let r = 32

    Let r = 12

    1 = B(2) 1 = A(2)

    B = 12

    A = 12

    1(2r + 1)(2r + 3)

    = 1

    2(2r + 1) 1

    2(2r + 3)

    or = 1

    n 1(2r + 1)(2r + 3)

    = 12

    or = 1

    n 3 12r + 1

    12r + 34

    = 12

    or = 1

    n [ f (r) f (r + 1)] 3f (r) = 12r + 14

  • Oxford Fajar Sdn. Bhd. (008974-T) 2013

    Fully Worked Solution 7ACE AHEAD Mathematics (T) First Term Updated Edition6

    = 12

    [ f (1) f (n + 1)]

    = 12

    313 12n + 34 =

    16

    12(2n + 3)

    To test for the convergence,

    lim 316 1

    2(2n + 3)4 = 16n

    The series converges to 16

    .

    S` =

    16

    19 on = 25

    N 1 12n 1

    12n + 12

    = on = 25

    N[ f (n) f (n + 1)] 3f (n) = 12n 1 4

    = f (25) f (N + 1)

    = 1

    50 1

    12N + 1

    = 17

    1

    2N + 1

    on = 25

    un = lim 117

    12n + 1 2 =

    17n

    20 1r!

    1(r + 1)!

    = (r + 1)! r!r!(r + 1)!

    = (r + 1)r! r!

    r!(r + 1)!

    = r

    (r + 1)! [Shown]

    or = 1

    n

    r(r + 1)!

    = or = 1

    n

    31r! 1

    (r + 1)!4= o

    r = 1

    n

    [ f (r) f (r + 1)],

    3f (r) = 1r!4= f (1) f (n + 1)

    = 1 1

    (n + 1)!

    21 r + 1r + 2

    rr + 1

    = (r + 1)2 r(r + 2)

    (r + 1)(r + 2)

    = r2 + 2r + 1 r2 2r

    (r + 1)(r + 2)

    = 1

    (r + 1)(r + 2) [Shown]

    or = 1

    n

    1(r + 1)(r + 2)

    = or = 1

    n

    3r + 1r + 2 r

    r + 14= o

    r = 1

    n

    [ f (r) f (r 1)],

    3f (r) = r + 1r + 24= f (n) f (0)

    = n + 1n + 2

    12

    = 2(n + 1) (n + 2)

    2(n + 2)

    = 2n + 2 n 2

    2(n + 2)

    = n

    2(n + 2)

    22 f (r) f (r 1)

    = 1

    (2r + 1)(2r + 3)

    1(2r 1)(2r + 1)

    = 2r 1 2r 3

    (2r 1)(2r + 1)(2r + 3)

    = 4

    (2r 1)(2r + 1)(2r + 3) [Shown]

    or = 1

    n

    1(2r 1)(2r + 1)(2r + 3)

    = 14

    or = 1

    n

    4(2r 1)(2r + 1)(2r + 3)

    = 14

    or = 1

    n

    [ f (r) f (r 1)]

    3f (r) = 1(2r + 1)(2r + 3)4 =

    14

    [ f (n) f (0)]

    = 143

    1(2n + 1)(2n + 3)

    134

    = 112

    14(2n + 1)(2n + 3)

    = 4n2 + 6n + 2n + 3 3

    12(2n + 1)(2n + 3)

    = 4n2 + 8n

    12(2n + 1)(2n + 3)

    = n2 + 2n

    3(2n + 1)(2n + 3)

  • Oxford Fajar Sdn. Bhd. (008974-T) 2013

    Fully Worked Solution 7ACE AHEAD Mathematics (T) First Term Updated Edition6

    23 Let 1(4n 1)(4n + 3)

    A4n 1

    + B

    4n + 3 l A(4n + 3) + B(4n 1)

    Let n = 34

    Let n = 14

    1 = B( 4) 1 = A(4)

    B = 14

    A = 14

    1(4n 1)(4n + 3)

    = 141

    14n 1

    14n + 32

    Let f (r) = 1

    4r + 3

    14

    or = 1

    n

    1 14r 1 1

    4r + 32 =

    14

    or = 1

    n [ f (r 1) f (r)]

    = 14

    [ f (0) f (n)]

    = 14

    313 1

    4n + 34 =

    14

    34n + 3 33(4n + 3) 4 = n

    3(4n + 3)

    24 f (x) = x + x + 1

    1f (x)

    = 1

    x + x + 1

    x x + 1x x + 1

    = x x + 1

    x (x + 1)= x + 1 x

    ox = 1

    24 1f (x)

    = ox = 1

    24 1 x x + 12

    = ( 1 2 + 2 3 + + 24 25)= (1 5) = 4

    25 Using long division,1

    x2 + 6x + 8 2x2 + 6x + 0x2 + 6x + 8

    8

    x(x + 6)(x + 2)(x + 4)

    1 8(x + 2)(x + 4)

    Let 8(x + 2)(x + 4)

    A(x + 2)

    + B

    (x + 4),

    8 A(x + 4) + B(x + 2)

    Let x = 4, Let x = 2, 8 = B(2) 8 = A(2)

    B = 4 A = 4

    x(x + 6)(x + 2)(x + 4)

    = 1 4

    x + 2 +

    4x + 4

    ox = 1

    n 31 4x + 2 +

    4x + 44

    = ox = 1

    n 1 4 o

    x = 1

    n 3 1x + 2

    1x + 44

    = n 4313 15

    + 14

    16

    + 15

    17

    +

    + 1

    n + 1 1

    n + 3 +

    1n + 2

    1n + 44

    = n 4313 + 14

    1n + 3

    1n + 44

    = n 43 712 2n + 7

    (n + 3)(n + 4)4 = n 437(n

    2 + 7n + 12) 12(2n + 7)12(n + 3)(n + 4) 4

    = n 7n2 + 49n + 84 24n 84

    3(n + 3)(n + 4)

    = n 7n2 + 25n

    3(n + 3)(n + 4)

    = 3n(n + 3)(n + 4) n(7n + 25)

    3(n + 3)(n + 4)

    = n[3(n2 + 7n + 12) 7n 25]

    3(n + 3)(n + 4)

    = n[3n2 + 21n + 36 7n 25]

    3(n + 3)(n + 4)

    = n(3n2 + 14n + 11)3(n + 3)(n + 4)

    = n(n + 1)(3n + 11)3(n + 3)(n + 4)

    [Shown]

    26 (2 + 3x)4 = 24 + 4(23)(3x) + 6(22)(3x)2 + 4(2) (3x)3 +(3x)4

    = 16 + 96x +216x2 + 216x3 + 81x4

    [2 + (3x)]4 = 24 + 4(23)(3x) + 6(22) (3x)2 + 4(2)(3x)3 + (3x)4

    = 16 96x + 216x2 216x3 + 81x4 (2 + 3x)4 (2 + 3x)4 = 192x + 432x3

    Let x = 2 , (2 + 3 2 )4 (2 +3 2 )4 = 192 2 + 432 ( 2 )3

    = 1056 2

  • Oxford Fajar Sdn. Bhd. (008974-T) 2013

    Fully Worked Solution 9ACE AHEAD Mathematics (T) First Term Updated Edition8

    27 (a) 1x + 1x25

    = x5 + 5x4 11x2+ 10x3 11x2

    2

    +

    10x2 11x23

    + 5x 11x24

    + 11x25

    = x5 + 5x3 + 10x + 1011x2 + 51 1x32+ 1

    1x52

    1x 1x23

    = x3 + 3x2 1 1x2+ 3x 11x2

    2

    +

    1 1x23

    = x3 3x + 3 11x2 1

    x3

    1x + 1x25

    1x 1x23

    = 1x5 + 5x3 + 10x + 10 11x2+ 51

    1x32+

    1x52 31x3 3x + 311x2

    1x32

    Terms containing x4

    = x513x2 + 5x3(3x) + 10x(x3)= 3x4 15x4 + 10x4

    = 2x4

    Coefficient of x4 = 2

    (b) Tr + 1 = 1nr2an r br = 16r2 (x2) 6 r (2x1)r = 16r2 (2)r x12 2r xr = 16r2 (2)r x12 3r The term independent of x is the term

    where 12 3r = 0 r = 4

    28 (a) 11 32x25

    (2 + 3x)6

    = 31 + 5C11 32x2 + 5C21 32

    x22

    + 4 [26 + 6C1(2)

    5(3x) + 6C2(2)4(3x)2 + ]

    = 11 152 x + 452

    x22(64 + 576x + 2160x2) = 64 + 576x +2160x2 480x 4320x2

    + 1440x2

    = 720x2 + 96x + 64 [Shown]

    (b) 11 32x x225

    = 3 1x 122 (x + 2)45

    = 1x 1225

    (x + 2)5

    = 11225

    (1 2x)5(2)5 11 + x225

    = [1 + 5(2x) + 10(2x)2 + 10(2x)3

    + 5(2x)4 ] 31 + 51x22 + 101x22

    2

    + 101x223

    + 51x22

    4

    4 = (1 10x + 40x2 80x3 + 80x4)

    11 + 52x + 52

    x2 + 54

    x3 + 516

    x42 = 1 +

    52

    x + 52

    x2 + 54

    x3 + 516

    x4 10x

    25x2 25x3 252

    x4 + 40x2 + 100x3

    + 100x4 80x3 200x4 + 80x4

    = 1 152

    x + 352

    x2 154

    x3 51516

    x4

    29 (a) 1 + 10(3x + 2x2) + 10(9)

    2 (3x + 2x2)2

    + 10(9)(8)

    3! (3x + 2x2)3

    = 1 + 30x + 20x2 + 45(9x2 + 12x3) + 120(27x3) = 1 + 30x + 425x2 + 3780x3

    Coefficient of x3 = 3780

    (b) (1 + x)1(4 + x2)

    12

    = 31 + 11! (x) + 1(2)

    2! (x)2 +

    1(2)(3)3!

    (x)3 + 414 122 31 + x

    2

    4 4

    12

    = 12

    (1 x + x2 x3 + )11 + 1

    21! 1

    x2

    4 2

    + 1

    21 322

    2! 1x2

    4 22

    + 2 =

    12

    (1 x + x2 x3 + ) 11 x2

    8 + 2

    = 12

    11 x2

    8 x +

    x3

    8 + x2 x32

  • Oxford Fajar Sdn. Bhd. (008974-T) 2013

    Fully Worked Solution 9ACE AHEAD Mathematics (T) First Term Updated Edition8

    = 12

    11 x + 78x2 78

    x3 + 2where |x| < 1

    30 Let f (x) A1 x

    + Bx + C1 + x2

    1 + 2x + 3x2 A(1 + x2) + (Bx + C)(1 x) Let x = 1, 1 + 2 + 3 = A(2)

    A = 3 Let x = 0,

    1 = 3(1) + (0 + C)(1)C = 2

    Let x = 1, 1 2 + 3 = 3(2) + [B + (2)](2)

    2 = 6 4 2BB = 0

    Hence, f (x) = 3

    1 x 2

    1 + x2

    f (x) = 3(1 x)1 2(1 + x2)1

    = 331 + 11! (x) + 1(2)2! (x)2

    + 1(2)(3)

    3! (x)3 + 4

    231 + 11! (x)2 + 4 = 3(1 + x + x2 + x3 + ) 2(1 x2 + )= 3 + 3x + 3x2 + 3x3 2 + 2x2

    = 1 + 3x + 5x2 + 3x3 where |x| < 1[Shown]

    31 (a) ( 5 + 2)6 ( 5 2)6

    8 5

    =

    [( 5 + 2)3 + ( 5 2)3][( 5 + 2)3

    ( 5 2)3]8 5

    =

    ( 5 + 2 + 5 2)[( 5 + 2)2 ( 5 + 2)( 5 2) + ( 5 2)2]( 5 + 2 5 + 2)[( 5 + 2)2

    + ( 5 + 2)( 5 2) + ( 5 2)2]8 5

    =

    [2 5(5 + 4 5 + 4 1 + 5 4 5 + 4)] [(4)(5 + 4 5 + 4 + 1 + 5 4 5 + 4)]

    8 5 = (17)(19)= 323

    (b) (1 3x)13

    = 31 + 13

    1! (3x) +

    131

    232

    2! (3x)2

    +

    131

    2321

    532

    3!(3x)3 + 4

    = 1 x x2 53

    x3 where |x| < 13

    When x = 18

    ,

    (1 3x)13 = 158 2

    13 =

    52

    = 1 18

    11822

    531

    182

    3

    3 5 = 13151536

    (2)

    = 1315768

    = 1.71 [2 decimal places]

    32 Term independent of x is

    1642 (2)4 = 240 (1 y)2n = 1 + 2n(y) +

    (2n)(2n 1)2!

    (y)2 + ...

    = 1 2ny + n(2n 1)y2 + ...

    (1 + y)2n = 1 + (2n)(y) + (2n)(2n 1)

    2! (y)2

    + ... = 1 2ny + n(2n + 1)y2 + ...

    11 y1 + y22n

    = (1 y)2n(1 + y)2n

    = (1 2ny + n(2n 1)y2 + ...) (1 2ny + n(2n + 1)y2 + ...) = 1 2ny + n(2n + 1)y2 2ny + 4n2y2 + n(2n 1)y2

    = 1 4ny + 8n2y2

    [ 11 y1 + y22n

    = 1 4ny + 8n2y2 + ...

    Let y = 150

    , n = 116

    1 1 150

    1 + 150

    218

    1 41 116211502+ 81

    1102

    2

    1 15022

    14951218

    79 60180 000

  • Oxford Fajar Sdn. Bhd. (008974-T) 2013

    Fully Worked Solution 11ACE AHEAD Mathematics (T) First Term Updated Edition10

    33 (1 x)10 = 1 10x + 45x2 + (1 + 2x2)3 = 1 + 6x2 + (1 + ax)5 = 1 + 5ax + 10a2x2 + (1 + bx2)4 = 1 + 4bx2 + (1 x)10 (1 + 2x2)3 (1 + ax)5 (1 + bx2)4

    = (1 10x + 45x2 + )(1 + 6x2 + ) (1 + 5ax + 10a2x2 + )(1 + 4bx2 + )

    = 1 + 6x2 10x + 45x2 1 4bx2 5ax 10a2x2 +

    10 5a = 0 6 + 45 4b 10a2 = 0a = 2 6 + 45 4b 40 = 0

    b = 114

    34 (a) 1x + 1x25

    1x 1x23

    = 3x5 + 5(x)411x2 + 10x311x22 + 10x21

    1x32

    + 5x1 1x42 + 1x54 3x3 + 3(x)21

    1x 2

    + 3x1 1x22

    + 1 1x23

    4 = 1x5 + 5x3 + 10x + 10x +

    5x3

    + 1x52

    1x3 3x + 3x 1x32

    To obtain x4 term,

    = + x513x2 + 5x3(3x) + 10x(x3) + = 3x4 15x4 + 10x4 = 2x4

    The coefficient of x4 term is 2.

    (b) (1 + x)15 5 + 3x

    5 + 2x

    = 31 + 151!

    (x) +

    151

    452

    2! (x)2

    +

    151

    4521

    952

    3!(x)3 + 4

    (5 + 3x)(5 + 2x)1

    = 11 + 15x 225

    x2 + 6

    125x32

    (5 + 3x)(5)111 + 25x21

    = 11 + 15x 225

    x2 + 6

    125x32

    (5 + 3x)115231 + 11! 1

    25

    x2+

    1(2)2!

    125x22

    + 1(2)(3)

    3! 125

    x23

    4

    = 1 + 15

    x 225

    x2 + 6

    125x3 1

    5 (5 + 3x)

    11 25x + 425

    x2 8125

    x32= 1 +

    15

    x 225

    x2 + 6

    125x3 1

    5 15 2x

    + 45

    x2 825

    x3 + 3x 65

    x2 + 1225

    x32= 1 +

    15

    x 225

    x2 + 6

    125 x3 1 1

    5 x +

    225

    x2

    4125

    x3

    = 2

    125x3 where |x| < 2

    5 [Shown]

    Hence, p = 2

    125By using x = 0.02,

    (1.02)15

    125350 2125250 2

    = 2

    125 (0.02)3

    = 1.28 107 [Shown]

    35 (1 + ax + bx2)7

    = [(1 + ax) + (bx2)]7

    = 7Cr (1 + ax)7 r (bx2)r

    x term: = 7C0(1 + ax)

    7

    = 7C0[7C1 (ax)]

    = 7ax x2 term: = 7C0(1 + ax)

    7 + 7C1(1 + ax)6 (bx2)

    = 7C0[7C2(ax)

    2] + 7C1[6C0(ax)

    0 (bx2)] = 21a2x2 + 7bx2

    = (21a2 + 7b)x2

    7a = 1 21a2 + 7b = 0

    a = 17

    2111722

    + 7b = 0

    7b = 37

    b = 349

    Let (1 + ax + bx2)7 = 1 + x

    (1 + x)17 = 1 +

    17

    x 349

    x2 + where |x| < 1

    By using x = 0.014, 7 1.014 = 1 +

    17

    (0.014) 349

    (0.014)2

    = 1.001988 [6 decimal places]

  • Oxford Fajar Sdn. Bhd. (008974-T) 2013

    Fully Worked Solution 11ACE AHEAD Mathematics (T) First Term Updated Edition10

    36 (1 + x)7

    1 2x = (1 + x)7 (1 2x)1

    = [1 + 7x + 21x2 + 35x3 + ] 31 + 11! (2x) +

    1(2)2!

    (2x)2 + 1(2)(3)

    3! (2x)3 + 4

    = (1 + 7x + 21x2 + 35x3 + ) (1 + 2x + 4x2

    + 8x3 + ) = 1 + 2x + 4x2 + 8x3 + 7x + 14x2 + 28x3

    + 21x2 + 42x3 + 35x3 + = 1 + 9x + 39x2 + 113x3 + where |x| <

    12

    [Shown] Using x = 0.01,

    (0.99)7

    (1.02) = 1 + 9(0.01) + 39(0.01)2

    + 113(0.01)3 +

    = 0.914 [3 decimal places]

    37 1 + x = (1 + x)

    12

    = 1 +

    121!

    (x) +

    121

    122

    2!(x)2

    +

    121

    1221

    322

    3! (x)3

    +

    121

    1221

    3221

    522

    4! (x)4 +

    = 1 + x2

    x2

    8 +

    x3

    16 5

    128 x4 + j

    14

    (6 + x) (2 + x)1

    = 6 + x

    4 2131 + x24

    1

    = 6 + x

    4 1

    231 + 11!

    1x2 2 + 1(2)

    2! 1x22

    2

    + 1(2)(3)

    3! 1x22

    3

    + 1(2)(3)( 4)

    4! 1x22

    4

    4 =

    6 + x4

    1211

    x2

    + x2

    4 x

    3

    8 +

    x4

    16 2

    = 6 + x

    4 1

    2 +

    x4

    x2

    8 +

    x3

    16 x

    4

    32 +

    = 1 + x2

    x2

    8 +

    x3

    16 x

    4

    32 k

    To obtain the error,

    j k, 11 + x2 x2

    8 +

    x3

    16 5

    128x42

    11 + x2 x2

    8 +

    x3

    16 x

    4

    322 =

    5128

    x4 + x4

    32

    = x4

    128 The error is approximately x

    4

    128. [Shown]

    38 (a + b)12 = 3a11 + ba24

    12 = a

    12 11 + ba2

    12

    a12 11 + ba2

    12 = a

    12 31 + 12 1ba2+

    121

    12

    122!

    1ba22

    +

    121

    12

    12112 223!

    1ba23

    + ...4 = a

    12 11 + b2a

    b2

    8a2 +

    b3

    16a3 + ...2j

    (a b)12 = a

    12 11 ba2

    12

    = a211 b2a b2

    8a2 b

    3

    16a3 + ...2k

    j k

    (a + b)12 (a b)

    12 = a

    12 12b2a +

    2b3

    16a32 = a

    12 1ba +

    b3

    8a32 Let a = 4, b = 1

    5 3 = 412 114 +

    18(43)2

    = 129256

    ( 5 3) ( 5 + 3) = 5 3 = 2 129

    256 ( 5 + 3) = 2

    ( 5 + 3) = 2 3 256129

    = 512129

  • Oxford Fajar Sdn. Bhd. (008974-T) 2013

    ACE AHEAD Mathematics (T) First Term Updated Edition12

    39 y = 1

    1 + 3x + 1 + x

    1 + 3x 1 + x

    1 + 3x 1 + x

    = 1 + 3x 1 + x

    1 + 3x (1 + x)

    = 1

    2x 1 1 + 3x 1 + x 2 [Shown]

    12x3(1 + 3x)

    12 (1 + x)

    124

    = 1

    2x531 + 121!

    (3x) +

    121

    122

    2!(3x)2

    +

    121

    1221

    322

    3!(3x)34 31 +

    121!

    (x)

    +

    12

    1 1222!

    (x)2 +

    121

    1221

    322

    3!(x)346

    = 1

    2x311 + 32

    x 98

    x2 + 2716

    x32 11 + x2 x

    2

    8 +

    x3

    1624 =

    12x1

    x x2 + 138

    x32

    = 12

    x2

    + 1316

    x2

    Using x = 1

    100,

    y = 1

    1 + 3x + 1 + x

    = 1

    103100 +

    101100

    = 10

    103 + 101 =

    12

    1 11002

    2 +

    13161

    11002

    2

    = 79 213

    160 000 [Shown]

    40 (a) 3 5x + 3x2

    A(1 + x2) + (B + Cx)(1 2x)

    Let x = 12

    ,

    54

    = 54

    (A)

    A = 1 Let x = 0,

    3 = 1(1 + 0) + (B + 0)(1)B = 2

    Let x = 1,1 = 1(2) + (2 + C )(1)

    C + 2 = 1C = 1

    (b) (1 2x)1 = 31 + 11! (2x) + 1(2)

    2! (2x)2

    + 1(2)(3)

    3! (2x)34

    = 1 + 2x + 4x2 + 8x3

    (1 + x2)1 = 31 + 11! (x2) + 4= 1 x2

    (c) (3 5x + 3x2)(1 2x)1(1 + x2)1

    = 1

    1 2x +

    2 x1 + x2

    = 1(1 2x)1 + (2 x)(1 + x2)1

    = 1(1 + 2x + 4x2 + 8x3) + (2 x)(1 x2) = 1 + 2x + 4x2 + 8x3 + 2 2x2 x + x3

    = 3 + x + 2x2 + 9x3 a = 1, b = 2, c = 9