chapter 1ggn.dronacharya.info/.../questionbank/ivsem/kom/section-b/ppt2.pdf · multibody kinematics...

109
1.1 INTRODUCTION Determine appropriate movement of the wipers View range Tandem or opposite Wipe angle Location of pivots Timing of wipers Wiping velocity The force acting on the wipers PART 2 Multibody Kinematics and Dynamics Chapter 1 1

Upload: lamhuong

Post on 10-Jun-2018

243 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.1 INTRODUCTION

Determine appropriate movement of the wipers

View range

Tandem or opposite

Wipe angle

Location of pivots

Timing of wipers

Wiping velocity

The force acting on the wipers

PART 2

Multibody Kinematics and Dynamics

Chapter 1

1

Page 2: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Kinematics

• Kinematics

– Deal with the way things move

• Kinematic analysis

– Determine

• Position, displacement, rotation, speed, velocity, acceleration

– Provide

• Geometry dimensions of the mechanism

• Operation range

• Dynamic analysis

– Power capacity, stability, member load

• Planar mechanism – motion in 2D space

2

Page 3: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.4 MECHANISM TERMINOLOGY Mechanism

Design synthesis is the process of developing mechanism to satisfy a set of

performance requirements for the machine.

Analysis ensures that the mechanism will exhibit motion to accomplish the

requirements. Linkage

Frame

Links– rigid body

Joint

Primary joint (full joint)

Revolute joint (pin or hinge joint)–

pure rotation

Sliding joint (piston or prism joint)–

linear sliding

3

Page 4: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Higher-order joint (half joint)

Allow rotation and sliding

Cam joint

Gear connection

Simple link

A rigid body contains only two joints

Crank

Rocker

Complex link

A rigid body contains more than two joints

Rocker arm

Bellcrank

Point of interest

Actuator

A power source link 4

Mechanism Joint

Page 5: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.5 Kinematic Diagram

Simple Link

Simple Link

(with point of

interest)

Complex Link

Pin Joint

Revolute Joint

5

Page 6: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Kinematic Diagram

Slider Joint

Cam Joint

Gear Joint

Translation Joint

6

Page 7: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.7 MOBILITY

7

Constrained mechanism : one degree of freedom

Locked mechanism : zero degree of freedom

Unconstrained mechanism : more than one degree of freedom

Page 8: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

8

Page 9: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.7 Actuators and Drivers

• Electric motors (AC/DC)

• Engines

• Servomotors

• Air or hydraulic motors

• Hydraulic or pneumatic cylinders

• Screw actuators

• Manual

9

Page 10: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

10

Page 11: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.9 SPECLAL CASES OF THE MOBILITY EQUATION

Coincident Joints

• One degree of freedom actually if pivoted links are the same size

11

Page 12: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

12

Page 13: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.10 THE FOUR-BAR MECHANISM

13

Page 14: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

14

Crank and Rocker

Page 15: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.10.1 Design of Crank and Rocker

s : short link

l : long link

p , q : intermediate link

15

Page 16: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.11 SLIDER-CRANK MECHANISM

16

Page 17: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.12 SPECIAL PURPOSE MECHANISMS

1.12.1 Straight-Line Mechanisms

17

1.12.2 Parallelogram Mechanisms

Page 18: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.12.3 Quick-Return Mechanisms

18

1.12.4 Scotch Yoke Mechanism

Page 19: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Locate the positions of all

links as driver link is

displaced

Configuration

Positions of all the links

One degree of freedom

Moving one link will

precisely position all

other links

Chapter 4 Displacement Analysis

4.4 DISPLACEMENT ANALYSIS

19

Page 20: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

20

Page 21: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

r1

r2

r4

r3 r3 r5

r4

Y

X

X1

Y1

1 2 3 4

3 31 1 2 2

1 1 2 2 3 3

1 1 2 3

3 4 5

3 3 4 4 1

3 3 4 4

1

0

5.30

3.2

3, 30, 4.9, 3.3

0

00.8

10.1

r r r r

r cr s r c

rc r s r s

r r r

r r r

r c r c x

r s r s

r

2 equations for 2 unknows

2 equations for 2 unknows

(1)

(2) 2 3,

4 1and x

4.1 Vector Analysis of Displacement

21

Page 22: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 2 3

1 2

1 2

1 2 1 max

1 2 1 min

0

0.5 1.75 10

0.5 1.75

,

,

r r r

c c

s s y

for solve for and y

for solve for and y

r1

r3 r2

X

Y

22

Page 23: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

4.7 Limiting Positions and Stroke

23

Page 24: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

6.2 LINEAR AND ANGULAR VELOCITY

6.2.2 Linear Velocity of a General Point

Chapter 6 Velocity Analysis

24

Page 25: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 2 3 4

2 2 3 3 4 4

3 4

0

0

r r r r

r r r

eqs for unknowns and

r2 r1

r3

r4

X

Y

25

Page 26: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

6.6 GRAPHICAL VELOCITY ANALYSIS:RELATIVE VELOCITY METHOD

6.6.1 Points on Links Limited to Pure Rotation or Rectilinear Translation

6.6.2 General Points on a Floating Link

26

Page 27: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 2 3

1 1 2 2

1 2

1 4

1 1 2 4

0

00

5

r r r

r r

eqs for and

r r r

r r r

r1

r2

r3

r4

X

Y

27

Page 28: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 2 3

1 1 2 2 2

2

1 2

2

2

0

0

5 min ,

r r r

solve for and

r r r

vcrad r

vs

eqs for unknowns and v

Y

X

r3

r2

r1

28

Page 29: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 2 3

2 2 3

1 1

1 1 2 2 2

2

2

2

1 2

0

16, 340

3

0

8

8

r r r

r r

eqs for unknowns r and

r r r

cr

s

eqs for unknowns and

r1

r3

r2

Y

X

29

Page 30: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 2 3 4

1 1 2 2 3 3

1 2 3

0

0

r r r r

r r r

given find and

r1 r2

r3

r4

X

Y

30

Page 31: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

7.2 LINEAR ACCELERATION

7.2.1 Linear Acceleration of Rectilinear Points

Chapter 7 Acceleration Analysis

31

Page 32: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 2 3 4

1 1 2 2 3 3

1 2 3

1 1 1 2 2 2 2 2 3 3 3 3 3

2 3

0

0

0

r r r r

r r r

given find and

r r r r r

solve for and

r2 r1

r3

Y

r4

X

32

Page 33: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

pr

r5

1 2 3 5

1 1 2 2 3 3 5

1 1 1 2 2 2 2 2 3 3 5 3 3 3 5

p

p

p

r r r r r

r r r r r

r r r r r r r r

33

Page 34: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 2 3

1 1 2 2

2

1 1 1 1 1 2 2 2 2 2

2

0

00

00

r r r

r rv

solve for and v

r r r ra

solve for and a

r2 r3

r1 X

Y

34

Page 35: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

7.12 EQUIVALENT LINKAGES

35

Page 36: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Computation of Multibody Kinematics And Dynamics

1.1 Multibody Mechanical Systems

2D Planar Mechanism

36

3D Spatial Mechanism

Page 37: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Computer-Aided Design (CAD)

• Mechanics: Statics and dynamics.

• Dynamics : kinematics and kinetics.

• Kinematics is the study of motion, i.e., the study of displacement, velocity, and acceleration, regardless of the forces that produce the motion.

• Kinetics or Dynamics is the study of motion and its relationship with the forces that produce that motion.

37

Page 38: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.2 Coordinate Systems

2 2 2 2

1 1( ) 2 cos 2 cos 2 cos( ) 0r l s d rl ls rs

2 2 2 2

2( ) 2 cos 2 cos 0r l s d rl ds

1 2 3 2 0

1 2 3[ ]T q

A four-bar mechanism with generalized coordinates.

degrees of freedom 4 – 3 = 1

4 Coordinate

4

3 Constraints

38

Page 39: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1

2

3

q

1 2 3

1 2 3

cos cos cos 0

sin sin sin 0

r d s l

r d s

Generalized Coordinates

dof 3 2 1

2 constraints

39

Page 40: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 1 1 2 2 2 3 3 3

Tx y x y x y q

1 1

1 1

1 1 2 2

1 1 2 2

2 2 3 3

2 2 3 3

3 3

3 3

cos 02

sin 02

cos cos 02 2

sin sin 02 2

cos cos 02 2

sin sin 02 2

cos 02

sin 02

rx

ry

r dx x

r dy y

d sx x

d sy y

sx l

sy

Cartesian Coordinates

dof 9 8 1

12 coordinates and 11 kinematic constraints

40

Page 41: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1.3 Computation Kinematics • A mechanism that is formed from a collection of links or bodies kinematically connected to one

another.

• An open-loop mechanism may contain links with single joint.

• A closed-loop mechanism is formed from a closed chain, wherein each link is connected to at

least two other links of the mechanism.

Figure (a) Open-loop mechanism-double pendulum

and (b) closed-loop mechanism-four-bar linkage.

41 Figure (a) Single-loop mechanism and (b) multi-loop mechanism.

Single and Multi-Loop Mechanism

Page 42: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Figure Example of kinematic pairs: (a) revolute joint, (b) translational joint,

(c) gear set, (d) cam follower, (e) screw joint, and (f) spherical ball joint.

High and Low Pair of Kinematic Joint

42

Page 43: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

2 algebraic constraint equations,

1 1 2 2 3 3 1

1 1 2 2 3 3 2

cos cos cos 0

sin sin sin 0

l l l d

l l l d

Figure four-bar mechanism.

Generalized Coordinates

3 generalized coordinates,

43

Page 44: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 2 3, , , , ,T

i ix y z i q is the vector of coordinates for body

in three - dimensional space.

44

2.1 Planar Kinematics in Cartesian Coordinates

P P

i i i i r r A s

cos sin

sin cosi

i

A

Inertial system Χ − Y

Body−fixed system ξ − η

Coordinate transformation matrix

The column vector is the vector of coordinates

for body in a plane.

[ , , ]T

i ix y qi

Page 45: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

• A constraint equation describing a condition on the vector of coordinates of

a system can be expressed as follows:

• In some constraint and driving function, the variable time may appear

explicitly:

• Constraint Jacobian Matrix by differentiating the constraint equations

0 q

, 0t q

Constraint Equation

45

0

0 often denoted as 0

also denoted as 0

0

q

q q q

q q q

( )

,

( )

( )

q

q qq

qq + q

q q

q q q

q = q q

Page 46: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

• Kinematically equivalent.

Figure (a) A double parallel-crank mechanism and (b) its kinematically equivalent.

Redundant Constraint

46 Figure Quick-return mechanism: (a) schematic presentation and

(b) its equivalent representation without showing the actual outlines.

Kinematics of Mechanism Mainly composed of revolute joint and translation joint

Page 47: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

0P P

i i j j r s r s

( ,2) 0r P P

i i j j

i jr A s r A s

( ,2)cos sin cos sin 0

sin cos sin cos 0

P P P P

i i i i i j j j j jr

P P P P

i i i i i j j j j j

x x

y y

Figure Revolute joint connecting bodies and .

P i j

2.2 Revolute Joint

+ −

47

Page 48: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 cos sin cos sin 0P P P P

i i i i i j j j j jx x

2 sin cos sin cos 0P P P P

i i i i i j j j j jy y

Time Derivative of Revolute Joint Constraint

yi+ (x

i

P cosfi-h

i

P sinfi)fi- y

j- (x

j

P cosfj-h

j

P sinfj)f

j= 0

xi- (x

i

P sinfi+h

i

P cosfi)fi- x

j+ (x

j

P sinfj+h

j

P cosfj)f

j= 0

48

Page 49: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 cos sin cos sin 0P P P P

i i i i i j j j j jx x

Time Derivative of Revolute Constraint

2 sin cos sin cos 0P P P P

i i i i i j j j j jy y

2

2

( sin cos ) ( cos sin )

( sin cos ) ( cos sin ) 0

P P P P

i i i i i i i i i i i j

P P P P

j j j j j j j j j j

x x

2

2

( cos sin ) ( sin cos )

( cos sin ) ( sin cos ) 0

P P P P

i i i i i i i i i i i j

P P P P

j j j j j j j j j j

y y

xi- (x

i

P sinfi+h

i

P cosfi)fi- x

j+ (x

j

P sinfj+h

j

P cosfj)f

j= 0

yi+ (x

i

P cosfi-h

i

P sinfi)fi- y

j- (x

j

P cosfj-h

j

P sinfj)f

j= 0

or

2 2p p

i i j js s

49

Page 50: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

2.3 Translational Joint

Figure Different representations of a translational joint.

50

Figure A translational joint between bodies and .

i j

0T

i n d

0

P P

i jP R P R

i i i i P P

i j

x xx x y y

y y

0 0

( )( ) ( )( ) 0

( ) 0

P P P Q P P P Q

i j i i i j i j

i j i j

x x y y y y x x

Translational Joint

Page 51: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

0 0

( )( ) ( )( ) 0

( ) 0

P Q P P P Q P P

i i j i i i j i

i j i j

x x y y y y x x

Time Derivative of Translational Joint Constraint

g = -2[(xi

P - xi

Q )(xi- x

j)+ (y

i

P - yi

Q )(yi- y

j)f† -[(x

i

P - xi

Q )(yi- y

j)- (y

i

P - yi

Q )(xi- x

j)fi

2

51

Page 52: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Driving Link

Figure (a) The motion of the slider is controlled in the direction

and (b) the motion of point is controlled in the direction.

( ) 0ix d t

( ) 0P

iy d t

P

x y

52

Page 53: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Kinematics of a four-bar linkage

mm180

mm180

mm260

mm80

OC

BC

AB

OA

1 1

1 1

1 1 2 2

1 1 2 2

2 2 3 3

2 2 3 3

3 3

3 3

1

8 Constraint equations:

40 0

40 0

40 130 0

40 130 0

130 90 0

130 90 0

90 180 0

90 0

driving link

2 2 0

x

y

x x

y y

x x

y y

x

y

t

cos

sin

cos cos

sin sin

cos cos

sin sin

cos

sinA

B

C O

y

x

1

1

1

2

2

3

3

3

2

333222111

,,,,,,,, unknown 9for equations 9 thesolve To yxyxyxT q53

A Matlab Program for

Page 54: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Jacobian matrix and velocity equations

1

2

3 2

4 2

5 2 3

6 2 3

7 3

8 3

9

1 0 40sin 0 0 0 0 0 0

0 1 40cos 0 0 0 0 0 0

1 0 40sin 1 0 130sin 0 0 0

0 1 40cos 0 1 130cos 0 0 0

0 0 0 1 0 130sin 1 0 90sin

0 0 0 0 1 130cos 0 1 90cos

0 0 0 0 0 0 1 0 90sin

0 0 0 0 0 0 0 1 90cos

0 0 1 0 0 0 0 0 0

J

2

0

0

0

0

0

0

0

0

qβq velocity for the solve To J

54

Page 55: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Acceleration equations

0

sin90

cos90

sin90sin130

cos90cos130

sin130sin50

cos130cos50

sin40

cos40

2

33

2

33

2

33

2

22

2

33

2

22

2

22

2

2

22

2

2

2

γ

qγq onaccelerati for the solve To J

55

Page 56: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

The procedure of m-file

0at start and Initialize t

tq solve toposition initial hsolver witnonlinear Call

solve to with andmatrix Jacobian Determine tt qqβ

solve to with Determine tt qqγ

iterationnext of position initialnew theasit set and

motion intended with Assume Δtt q

ttt qqq and , of response timePlot the

themanimate and bars theof positions theDetermine

56

Page 57: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

The code of m.file (1) 1. % Set up the time interval and the initial positions of the nine coordinates

2. T_Int=0:0.01:2;

3. X0=[0 50 pi/2 125.86 132.55 0.2531 215.86 82.55 4.3026];

4. global T

5. Xinit=X0;

6.

7. % Do the loop for each time interval

8. for Iter=1:length(T_Int);

9. T=T_Int(Iter);

10. % Determine the displacement at the current time 11. [Xtemp,fval] = fsolve(@constrEq4bar,Xinit);

12.

13. % Determine the velocity at the current time

14. phi1=Xtemp(3); phi2=Xtemp(6); phi3=Xtemp(9);

15. JacoMatrix=Jaco4bar(phi1,phi2,phi3);

16. Beta=[0 0 0 0 0 0 0 0 2*pi]';

17. Vtemp=JacoMatrix\Beta;

18.

19. % Determine the acceleration at the current time

20. dphi1=Vtemp(3); dphi2=Vtemp(6); dphi3=Vtemp(9);

21. Gamma=Gamma4bar(phi1,phi2,phi3,dphi1,dphi2,dphi3);

22. Atemp=JacoMatrix\Gamma;

23.

24. % Record the results of each iteration

25. X(:,Iter)=Xtemp; V(:,Iter)=Vtemp; A(:,Iter)=Atemp;

26.

27. % Determine the new initial position to solve the equation of the next

28. % iteration and assume that the kinematic motion is with inertia

29. if Iter==1

30. Xinit=X(:,Iter);

31. else

32. Xinit=X(:,Iter)+(X(:,Iter)-X(:,Iter-1));

33. end

34.

35.end 57

Page 58: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

The code of m.file (2)

36.% T vs displacement plot for the nine coordinates

37.figure

38.for i=1:9;

39. subplot(9,1,i)

40. plot (T_Int,X(i,:))

41. set(gca,'xtick',[], 'FontSize', 5)

42.end

43.% Reset the bottom subplot to have xticks

44.set(gca,'xtickMode', 'auto')

45.

46.% T vs velocity plot for the nine coordinates

47.figure

48.for i=1:9;

49. subplot(9,1,i)

50. plot (T_Int,V(i,:))

51. set(gca,'xtick',[], 'FontSize', 5)

52.end

53.set(gca,'xtickMode', 'auto')

54.

55.% T vs acceleration plot for the nine coordinates

56.figure

57.for i=1:9;

58. subplot(9,1,i)

59. plot (T_Int,A(i,:))

60. AxeSup=max(A(i,:));

61. AxeInf=min(A(i,:));

62. if AxeSup-AxeInf<0.01

63. axis([-inf,inf,(AxeSup+AxeSup)/2-0.1 (AxeSup+AxeSup)/2+0.1]);

64. end

65. set(gca,'xtick',[], 'FontSize', 5)

66.end

67.set(gca,'xtickMode', 'auto') 58

Page 59: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

The code of m.file (3)

68.% Determine the positions of the four revolute joints at each iteration

69.Ox=zeros(1,length(T_Int));

70.Oy=zeros(1,length(T_Int));

71.Ax=80*cos(X(3,:));

72.Ay=80*sin(X(3,:));

73.Bx=Ax+260*cos(X(6,:));

74.By=Ay+260*sin(X(6,:));

75.Cx=180*ones(1,length(T_Int));

76.Cy=zeros(1,length(T_Int));

77.

78.% Animation

79.figure

80.for t=1:length(T_Int);

81. bar1x=[Ox(t) Ax(t)];

82. bar1y=[Oy(t) Ay(t)];

83. bar2x=[Ax(t) Bx(t)];

84. bar2y=[Ay(t) By(t)];

85. bar3x=[Bx(t) Cx(t)];

86. bar3y=[By(t) Cy(t)];

87.

88. plot (bar1x,bar1y,bar2x,bar2y,bar3x,bar3y);

89. axis([-120,400,-120,200]);

90. axis normal

91.

92. M(:,t)=getframe;

93.end

59

Page 60: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Initialization 1. % Set up the time interval and the initial positions of the nine coordinates

2. T_Int=0:0.01:2;

3. X0=[0 50 pi/2 125.86 132.55 0.2531 215.86 82.55 4.3026];

4. global T

5. Xinit=X0;

1. The sentence is notation that is behind symbol “%”.

2. Simulation time is set from 0 to 2 with Δt = 0.01.

3. Set the appropriate initial positions of the 9 coordinates which are used to solve nonlinear solver.

4. Declare a global variable T which is used to represent the current time t and determine the

driving constraint for angular velocity.

60

Page 61: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Determine the displacement

10. [Xtemp,fval] = fsolve(@constrEq4bar,Xinit);

a. function F=constrEq4bar(X)

b.

c. global T

d.

e. x1=X(1); y1=X(2); phi1=X(3);

f. x2=X(4); y2=X(5); phi2=X(6);

g. x3=X(7); y3=X(8); phi3=X(9);

h.

i. F=[ -x1+40*cos(phi1);

j. -y1+40*sin(phi1);

k. x1+40*cos(phi1)-x2+130*cos(phi2);

l. y1+40*sin(phi1)-y2+130*sin(phi2);

m. x2+130*cos(phi2)-x3+90*cos(phi3);

n. y2+130*sin(phi2)-y3+90*sin(phi3);

o. x3+90*cos(phi3)-180;

p. y3+90*sin(phi3);

q. phi1-2*pi*T-pi/2];

10. Call the nonlinear solver fsolve in which the constraint equations and initial values are necessary. The

initial values is mentioned in above script. The constraint equations is written as a function (which can

be treated a kind of subroutine in Matlab) as following and named as constrEq4bar. The fsolve finds a

root of a system of nonlinear equations and adopts the trust-region dogleg algorithm by default.

The equation of driving constraint

is depended on current time T 61

Page 62: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Determine the velocity 14. phi1=Xtemp(3); phi2=Xtemp(6); phi3=Xtemp(9);

15. JacoMatrix=Jaco4bar(phi1,phi2,phi3);

16. Beta=[0 0 0 0 0 0 0 0 2*pi]';

17. Vtemp=JacoMatrix\Beta;

15. Call the function Jaco4bar to obtain the Jacobian Matrix depended on current values of

displacement.

16. Declare the right-side of the velocity equations.

17. Solve linear equation by left matrix division “\” roughly the same as J-1β. The algorithm adopts

several methods such as LAPACK, CHOLMOD, and LU. Please find the detail in Matlab Help.

a. function JacoMatrix=Jaco4bar(phi1,phi2,phi3)

b.

c. JacoMatrix=[ -1 0 -40*sin(phi1) 0 0 0 0 0 0;

d. 0 -1 40*cos(phi1) 0 0 0 0 0 0;

e. 1 0 -40*sin(phi1) -1 0 -130*sin(phi2) 0 0 0;

f. 0 1 40*cos(phi1) 0 -1 130*cos(phi2) 0 0 0;

g. 0 0 0 1 0 -130*sin(phi2) -1 0 -90*sin(phi3);

h. 0 0 0 0 1 130*cos(phi2) 0 -1 90*cos(phi3);

i. 0 0 0 0 0 0 1 0 -90*sin(phi3);

j. 0 0 0 0 0 0 0 1 90*cos(phi3);

k. 0 0 1 0 0 0 0 0 0];

62

Page 63: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Determine the acceleration 20. dphi1=Vtemp(3); dphi2=Vtemp(6); dphi3=Vtemp(9);

21. Gamma=Gamma4bar(phi1,phi2,phi3,dphi1,dphi2,dphi3);

22. Atemp=JacoMatrix\Gamma;

21. Call the function Gamma4bar to obtain the right-side of the velocity equations depended on

current values of velocity.

22. Solve linear equation to obtain the current acceleration.

a. function Gamma=Gamma4bar(phi1,phi2,phi3,dphi1,dphi2,dphi3)

b.

c. Gamma=[ 40*cos(phi1)*dphi1^2;

d. 40*sin(phi1)*dphi1^2;

e. 40*cos(phi1)*dphi1^2+130*cos(phi2)*dphi2^2;

f. 40*sin(phi1)*dphi1^2+130*sin(phi2)*dphi2^2;

g. 130*cos(phi2)*dphi2^2+90*cos(phi3)*dphi3^2;

h. 130*sin(phi2)*dphi2^2+90*sin(phi3)*dphi3^2;

i. 90*cos(phi3)*dphi3^2;

j. 90*sin(phi3)*dphi3^2;

k. 0];

63

Page 64: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Determine next initial positions 29. if Iter==1

30. Xinit=X(:,Iter);

31. else

32. Xinit=X(:,Iter)+(X(:,Iter)-X(:,Iter-1));

33. end

29.~33. Predict the next initial positions with assumption of inertia except the first time of the loop.

64

Page 65: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Plot time response 37.figure

38.for i=1:9;

39. subplot(9,1,i)

40. plot (T_Int,X(i,:))

41. set(gca,'xtick',[], 'FontSize', 5)

42.end

43.% Reset the bottom subplot to have xticks

44.set(gca,'xtickMode', 'auto')

45.

46.% T vs velocity plot for the nine coordinates

47.figure

48.for i=1:9;

37.…

37. Create a blank figure .

39. Locate the position of subplot in the figure.

40. Plot the nine subplots for the time responses of nine coordinates.

41. Eliminate x-label for time-axis and set the font size of y-label.

44. Resume x-label at bottom because the nine subplots share the same time-axis.

47.~ It is similar to above.

65

Page 66: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Animation 69.Ox=zeros(1,length(T_Int));

70.Oy=zeros(1,length(T_Int));

71.Ax=80*cos(X(3,:));

72.Ay=80*sin(X(3,:));

73.Bx=Ax+260*cos(X(6,:));

74.…

69. Determine the displacement of revolute joint.

80. Repeat to plot the locations by continue time elapsing.

81. Determine the horizontal location of .

88. Plot .

89. Set an appropriate range of axis.

80.for t=1:length(T_Int);

81. bar1x=[Ox(t) Ax(t)];

82. bar1y=[Oy(t) Ay(t)];

83. bar2x=[Ax(t) Bx(t)];

84. bar2y=[Ay(t) By(t)];

85. bar3x=[Bx(t) Cx(t)];

86. bar3y=[By(t) Cy(t)];

87.

88. plot (bar1x,bar1y,bar2x,bar2y,bar3x,bar3y);

89. axis([-120,400,-120,200]);

90. axis normal

91.

92. M(:,t)=getframe;

93.end

OA

OCBCABOA and , , ,

66

Page 67: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of displacement

1x

1

1y

2x

2

2y

3x

3

3y

t67

Page 68: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of velocity

1x

1

1y

2x

2

2y

3x

3

3y

t68

Page 69: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of acceleration

1x

1

1y

2x

2

2y

3x

3

3y

t69

Page 70: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Example of a slider-crank mechanism

mm200

mm300

mm200

BO

GB

AG

1

1

1

4 3 3

4 3 3

3 3 2 2

3 3 2 2

2 2 1

2 2 1

4 1 4 4 4 1 4 4

4

11 Constraint equations:

0

0

0

200 0

200 0

300 100 0

300 100 0

100 0

100 0

100 100 100 100 0

x

y

x x

y y

x x

y y

x x

y y

y y x x

cos

sin

cos cos

sin sin

cos

cos

cos sin sin cos

1

2

0

driving link

5 76 1 2 0t

. .

1 1 1 2 2 2 3 3 3 4 4 4To solve the 12 equations for 12 unknown T x y x y x y x y ,

q , , , , , , , , , ,

A

B

C

O

y

x 4

4

2

23

3

3

2

1

1G

70

Page 71: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Jacobian matrix

0000003600000

35000000003400

33323100000002928

000000272600240

000000230220020

0001918017160000

0001501413012000

0100980000000

006504000000

000000000300

000000000020

000000000001

12

11

10

9

8

7

6

5

4

3

2

1

J

2.1

0

0

0

0

0

0

0

0

0

0

0

2

3

2

3

3

cos10027 ,17

sin30015

sin10023 ,13

cos2009

sin2005

135 ,24 ,20 ,16 ,12 ,8 ,4

136 ,34 ,26 ,22 ,18 ,14 ,10 ,6 ,3 ,2 ,1

144144

4

4

3

sincos10033

2932

2831

cos10029

sin10028

cos30019

yyxx

71

Page 72: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

The right-side

of the acceleration equations

0

0

10

sin100

cos100

sin100sin300

cos100cos300

sin200

cos200

0

0

0

2

22

2

22

2

22

2

33

2

22

2

33

2

33

2

33

γ

γ

414414

2

444144414cos100sin100sin200cos20010 where yyxxyyxx

72

Page 73: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of displacement

2x

2

2y

3x

3

3y

4x

4

4y

t73

Page 74: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of velocity

2x

2

2y

3x

3

3y

4x

4

4y

t74

Page 75: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of acceleration

2x

2

2y

3x

3

3y

t

4x

4

4y

75

Page 76: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Kinematic Modeling

Figure Kinematic modeling of a slider-crank mechanism.

1 1 10.0, 0.0, 0.0x y

4 4 3 3

3 3 2 2

0 0 0 0

2 2 1 1

0.0, 0.0, 200.0, 0.0

300.0, 0.0, 100.0, 0.0

100.0, 0.0, 0.0, 0.0

A A A A

B B B B

4 4 1 1

0 0

4 4 1 1

0.0, 0.0, 100.0, 0.0,

100.0, 0.0, 0.0, 0.0

A A B B

C C

2 5.76 1.2 0.0t

driving link

Ground

Revolute joint

translational joint

76

Page 77: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 1 1 1 1

1 1 1 1 1

4 4 4

4 4 4

1 1 4

4 4

1 1 4

100100

0 100

1000

100 100

100100 100

100

T

x c s x cB

y s c y s

c s sn

s c c

x c xn d s c

y s y

41

41

4 1 4 11

1 1 4 4 1 1 4 44

100

100

100 100 100

100 100 100 100 0

sx

cy

c c s s

y s y s x c x c

4 1 1 4 1 1 4 4100 100 100 100c y s y x c x s

Translation Joint 1y

1Bd

c

n

1 1 4

1 1 4

100

100

x c xd

y s y

77

Page 78: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

1 1

2 1

3 1

0.0

0.0

0.0

x

y

Figure Kinematic modeling of a slider-crank mechanism.

Ground

revolute joints 4 4 3 3

5 4 3 3

6 3 3 2 2

7 3 3 2 2

8 2 2 1

9 2 2 1

200cos 0

200sin 0

300cos 100cos 0

300sin 100sin 0

100cos 0

100sin 0

x x

y y

x x

y y

x x

y y

translational joint

10 4 1 1 4

1 1 4 4

11 4 1

( 100cos )( 100sin )

( 100cos )( 100sin ) 0

0

y y

x x

driving constraint

12 2 5.76 1.2 0t

Kinematic Modeling

78

Page 79: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Figure The Jacobian matrix.

Jacobian Matrix

79

Page 80: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Cont’d

30 80

Page 81: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

( )

( ) 0

( , ) 0d t

q

q

kinematic constraints

driving link

3.2 Solution Technique

velocity equations

( )( ) ( )

0 or 0

0 or 0

q

dd d

q tt

q = qq

q + = qq

( ) ( )

0d d

q

q t

q =

acceleration

( ) ( ) ( ) ( )

0 or ( ) 0

( ) 2 0

q q q

d d d d

q q q qt tt

qq + q = q q q

q q

q q q q

81

Page 82: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Solution Technique

At any given instant t

(1) Solve

n equations for n unknowns

(2) Solve

n equations for n unknowns

(3) Solve

n equations for n unknowns

( )

( , )

q

d

q t

q q = 0

q q = (the right hand side)

( )tq

( )

( , )

q

d

q t

q q = 0

q q = (the right hand side)

( )tq

( )

( )

q

d

q

q q =

q q =

(the right hand side)

( )tq

82

Page 83: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

4.1 Planar Rigid Body Dynamics

i i xi

i i yi

i i i

m x f

m y f

n

Miqi= g

i

0 0

0 0

0 0

x

y

i

m x f

m y f

n

83

Page 84: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Constraint Force

1

1

( )

( )

( , ) 0,

0 or 0,

,

n

m n

q q

m

T

q

c

c T

q

T

q

t

q

q qq

Mq g g

g

Mq g

There exists Lagrange Multiplier

such that is that constraint force.

The equations of motion can be written as

84

Page 85: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Illustration of Constraint Force

0

4 eqs. for 5 unknowns , , , ,

0constraint equation

0

2 2 1, 0, , ,

3 3 3

c

mgs f mx

mgc N my

mgc N

f R I

x y f N

x R

y R

gx gs y s N mgc f mgs

R

Pure rolling of a disk down a slope

x

y

f

N

mg

85

Page 86: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

2

Generalized coordinate ,

Constraint eq. 0 0

0

0 0

0 0 1 0

0 0 0 1

10 0 0

2

1 0 0 0

0 1 0 0 0

T

x

x R y R

x R

M mgsq q

mgc

q

m

m

mR R

R

1

2

0

0

0

2 2 13 eqs. for 3 unknowns , 0, ,

3 3 3

1

1 0 3

The constraint force 0 1

0 1

3

T

x mgs

y mgc

gx gs y s mgs

R

mgs

mgcq

RmgRs

3 1

is the friction force for pure rolling.

86

Page 87: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

mixi= f

(x)i- l

1

miyi= f

( y)i- l

2

mifi= n

i- (y

i

P - yi)l

1+ (x

i

P - xi)l

2

4.2 Constraint Force in Revolute Joint

1

2

0 0 1 0

0 0 0 1

0 0 ( ) ( )

x

y

P P

i i i ii i

m x f

m y f

y y x x n

87

Page 88: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Constraint Force in Translational Joint

88

1( )P Q

i i xi i im x f y y

1( )P Q

i i yi i im y f x x

For a translational joint between i and j,

the equation of motion for body i can be written as

1 2[( )( ) ( )( )]P P Q P P Q

i i i j i i i j i i in x x x x y y y y

Page 89: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

T

q Mq g

linear algebraic equations in unknowns

for and . q n m n m

4.3 Formulation of Multi-body Dynamic Systems

89

Page 90: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Dynamics of a four-bar linkage

m18.0

m18.0

m26.0

m08.0

OC

BC

AB

OA

A

B

C O

mN1.0 T

24

23

25

mkg1086.4

mkg1046.1

mkg1027.4

BO

AB

OA

I

I

I

kg18.0

kg26.0

kg08.0

BC

AB

OA

M

M

M

2sm9.8g

90

A Matlab Program for

Page 91: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Mass matrix and external force vector

4

3

5

1086.400000000

00.180000000

000.18000000

0001046.100000

00000.260000

000000.26000

0000001027.400

000000008.00

0000000008.0

M

2sm9.8g

kg18.0

kg26.0

kg08.0

BC

AB

OA

M

M

M

24

23

25

mkg1086.4

mkg1046.1

mkg1027.4

BO

AB

OA

I

I

I

mN1.0 T

0

8.918.0

0

0

8.926.0

0

1.0

8.908.0

0

g

91

Page 92: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

0

sin09.0

cos09.0

sin09.0sin13.0

cos09.0cos13.0

sin13.0sin05.0

cos13.0cos05.0

sin04.0

cos04.0

2

33

2

33

2

33

2

22

2

33

2

22

2

22

2

2

22

2

2

2

γ

Jacobian matrix and γ

000000100

cos09.010000000

sin09.001000000

cos09.010cos13.010000

sin09.001sin13.001000

000cos13.010cos04.010

000sin13.001sin04.001

000000cos04.010

000000sin04.001

3

3

32

32

2

2

99

J

m18.0

m18.0

m26.0

m08.0

OC

BC

AB

OA

92

Page 93: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Computation

.0 velocity and 0 position initial with0 and 0for

solve tois stepfirst thecomputing, numerial In

1819

8889

89

qqλq

γ

g

λ

q

OJ

JMT

.for equation aldifferenti thesolve tois objective The8889

8999t

T

g

λ

q

OJ

JM

. and for step above repeat the to

and theuse and , 0

0 Integrate

ΔtΔt

ΔtΔtΔt

ΔtΔt

λq

qqq

q

q

q

.condition terminaluntil Repeat Δtt

93

Page 94: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

A convenient way with Matlab solver

Solve initial value problems for ordinary differential equations with

ode45(commended), ode23, ode113…

The equations are described in the form of z‘=f(t,z)

q

qz

q

qz

,Let

3

1

1

3

1

1

y

x

y

x

94

Page 95: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

The syntax for calling solver in Matlab

[T,Z] = ode45(@Func4Bar,[0:0.005:2],Z0);

column vector of

time points

Solution array

A vector specifying the interval

of integration

A vector of initial

conditions

A function that evaluates the right side of the

differential equations

function dz=Func4Bar(t,z)

global L1 L2 L3 L4 torque gravity

phi1=z(3); phi2=z(6); phi3=z(9);

dphi1=z(12); dphi2=z(15); dphi3=z(18);

M=diag([L1 L1 L1^3/12 L2 L2 L2^3/12 L3 L3 L3^3/12]);

J=[ -1 0 -0.5*L1*sin(phi1) 0 0 0 0 0 0;

0 -1 0.5*L1*cos(phi1) 0 0 0 0 0 0;

1 0 -0.5*L1*sin(phi1) -1 0 -0.5*L2*sin(phi2) 0 0 0;

0 1 0.5*L1*cos(phi1) 0 -1 0.5*L2*cos(phi2) 0 0 0;

0 0 0 1 0 -0.5*L2*sin(phi2) -1 0 -0.5*L3*sin(phi3);

0 0 0 0 1 0.5*L2*cos(phi2) 0 -1 0.5*L3*cos(phi3);

0 0 0 0 0 0 1 0 -0.5*L3*sin(phi3);

0 0 0 0 0 0 0 1 0.5*L3*cos(phi3)];

95

Page 96: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

The syntax for calling solver in Matlab

J=[ -1 0 -0.5*L1*sin(phi1) 0 0 0 0 0 0;

0 -1 0.5*L1*cos(phi1) 0 0 0 0 0 0;

1 0 -0.5*L1*sin(phi1) -1 0 -0.5*L2*sin(phi2) 0 0 0;

0 1 0.5*L1*cos(phi1) 0 -1 0.5*L2*cos(phi2) 0 0 0;

0 0 0 1 0 -0.5*L2*sin(phi2) -1 0 -0.5*L3*sin(phi3);

0 0 0 0 1 0.5*L2*cos(phi2) 0 -1 0.5*L3*cos(phi3);

0 0 0 0 0 0 1 0 -0.5*L3*sin(phi3);

0 0 0 0 0 0 0 1 0.5*L3*cos(phi3)];

gamma=[ 0.5*L1*cos(phi1)*dphi1^2;

0.5*L1*sin(phi1)*dphi1^2;

0.5*L1*cos(phi1)*dphi1^2+0.5*L2*cos(phi2)*dphi2^2;

0.5*L1*sin(phi1)*dphi1^2+0.5*L2*sin(phi2)*dphi2^2;

0.5*L2*cos(phi2)*dphi2^2+0.5*L3*cos(phi3)*dphi3^2;

0.5*L2*sin(phi2)*dphi2^2+0.5*L3*sin(phi3)*dphi3^2;

0.5*L3*cos(phi3)*dphi3^2;

0.5*L3*sin(phi3)*dphi3^2];

g=[0 gravity*L1 torque 0 gravity*L2 0 0 gravity*L3 0]';

Matrix=[M J';

J zeros(size(J,1),size(J,1))];

d2q=Matrix\[g;gamma];

dz=[z(10:18,:); d2q(1:9,:)]; 96

Page 97: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of displacement

1x

1

1y

2x

2

2y

3x

3

3y

t97

Page 98: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of velocity

1x

1

1y

2x

2

2y

3x

3

3y

t98

Page 99: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of acceleration

1x

1

1y

2x

2

2y

3x

3

3y

t

310

99

Page 100: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of λ

1

t

310

2

3

4

5

6

7

8

100

Page 101: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

A slider-crank mechanism

m2.0

m3.0

m2.0

m1.0

BO

GB

AG

AC

A

B

C

O

G

24

22

24

mkg1067.6

mkg1004.1

mkg1067.6

BO

AB

slider

I

I

I

kg2.0

kg5.0

kg1.0

BO

AB

AC

M

M

M

mN1.0 T

2sm9.8g

101

Page 102: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of displacement

2x

2

2y

3x

3

3y

4x

4

4y

t102

Page 103: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of velocity

2x

2

2y

3x

3

3y

4x

4

4y

t103

Page 104: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of acceleration

2x

2

2y

3x

3

3y

t

4x

4

4y

310

104

Page 105: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time response of λ

1

t

310

2

3

4

5

6

7

8

9

10

11

105

Page 106: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

0 1 0 0 0

0 0 0

0 0 1 0 0 0 1

c s c s

s c c s s c

s c

D C BA DCB

5.1 Euler Angles

106

(5.1)

c c s c s c s s c c s s

s c c c s s s c c c c s

s s s c c

A =

Page 107: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time Derivatives of Euler Angles

wx( )

= y sinq sinf +q cosf

wh( )

= y sinq cosf -q sinf

wz( )

= y cosq +f

sin sin cos 0

sin cos sin 0

cos 0 1

107

Page 108: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

A DCB

2 2 3 3

1 1 3 3

1 1 2 2

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

c s c s

c s s c

s c s c

D C B

Bryant Angles

108

2 3 2 3 2

1 3 1 2 3 1 3 1 2 3 1 2

1 3 1 2 3 1 3 1 2 3 1 2

c c c s s

c s s s c c c s s s s c

s s c s c s c c s s c c

A =

Page 109: Chapter 1ggn.dronacharya.info/.../QuestionBank/IVsem/kom/Section-B/PPT2.pdf · Multibody Kinematics and Dynamics Chapter 1 1 . ... • Planar mechanism ... A rigid body contains more

Time Derivative of Bryant Angles

1 3 3 1

2 3 3 2

2 3

cos cos sin 0

cos sin cos 0

sin 0 1

109